mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-10-31 18:18:03 +00:00 
			
		
		
		
	working on chap 7 hw #1
This commit is contained in:
		
							parent
							
								
									3991cf6fcf
								
							
						
					
					
						commit
						04c9365a20
					
				
							
								
								
									
										8
									
								
								HW
									
									
									
									
									
								
							
							
						
						
									
										8
									
								
								HW
									
									
									
									
									
								
							| @ -8,3 +8,11 @@ Chap 9: 7, 11, 12, 13, 14 | ||||
| 
 | ||||
| Chap 7: 5, 7, 8, one from last class, 11 | ||||
|     due friday 3-18, the class one is: show L̂𝓏 and p² commute | ||||
| 
 | ||||
| Chap 7: 10, 13, 18, 23, 30 due april 1 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| Exam 2: harmonic oscillator 1d, harmonic oscillator 3d, square well, angular momentum | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										22
									
								
								concepts
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								concepts
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,22 @@ | ||||
| the meaning of an operator - how it relates to an action that is a measurement and also an action on the state | ||||
| 
 | ||||
| the meaning of an eigenstate and an eigenvalue for an operator | ||||
| 
 | ||||
| the concept of a complete set of orthogonal operators that commute | ||||
|     - this says something about having common states | ||||
| 
 | ||||
|     superposition states | ||||
| 
 | ||||
|     unitary operators: | ||||
| 
 | ||||
|     ❙Ψ❭ = ∑ ❙n❭❬n❙Ψ❭ = ∑Cₙ❙n❭ | ||||
| 
 | ||||
|     ❬n❙Ψ❭ = ∫ dx ❬n❙x❭❬x❙Ψ❭ | ||||
| 
 | ||||
|           = ∫ dx n†(x) Ψ(x) | ||||
| 
 | ||||
| time evolution | ||||
| 
 | ||||
| schrodinger equation - specific cases: infinite or finite well, harmonic oscillator, hydrogen atom | ||||
| 
 | ||||
| angular momentum operators | ||||
							
								
								
									
										58
									
								
								lecture_notes/2-29/overview
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								lecture_notes/2-29/overview
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,58 @@ | ||||
| Problems with known polarization | ||||
|      | ||||
|     (pic) Uniformly polarized sphere | ||||
| 
 | ||||
|     Gauss' Law in Dielectric | ||||
| 
 | ||||
|         ε₀∇⋅𝐄 = ρ = ρfree + ρbound | ||||
|                 = ρfree - ∇⋅𝐏 | ||||
| 
 | ||||
|         ε₀∇⋅𝐄 + ∇⋅𝐏 = ρfree | ||||
| 
 | ||||
|         ∇⋅(ε₀𝐄 + 𝐏) = ρfree/ε₀ | ||||
| 
 | ||||
|         𝐃 ≡ ε₀𝐄 + 𝐏 | ||||
| 
 | ||||
|     Bar Electret | ||||
| 
 | ||||
|         - Analogous to Magnetic bar | ||||
| 
 | ||||
|         Two limits and an intermediate case. | ||||
| 
 | ||||
|         ∇×𝐃 = ∇×(ε₀𝐄 + 𝐏) = ∇×𝐏 | ||||
| 
 | ||||
|         𝐄 for bar electret, properties: | ||||
| 
 | ||||
|             (𝐄₂ - 𝐄₁)⋅𝐧̂₁→₂ = σ/ε₀ with σ = σᵦ + σfree | ||||
| 
 | ||||
|             Curl eq shows 𝐄"₂ - 𝐄"₁ = 0 (tangential components). | ||||
| 
 | ||||
|             (𝐃₂ - 𝐃₁)⋅𝐧̂₁→₂ = σfree | ||||
| 
 | ||||
|             (𝐃"₂ - 𝐃"₁) = 𝐏"₂ - 𝐏"₁ | ||||
| 
 | ||||
|             𝐏 = ε₀χₑ𝐄 | ||||
| 
 | ||||
|             • χₑ is the susceptibility of a linear dielectric material. | ||||
| 
 | ||||
|             𝐃 = ε₀𝐄 + 𝐏 = ε₀𝐄 + ε₀χₑ𝐄 = ε₀(1+χₑ) 𝐄 | ||||
| 
 | ||||
|             • ε₀(1+χₑ) ≡ permittivity | ||||
|             • 1+χₑ = dielectric constant | ||||
| 
 | ||||
|     Metal Sphere | ||||
| 
 | ||||
|         (pic) What is V(0)? | ||||
| 
 | ||||
|         (pic) ε becomes relevant in electric field | ||||
| 
 | ||||
| 
 | ||||
|         𝐄 = ⎧ 𝐃/ε = Q𝐫̂/(4πεr²), R<r<b | ||||
|             ⎨  | ||||
|             ⎩ 𝐃/ε = Q𝐫̂/(4πε₀r²), b<r  | ||||
| 
 | ||||
|                         R       b        ∞ | ||||
|         V(∞) - V(0) = -∫ 𝐄⋅d𝐥 - ∫ 𝐄⋅d𝐥 - ∫ 𝐄⋅d𝐥 | ||||
|                         0       R        b | ||||
| 
 | ||||
|                     =   0 - ... | ||||
							
								
								
									
										65
									
								
								lecture_notes/3-25/overview
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										65
									
								
								lecture_notes/3-25/overview
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,65 @@ | ||||
| Bound states of a central potential | ||||
| ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ | ||||
| 
 | ||||
| 
 | ||||
| For any central potential V(r) = V(│r│) the eigenfunctions of H can be separated as | ||||
| 
 | ||||
|     ❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,ϕ) | ||||
| 
 | ||||
| The radial S.E. is  | ||||
| 
 | ||||
|     ⎡−͟ħ͟² ⎛ ∂͟²͟  +  2͟∂͟  ⎞ + l͟(l͟+͟1͟)ħ͟² + V(│r│) ⎤ Rₑ﹐ₗ(r) = E Rₑ﹐ₗ(r) | ||||
|     ⎣2m  ⎝ ∂r²    r∂r ⎠    2 m r²           ⎦ | ||||
| 
 | ||||
| 
 | ||||
|     Rₑ﹐ₗ(r) = U͟ₑ͟﹐͟ₗ͟(r) | ||||
|             r | ||||
| 
 | ||||
|             (pic) ... | ||||
| 
 | ||||
| (pic) Developed radial schrodinger equation  using U(r) replacement | ||||
| 
 | ||||
|     - Developed normalization condition | ||||
| 
 | ||||
| If V(r) is not more singular at the origin than 1/r^2 then the SE has power series solutions. | ||||
| 
 | ||||
|     Thus for small r we take U(r) → rˢ | ||||
| 
 | ||||
| (pic) substitute U(r) = rˢ into S.E. | ||||
| 
 | ||||
|     -ħ²/2m [(s(s-1) + l(l+1)] + V r² = E r² | ||||
|      | ||||
|     For r → 0 | ||||
|         r² → 0 | ||||
|         V(r) r² → 0 | ||||
|      | ||||
|     ⇒ s(s-1) + l(l+1) = 0 | ||||
|         ⇒ s = l+1 or s = -l | ||||
| 
 | ||||
|     If s = -l, the normalization conditions | ||||
|                                          | ||||
|          ∞                             │∞  | ||||
|         ∫ r⁻²ˡ dr = 1/(2l-1) 1/(r²ˡ⁻¹) │  → diverges | ||||
|          0                             │0 | ||||
| 
 | ||||
| 
 | ||||
|     Uₑ﹐ₗ(r) → (r→0) → rˡ⁺¹ | ||||
| 
 | ||||
|     Rₑ﹐ₗ(r) → (r→0) → rˡ | ||||
| 
 | ||||
| 
 | ||||
| The Hydrogen Atom | ||||
| ━━━━━━━━━━━━━━━━━ | ||||
| 
 | ||||
|     V(r) = -e²/r | ||||
| 
 | ||||
|     For a hydrogenic ion with nuclear charge Z | ||||
| 
 | ||||
|     V(r) = -Ze²/r | ||||
| 
 | ||||
|     Eigenfunctions: | ||||
| 
 | ||||
|         Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| @ -47,6 +47,61 @@ The eigenvalue equations for the L̂𝓏 operator are simplified because L̂𝓏 | ||||
|         √2 ⎜ 1 0 1 ⎟ | ||||
|            ⎝ 0 1 0 ⎠. | ||||
| 
 | ||||
| The general eigenvalue equation is  | ||||
| 
 | ||||
|     L̂𝓍❙λ,mₗ❭ = λ❙λ,mₗ❭, where the eigenvalues λ are the possible measured values of L̂𝓍. The eigenvalues can be obtained from the secular equation | ||||
| 
 | ||||
|     det│L̂𝓍 - λ𝕀│ = 0 | ||||
| 
 | ||||
|     ħ͟  ⎛ 0 1 0 ⎞ - ⎛ λ 0 0 ⎞ = ⎛   -λ  ħ/√2   0  ⎞         | ||||
|     √2 ⎜ 1 0 1 ⎟   ⎜ 0 λ 0 ⎟   ⎜  ħ/√2  -λ  ħ/√2 ⎟      | ||||
|        ⎝ 0 1 0 ⎠   ⎝ 0 0 λ ⎠   ⎝    0  ħ/√2  -λ  ⎠.     | ||||
| 
 | ||||
|     │⎛   -λ  ħ/√2   0  ⎞│ = (-λ(λ² - ħ²/2) + (ħ²/2) λ) = -λ³ + ħ²λ. | ||||
|     │⎜  ħ/√2  -λ  ħ/√2 ⎟│                                    | ||||
|     │⎝    0  ħ/√2  -λ  ⎠│ | ||||
| 
 | ||||
|     λ(-λ² + ħ²) = -λ(λ² - ħ²)) = 0.         | ||||
| 
 | ||||
| One eigenvalue is immediately obvious: λ = 0. The other two are given by | ||||
| 
 | ||||
|     λ² = ħ², so the eigenvalues are | ||||
|     λ = 0,±ħ. | ||||
| 
 | ||||
| These are exactly the expected measured values for a spin component. | ||||
| 
 | ||||
| The eigenvalue equations are  | ||||
| 
 | ||||
|     L̂𝓍❙1  1❭𝓍 =  ħ❙1  1❭𝓍 , | ||||
|     L̂𝓍❙1  0❭𝓍 =  0❙1  1❭𝓍 , and | ||||
|     L̂𝓍❙1 -1❭𝓍 = -ħ❙1 -1❭𝓍 . | ||||
| 
 | ||||
| Matrix analysis can be used to find the eigenvectors for these eigenstates. The first one is | ||||
| 
 | ||||
|     ħ͟  ⎛ 0 1 0 ⎞ ⎛ a ⎞ = ħ ⎛ a ⎞, which gives the system | ||||
|     √2 ⎜ 1 0 1 ⎟ ⎜ b ⎟     ⎜ b ⎟ | ||||
|        ⎝ 0 1 0 ⎠ ⎝ c ⎠     ⎝ c ⎠ | ||||
| 
 | ||||
| ⎧ b = √2 a     | ||||
| ⎨ (a + c) = √2 b | ||||
| ⎩ b = √2 c | ||||
|       | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| Applying the operator to the states in Ψ, | ||||
| 
 | ||||
|     L̂𝓍❙1 1❭ ≐  | ||||
| @ -79,22 +134,28 @@ Applying the operator to the states in Ψ, | ||||
| 
 | ||||
| Then, | ||||
| 
 | ||||
|     L̂𝓍❙Ψ❭ =  ħ⎛ -2͟  ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞ | ||||
|               ⎝ √58         √58                 ⎠ | ||||
|     L̂𝓍❙Ψ❭ =  ħ ⎛ -2͟  ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞ | ||||
|                ⎝ √58         √58                 ⎠ | ||||
| 
 | ||||
| Normalizing the function, | ||||
| 
 | ||||
|     C⎛⎛-2͟ ⎞² + ⎛ι 3͟ ⎞² + ⎛ι 3͟ ⎞²⎞ = 1. | ||||
|      ⎝⎝√58⎠    ⎝ √58⎠    ⎝ √58⎠ ⎠ | ||||
| 
 | ||||
|     C⎛4 - 9 - 9⎞ = 58 = C(14). | ||||
|      ⎝         ⎠ | ||||
| 
 | ||||
|  STOPPED HERE  | ||||
|   | ||||
|     C = 58⎛⎛1͟⎞ - ⎛ι 3 ⎞⁻² + ⎛ι 3 ⎞⁻²⎞ | ||||
|           ⎝⎝4⎠   ⎝    ⎠     ⎝    ⎠  ⎠ | ||||
| So, | ||||
|     C = 58/14 = 29/7. | ||||
| 
 | ||||
|     \|❬1 1❙L̂𝓍❙Ψ❭\|^2 =  | ||||
| The probability of measuring one of the possible angular momenta will be given by  | ||||
| 
 | ||||
|     │❬l m❙L̂𝓍❙Ψ❭│². | ||||
| 
 | ||||
|     ❬1 1❙L̂𝓍❙Ψ❭ =  ❬1 1❙2͟9͟⎛ -2͟  ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞ | ||||
|                        7 ⎝ √58         √58                 ⎠ | ||||
| 
 | ||||
|         = 2͟9͟ ι͟3͟ ❬1 1❙1 1❭ = ι 8͟7͟  | ||||
|            7 √58             7√58 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
| @ -6,35 +6,130 @@ | ||||
| ⎪ | ||||
| ⎩    z = r cosθ | ||||
| 
 | ||||
| Some differential forms may come in handy. | ||||
| 
 | ||||
| ∂/∂θ: | ||||
| ⎧    ∂x = r cosϕ cosθ ∂θ | ||||
| ⎪ | ||||
| ⎨    ∂y = r sinϕ cosθ ∂θ | ||||
| ⎪ | ||||
| ⎩    ∂z = - r sinθ ∂θ | ||||
| 
 | ||||
| ∂/∂ϕ: | ||||
| ⎧    ∂x = - r sinθ sinϕ ∂ϕ | ||||
| ⎪ | ||||
| ⎨    ∂y = r sinθ cosϕ ∂ϕ | ||||
| ⎪ | ||||
| ⎩    ∂z = 0 ∂ϕ | ||||
| 
 | ||||
| 
 | ||||
| 7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩. | ||||
| 
 | ||||
| ⎧    L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_  - z ∂͟_ ) | ||||
| ⎪                           ∂y      ∂y | ||||
| ⎪                           ∂z      ∂y | ||||
| ⎪ | ||||
| ⎨    L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_  - x ∂͟_ ) | ||||
| ⎪                           ∂y      ∂y | ||||
| ⎪                           ∂x      ∂z | ||||
| ⎪ | ||||
| ⎪    L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_  - y ∂͟_ ) | ||||
| ⎩                           ∂y      ∂y | ||||
| ⎩                           ∂y      ∂x | ||||
| 
 | ||||
| Substituing 7.35 into 7.47, | ||||
| Substituting 7.35 into 7.47, | ||||
| 
 | ||||
| ⎧    L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_  - r cosθ ∂͟_ ) | ||||
| ⎪                          ∂y           ∂y | ||||
| ⎪                          ∂z           ∂y | ||||
| ⎪ | ||||
| ⎨    L̂𝓎 = -ιħ (r cosθ ∂͟_  - r sinθ cosϕ ∂͟_ ) | ||||
| ⎪                     ∂y                ∂y | ||||
| ⎪                     ∂x                ∂z | ||||
| ⎪ | ||||
| ⎪    L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ ) | ||||
| ⎩                          ∂y               ∂y | ||||
| ⎩                          ∂y               ∂x | ||||
| 
 | ||||
| 
 | ||||
| ⎧    L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_  - r cosθ ∂͟_ ) | ||||
| ⎪                          ∂y           ∂y | ||||
| 
 | ||||
| Geometry is shown on the attached notes page. | ||||
|      | ||||
| For L̂𝓍: | ||||
| 
 | ||||
|     ∂͟z͟ = -r sinθ | ||||
|     ∂θ | ||||
|     ∂͟y͟ = r sinθ cosϕ  | ||||
|     ∂ϕ | ||||
| 
 | ||||
|     L̂𝓍 = -ιħ ( r sinθ sinϕ ∂͟θ͟ ∂͟_  - r cosθ ∂͟ϕ͟ ∂͟_ ) | ||||
|                            ∂θ ∂z           ∂ϕ ∂y     | ||||
| 
 | ||||
|     L̂𝓍 = ιħ ( -r sinθ sinϕ ∂͟θ͟ ∂͟_  + r cosθ ∂͟ϕ͟ ∂͟_ ) | ||||
|                            ∂z ∂θ           ∂y ∂ϕ | ||||
| 
 | ||||
|     L̂𝓍 = ιħ ( −͟r͟ s͟i͟n͟θ͟ sinϕ ∂͟_ +   c͟o͟s͟θ͟    ∂͟_ ) | ||||
|               -r sinθ      ∂θ  sinθ cosϕ  ∂ϕ | ||||
| 
 | ||||
|     L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ ) | ||||
|                    ∂θ   cosϕ ∂ϕ                    | ||||
| 
 | ||||
| For L̂𝓎: | ||||
| 
 | ||||
|     ∂x = r cosϕ cosθ ∂θ | ||||
|     ∂z = 0 ∂ϕ | ||||
| 
 | ||||
|     L̂𝓎 = -ιħ (r cosθ ∂͟_  - r sinθ cosϕ ∂͟_ ) | ||||
|                      ∂x                ∂z | ||||
| 
 | ||||
|     L̂𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_  + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ ) | ||||
|                      ∂θ ∂x                ∂ϕ ∂z | ||||
| 
 | ||||
|     L̂𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_  + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ ) | ||||
|                      ∂x ∂θ                ∂z ∂ϕ | ||||
| 
 | ||||
|     L̂𝓎 = ιħ (- _͟1͟  cosθ ∂͟_  + r sinθ cosϕ 0 ∂͟_ ) | ||||
|               cosϕ cosθ ∂θ                  ∂ϕ | ||||
| 
 | ||||
|     L̂𝓎 = ιħ (- _͟1͟  ∂͟_ ) | ||||
|               cosϕ ∂θ | ||||
| 
 | ||||
|     L̂𝓎 = -ιħ _͟1͟  ∂͟_  | ||||
|             cosϕ ∂θ | ||||
| 
 | ||||
| For L̂𝓏: | ||||
| 
 | ||||
|     ∂x = -r sinθ sinϕ ∂ϕ | ||||
|     ∂y = r sinθ cosϕ ∂ϕ | ||||
| 
 | ||||
|     L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟͟ϕ͟ ∂͟_ - r sinθ sinϕ ∂͟͟ϕ͟ ∂͟_ ) | ||||
|                           ∂ϕ ∂y               ∂ϕ ∂x | ||||
| 
 | ||||
|     L̂𝓏 = -ιħ (r͟ s͟i͟n͟θ͟ c͟o͟s͟ϕ͟ ∂͟_ + r͟ s͟i͟n͟θ͟ s͟i͟n͟ϕ͟ ∂͟_ ) | ||||
|               r sinθ cosϕ ∂ϕ   r sinθ sinϕ ∂ϕ  | ||||
| 
 | ||||
|     L̂𝓏 = -ιħ ∂͟_ ( 1 + 1 ) | ||||
|              ∂ϕ        | ||||
| 
 | ||||
|     L̂𝓏 = -2ιħ ∂͟_  | ||||
|               ∂ϕ | ||||
| 
 | ||||
| So, according to my calculus, the final solutions should be the set | ||||
| 
 | ||||
| ⎧    L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ ) | ||||
| ⎪                   ∂θ   cosϕ ∂ϕ           | ||||
| ⎪ | ||||
| ⎨    L̂𝓎 = ιħ (r cosθ ∂͟_ + r sinθ cosϕ ∂͟_ ) | ||||
| ⎪                    ∂y               ∂y | ||||
| ⎨    L̂𝓎 = -ιħ _͟1͟  ∂͟_  | ||||
| ⎪            cosϕ ∂θ | ||||
| ⎪ | ||||
| ⎪    L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ ) | ||||
| ⎩                          ∂y               ∂y | ||||
| ⎪    L̂𝓏 = -2ιħ ∂͟_  | ||||
| ⎩              ∂ϕ | ||||
|     | ||||
| 
 | ||||
| The spherical representation, i.e. ending place, is the set | ||||
| 
 | ||||
| ⎧    L̂𝓍 = ιħ (sinϕ ∂͟_  + cosϕ cotθ ∂͟_ ) | ||||
| ⎪                  ∂θ              ∂ϕ | ||||
| ⎪ | ||||
| ⎨    L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ ) | ||||
| ⎪                   ∂θ             ∂ϕ | ||||
| ⎪ | ||||
| ⎪    L̂𝓏 = -ιħ ∂͟_  | ||||
| ⎩             ∂ϕ | ||||
| 
 | ||||
| 
 | ||||
| My set DOES NOT match this. I must be going about this the wrong way. I have to give it more thought. Perhaps a purely geometric approach will improve my answers: I'll try that over the weekend. | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user