2016-03-23 23:43:48 +00:00
7.35 is nothing more than a definition of spherical coordinates.
⎧ x = r sinθ cosϕ
⎪
⎨ y = r sinθ sinϕ
⎪
⎩ z = r cosθ
2016-03-26 00:08:04 +00:00
Some differential forms may come in handy.
∂/∂θ:
⎧ ∂x = r cosϕ cosθ ∂θ
⎪
⎨ ∂y = r sinϕ cosθ ∂θ
⎪
⎩ ∂z = - r sinθ ∂θ
∂/∂ϕ:
⎧ ∂x = - r sinθ sinϕ ∂ϕ
⎪
⎨ ∂y = r sinθ cosϕ ∂ϕ
⎪
⎩ ∂z = 0 ∂ϕ
2016-03-23 23:43:48 +00:00
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩 .
⎧ L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_ - z ∂͟_ )
2016-03-26 00:08:04 +00:00
⎪ ∂z ∂y
2016-03-23 23:43:48 +00:00
⎪
⎨ L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_ - x ∂͟_ )
2016-03-26 00:08:04 +00:00
⎪ ∂x ∂z
2016-03-23 23:43:48 +00:00
⎪
⎪ L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_ - y ∂͟_ )
2016-03-26 00:08:04 +00:00
⎩ ∂y ∂x
2016-03-23 23:43:48 +00:00
2016-03-26 00:08:04 +00:00
Substituting 7.35 into 7.47,
2016-03-23 23:43:48 +00:00
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
2016-03-26 00:08:04 +00:00
⎪ ∂z ∂y
2016-03-23 23:43:48 +00:00
⎪
⎨ L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
2016-03-26 00:08:04 +00:00
⎪ ∂x ∂z
2016-03-23 23:43:48 +00:00
⎪
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
2016-03-26 00:08:04 +00:00
⎩ ∂y ∂x
2016-03-23 23:43:48 +00:00
2016-03-26 00:08:04 +00:00
Geometry is shown on the attached notes page.
For L̂𝓍 :
∂͟z͟ = -r sinθ
∂θ
∂͟y͟ = r sinθ cosϕ
∂ϕ
L̂𝓍 = -ιħ ( r sinθ sinϕ ∂͟θ͟ ∂͟_ - r cosθ ∂͟ϕ͟ ∂͟_ )
∂θ ∂z ∂ϕ ∂y
L̂𝓍 = ιħ ( -r sinθ sinϕ ∂͟θ͟ ∂͟_ + r cosθ ∂͟ϕ͟ ∂͟_ )
∂z ∂θ ∂y ∂ϕ
L̂𝓍 = ιħ ( − ͟r͟ s͟i͟n͟θ͟ sinϕ ∂͟_ + c͟o͟s͟θ͟ ∂͟_ )
-r sinθ ∂θ sinθ cosϕ ∂ϕ
L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ )
∂θ cosϕ ∂ϕ
For L̂𝓎 :
∂x = r cosϕ cosθ ∂θ
∂z = 0 ∂ϕ
L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
∂x ∂z
L̂𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_ + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ )
∂θ ∂x ∂ϕ ∂z
L̂𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_ + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ )
∂x ∂θ ∂z ∂ϕ
L̂𝓎 = ιħ (- _͟1͟ cosθ ∂͟_ + r sinθ cosϕ 0 ∂͟_ )
cosϕ cosθ ∂θ ∂ϕ
L̂𝓎 = ιħ (- _͟1͟ ∂͟_ )
cosϕ ∂θ
L̂𝓎 = -ιħ _͟1͟ ∂͟_
cosϕ ∂θ
For L̂𝓏 :
∂x = -r sinθ sinϕ ∂ϕ
∂y = r sinθ cosϕ ∂ϕ
L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟͟ϕ͟ ∂͟_ - r sinθ sinϕ ∂͟͟ϕ͟ ∂͟_ )
∂ϕ ∂y ∂ϕ ∂x
L̂𝓏 = -ιħ (r͟ s͟i͟n͟θ͟ c͟o͟s͟ϕ͟ ∂͟_ + r͟ s͟i͟n͟θ͟ s͟i͟n͟ϕ͟ ∂͟_ )
r sinθ cosϕ ∂ϕ r sinθ sinϕ ∂ϕ
L̂𝓏 = -ιħ ∂͟_ ( 1 + 1 )
∂ϕ
L̂𝓏 = -2ι ħ ∂͟_
∂ϕ
So, according to my calculus, the final solutions should be the set
⎧ L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ )
⎪ ∂θ cosϕ ∂ϕ
2016-03-23 23:43:48 +00:00
⎪
2016-03-26 00:08:04 +00:00
⎨ L̂𝓎 = -ιħ _͟1͟ ∂͟_
⎪ cosϕ ∂θ
2016-03-23 23:43:48 +00:00
⎪
2016-03-26 00:08:04 +00:00
⎪ L̂𝓏 = -2ι ħ ∂͟_
⎩ ∂ϕ
The spherical representation, i.e. ending place, is the set
⎧ L̂𝓍 = ιħ (sinϕ ∂͟_ + cosϕ cotθ ∂͟_ )
⎪ ∂θ ∂ϕ
⎪
⎨ L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
⎪ ∂θ ∂ϕ
⎪
⎪ L̂𝓏 = -ιħ ∂͟_
⎩ ∂ϕ
My set DOES NOT match this. I must be going about this the wrong way. I have to give it more thought. Perhaps a purely geometric approach will improve my answers: I'll try that over the weekend.