phy-4600/solutions/chap7/prob8

253 lines
9.2 KiB
Plaintext
Raw Normal View History

2016-03-26 22:02:07 +00:00
The transformation from polar coordinates to cartesian is the set of equations
2016-03-23 23:43:48 +00:00
⎧ x = r sinθ cosϕ
⎨ y = r sinθ sinϕ
⎩ z = r cosθ
2016-03-26 22:02:07 +00:00
The transformation from cartesian to polar coordinates is the set
⎧ r = √(x²+y²+z²)
⎪ cos(θ) = z͟ = _͟z͟
⎨ r √(x²+y²+z²)
⎪ tan(ϕ) = y͟
⎩ x
2016-03-26 00:08:04 +00:00
Some differential forms may come in handy.
2016-03-26 22:02:07 +00:00
⎧ dcos(θ) = -sin(θ) dθ
⎪ dtan(ϕ) = _͟1͟ dϕ
⎩ cos²(ϕ)
2016-03-26 00:08:04 +00:00
∂/∂θ:
2016-03-26 22:02:07 +00:00
⎧ ∂͟x = r cosϕ cosθ
⎪ ∂θ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎨ ∂͟y = r sinϕ cosθ
⎪ ∂θ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎪ ∂͟z = -r sinθ
⎩ ∂θ
2016-03-26 00:08:04 +00:00
∂/∂ϕ:
2016-03-26 22:02:07 +00:00
⎧ ∂͟x = -r sinθ sinϕ
⎪ ∂ϕ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎨ ∂͟y = r sinθ cosϕ
⎪ ∂ϕ
⎪ ∂͟z = 0
⎩ ∂ϕ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
∂/∂x:
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
⎧ ∂͟r = √(x²+y²+z²) = x͟
⎪ ∂x r
⎪ ∂͟cos(θ) = -z͟x͟
⎨ ∂x r³
⎪ ∂͟tan(ϕ) = -y͟
⎩ ∂x x²
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
∂/∂y:
⎧ ∂͟r = √(x²+y²+z²) = y͟
⎪ ∂y r
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
⎪ ∂͟cos(θ) = -z͟y͟
⎨ ∂y r³
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
⎪ ∂͟tan(ϕ) = 1͟
⎩ ∂y x
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
∂/∂z:
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
⎧ ∂͟r = √(x²+y²+z²) = z͟
⎪ ∂z r
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
⎪ ∂͟cos(θ) = z͟ = 1͟ ⎛r ∂͟z͟ - z ∂͟r͟⎞ = 1͟ - z͟²
⎨ ∂z r r² ⎝ ∂z ∂z⎠ r r³
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
⎪ ∂͟tan(ϕ) = 0
⎩ ∂z
These differential forms can be used to transform each cartesian differentiation operator.
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂x ∂x ∂r ∂x ∂cosθ ∂x ∂tanϕ
∂͟ = x͟ ∂͟ - z͟x͟ _͟1͟ ∂͟ - y͟ cos²(ϕ) ∂͟ ;
∂x r ∂r r³ -sinθ ∂θ x² ∂ϕ
∂͟ = sin(θ) cos(ϕ) ∂͟
∂x ∂r
+ 1͟ sin(θ) cos(ϕ) cos(θ) _͟1͟ ∂͟
r sin(θ) ∂θ
- r͟ s͟i͟n͟(ϕ͟) s͟i͟n͟(θ͟) cos²(ϕ͟) ∂͟ ;
r² cos²(ϕ) sin²(θ) ∂ϕ
∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ .
∂x ∂r r ∂θ r sin(θ) ∂ϕ
───────────────────────────────────────────────
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂y ∂y ∂r ∂y ∂cosθ ∂y ∂tanϕ
∂͟ = y͟ ∂͟ - z͟y͟ ∂͟ + 1͟ ∂͟ ;
∂y r ∂r r³ ∂cosθ x ∂tanϕ
∂͟ = sin(θ) sin(ϕ) ∂͟ - 1͟ sin(θ) cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ;
∂y ∂r r -sin(θ) ∂θ r sin(θ) ∂ϕ
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ .
∂y ∂r r ∂θ r sin(θ) ∂ϕ
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
───────────────────────────────────────────────
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂z ∂z ∂r ∂z ∂cosθ ∂z ∂tanϕ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
∂͟ = z͟ ∂͟ + ⎛1͟ - z͟²⎞∂͟ + 0 ;
∂z r ∂r ⎝r r³⎠∂cosθ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
∂͟ = cos(θ) ∂͟ + 1͟⎛1 - cos²(θ)⎞ _͟1͟ ∂͟ ;
∂z ∂r r⎝ ⎠ -sin(θ) ∂θ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
∂͟ = cos(θ) ∂͟ - _͟1͟_ ⎛1 - cos²(θ)⎞ ∂͟ ;
∂z ∂r rsin(θ)⎝ ⎠ ∂θ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
∂͟ = cos(θ) ∂͟ - _͟1͟_ sin²(θ) ∂͟ ;
∂z ∂r rsin(θ) ∂θ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ .
∂z ∂r r ∂θ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
The set of differential operator transformations is
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎧ ∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟
⎪ ∂x ∂r r ∂θ r sin(θ) ∂ϕ
⎨ ∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟
⎪ ∂y ∂r r ∂θ r sin(θ) ∂ϕ
⎪ ∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟
⎩ ∂z ∂r r ∂θ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎧ L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_ - z ∂͟_ )
⎪ ∂z ∂y
⎨ L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_ - x ∂͟_ )
⎪ ∂x ∂z
⎪ L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_ - y ∂͟_ )
⎩ ∂y ∂x
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
Substituting 7.35 into 7.47,
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
⎪ ∂z ∂y
⎨ L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
⎪ ∂x ∂z
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
⎩ ∂y ∂x
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
Substituting the transformed differentiation operators,
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ⎠
⎪ - r cosθ ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞⎞
⎪ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
⎪ L̂𝓎 = -ιħ⎛r cosθ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
⎪ - r sinθ cosϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞⎞
⎪ ⎝ ∂r r ∂θ⎠⎠
⎪ L̂𝓏 = -ιħ⎛r sinθ cosϕ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
⎪ - r sinθ sinϕ ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞⎞
⎩ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
Simplifying...
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ cosθ ∂͟ - sinϕ sin²θ ∂͟
⎪ ⎝ ∂r ∂θ
⎪ - r cosθ sinθ sinϕ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ∂r ∂θ sinθ ∂ϕ⎠
⎪ L̂𝓎 = -ιħ⎛r cosθ sinθ cosϕ ∂͟ + cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟
⎪ ⎝ ∂r ∂θ sinθ ∂ϕ
⎪ - r sinθ cosϕ cosθ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
⎪ ∂r ∂θ⎠
⎪ L̂𝓏 = -ιħ⎛r sin²θ cosϕ sinϕ ∂͟ + sinθ cosθ sinϕ cosϕ ∂͟ + cosϕ c͟o͟s͟ϕ͟ ∂͟
⎪ ⎝ ∂r ∂θ ∂ϕ
⎪ - r sin²θ sinϕ cosϕ ∂͟ - sinθ cosθ sinϕ cosϕ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
⎩ ∂r ∂θ sinθ ∂ϕ⎠
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎧ L̂𝓍 = -ιħ⎛- sinϕ sin²θ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
⎨ L̂𝓎 = -ιħ⎛cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
⎪ ⎝ ∂θ sinθ ∂ϕ ∂θ⎠
⎪ L̂𝓏 = -ιħ⎛cosϕ c͟o͟s͟ϕ͟ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
⎩ ⎝ ∂ϕ sinθ ∂ϕ⎠
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
⎧ L̂𝓍 = ιħ⎛ sinϕ sin²θ ∂͟ + cos²θ sinϕ ∂͟ + c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
⎨ L̂𝓎 = ιħ⎛-cos²θ cosϕ ∂͟ - sin²θ cosϕ ∂͟ + c͟o͟s͟θ͟ sinϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ ⎠
⎪ L̂𝓏 = -ιħ⎛cos²ϕ ∂͟ + sin²ϕ ∂͟ ⎞
⎩ ⎝ ∂ϕ ∂ϕ⎠
⎧ L̂𝓍 = ιħ⎛ sinϕ ∂͟ + cotθ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂ϕ⎠
2016-03-23 23:43:48 +00:00
2016-03-26 22:02:07 +00:00
⎨ L̂𝓎 = ιħ⎛-cosϕ ∂͟ + cotθ sinϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂ϕ ⎠
⎪ L̂𝓏 = -ιħ∂͟
⎩ ∂ϕ
2016-03-26 00:08:04 +00:00
2016-03-26 22:02:07 +00:00
The spherical representation is the following set, which perfectly matches the obtained result.
2016-03-26 00:08:04 +00:00
⎧ L̂𝓍 = ιħ (sinϕ ∂͟_ + cosϕ cotθ ∂͟_ )
2016-03-26 22:02:07 +00:00
⎪ ∂θ ∂ϕ
2016-03-26 00:08:04 +00:00
⎨ L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
2016-03-26 22:02:07 +00:00
⎪ ∂θ ∂ϕ
2016-03-26 00:08:04 +00:00
⎪ L̂𝓏 = -ιħ ∂͟_
2016-03-26 22:02:07 +00:00
⎩ ∂ϕ