mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2025-01-18 09:55:06 +00:00
working on chap 7 hw
This commit is contained in:
parent
9cdb4a023a
commit
3991cf6fcf
2
HW
2
HW
@ -6,5 +6,5 @@ Chap 5: 2, 6, 8, 12, in-class assignment
|
||||
|
||||
Chap 9: 7, 11, 12, 13, 14
|
||||
|
||||
Chap 7: 7, 8, one from last class, 11
|
||||
Chap 7: 5, 7, 8, one from last class, 11
|
||||
due friday 3-18, the class one is: show L̂𝓏 and p² commute
|
||||
|
@ -55,4 +55,4 @@ Understanding a System:
|
||||
|
||||
With the eigenvalue equation
|
||||
|
||||
❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭
|
||||
❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭
|
||||
|
@ -42,7 +42,7 @@ Rotational Invariance
|
||||
|
||||
= p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍
|
||||
+ p̂𝓎[L̂𝓏,p̂𝓎] + [L̂𝓏,p̂𝓎]p̂𝓎
|
||||
+ p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏 (f.n. 1)
|
||||
+ p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏 note¹
|
||||
|
||||
= ιħp̂𝓍p̂𝓎 + ιħp̂𝓎p̂𝓍 - ιħp̂𝓎p̂𝓍 - ιħp̂𝓍p̂𝓎 = 0
|
||||
|
||||
@ -69,7 +69,7 @@ Rotational Invariance
|
||||
|
||||
|
||||
|
||||
(f.n. 1)
|
||||
note¹
|
||||
|
||||
|
||||
[L̂𝓏,p̂𝓍²] = [L̂𝓏,p̂𝓍 p̂𝓍]
|
||||
|
@ -1,7 +1,7 @@
|
||||
Two dimensional harmonic oscillator
|
||||
───────────────────────────────────
|
||||
|
||||
This is an oscillator with potential V(x,y) = μ/2 ω (x² + y²)
|
||||
This is an oscillator with potential V(x,y) = μ/2 ω² (x² + y²)
|
||||
|
||||
The hamiltonian here leaves us with a 3-dimensional differential equation
|
||||
|
||||
@ -14,13 +14,14 @@ Two dimensional harmonic oscillator
|
||||
|
||||
Put together solutions of Ψ(x,y) and Ψ(z).
|
||||
|
||||
(pic) To find position space representation of Ψ(x,y), recall the Hermitian Polynomials solution
|
||||
(pic) To find position space representation of Ψ(x,y), recall the Hermitian-- HARMONIC? DUBIOUS Polynomials solution
|
||||
|
||||
!!! STUDY THIS !!!
|
||||
|
||||
Developed the harmonic oscillator in polar coordinates
|
||||
|
||||
Ĥ𝓍𝓎 = -ħ²\2μ ∇² + μ/2 ω² r²
|
||||
Ĥ𝓍𝓎 = -ħ²/2μ ∇² + μ/2 ω² r²
|
||||
= -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r + 1/r² ∂²/∂θ²) + μ/2 ω² r².
|
||||
|
||||
(pic) Can be solved using separation of variables.
|
||||
|
||||
@ -32,4 +33,10 @@ Two dimensional harmonic oscillator
|
||||
|
||||
Use L̂𝓏² Θ = -m²ħ² Θ ⇒ Θ(θ) = exp(±imθ)
|
||||
|
||||
(pic) further developed hamiltonian using this information
|
||||
(pic) further developed hamiltonian using this information
|
||||
|
||||
Ĥ𝓍𝓎 = -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r + 1/r² ∂²/∂θ²) + μ/2 ω² r².
|
||||
= -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r) + -ħ²/(2μr²) L̂𝓏²/ħ² + μ ω² r²/2
|
||||
|
||||
L̂𝓏² ≐ ħ²∂²/∂θ²
|
||||
L̂𝓏 ≐ -ιħ∂/∂θ
|
21
solutions/chap7/lectureprob
Normal file
21
solutions/chap7/lectureprob
Normal file
@ -0,0 +1,21 @@
|
||||
This problem associated with chapter 7 was assigned during lecture.
|
||||
|
||||
Does L̂𝓏 commute with 𝐫̂²?
|
||||
|
||||
[L̂𝓏,𝐫̂²] = L̂𝓏 𝐫̂² - 𝐫̂² L̂𝓏.
|
||||
|
||||
L̂𝓏 𝐫̂² - 𝐫̂² L̂𝓏.
|
||||
|
||||
Using the position representations, in spherical coordinates,
|
||||
|
||||
L̂𝓏 ≐ -ιħ∂/∂θ and 𝐫̂² ≐ 𝐫²,
|
||||
|
||||
L̂𝓏 𝐫̂² - 𝐫̂² L̂𝓏 = 𝐫² ιħ∂/∂θ - ιħ∂/∂θ 𝐫².
|
||||
|
||||
𝐫² has no θ dependence, so it can be separated from any quantity differentiated with respect to theta, I.E.,
|
||||
|
||||
∂/∂θ 𝐫² = 𝐫² ∂/∂θ.
|
||||
|
||||
𝐫² ιħ∂/∂θ - ιħ∂/∂θ 𝐫² = 𝐫² ιħ∂/∂θ - 𝐫² ιħ∂/∂θ = 0 = [L̂𝓏,𝐫̂²] = 0.
|
||||
|
||||
[L̂𝓏,𝐫̂²] = 0, so these quantities commute.
|
File diff suppressed because it is too large
Load Diff
107
solutions/chap7/prob5
Normal file
107
solutions/chap7/prob5
Normal file
@ -0,0 +1,107 @@
|
||||
There is an angular momentum system with the state function
|
||||
|
||||
❙Ψ❭ = 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭
|
||||
√29 √29 √29
|
||||
|
||||
In general the eigenvalue equation for the L̂𝓏 operator is
|
||||
|
||||
L̂𝓏❙l m❭ = m ħ❙l m❭, where m ħ are the possible measurements.
|
||||
|
||||
The possible measurements of this system, then, are, for m = {-1, 0, 1}:
|
||||
|
||||
-ħ, 0, ħ.
|
||||
|
||||
The probability for is given by
|
||||
|
||||
│❬1 m′❙Ψ❭│², with m′ = {-1, 0, 1}.
|
||||
|
||||
The eigenstates form an orthogonal set such that
|
||||
|
||||
❬l′ m′❙l m❭ = δₗₗ′ δₘₘ′.
|
||||
|
||||
Then,
|
||||
|
||||
❬1 1❙Ψ❭ = ❬1 1❙⎛ 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭ ⎞
|
||||
⎝√29 √29 √29 ⎠
|
||||
|
||||
= ❬1 1❙ 2͟ ❙1 1❭ = 2͟ .
|
||||
√29 √29
|
||||
|
||||
(𝐚)
|
||||
│❬1 1❙Ψ❭│² = 4͟ = ⁴/₂₉.
|
||||
29
|
||||
|
||||
Similarly,
|
||||
|
||||
│❬1 0❙Ψ❭│² = 9͟ = ⁹/₂₉ and
|
||||
29
|
||||
|
||||
│❬1 -1❙Ψ❭│² = 1͟6͟ = ¹⁶/₂₉.
|
||||
29
|
||||
|
||||
|
||||
The eigenvalue equations for the L̂𝓏 operator are simplified because L̂𝓏 is diagonal in the z basis. The L̂𝓍 operator produces the same measurements, but the matrix representation of the L̂𝓍 operator must be applied. It is
|
||||
|
||||
L̂𝓍 ≐
|
||||
ħ͟ ⎛ 0 1 0 ⎞
|
||||
√2 ⎜ 1 0 1 ⎟
|
||||
⎝ 0 1 0 ⎠.
|
||||
|
||||
Applying the operator to the states in Ψ,
|
||||
|
||||
L̂𝓍❙1 1❭ ≐
|
||||
ħ͟ ⎛ 0 1 0 ⎞⎛1⎞ = ħ͟ ⎛0⎞ = ħ͟ ❙1 0❭.
|
||||
√2 ⎜ 1 0 1 ⎟⎜0⎟ √2 ⎜1⎟ √2
|
||||
⎝ 0 1 0 ⎠⎝0⎠ ⎝0⎠
|
||||
|
||||
L̂𝓍❙1 0❭ ≐
|
||||
ħ͟ ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛1⎞ = ħ͟ (❙1 1❭ + ❙1 -1❭), and
|
||||
√2 ⎜ 1 0 1 ⎟⎜1⎟ √2 ⎜0⎟ √2
|
||||
⎝ 0 1 0 ⎠⎝0⎠ ⎝1⎠
|
||||
|
||||
L̂𝓍❙1 -1❭ ≐
|
||||
ħ͟ ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛0⎞ = ħ͟ ❙1 0❭.
|
||||
√2 ⎜ 1 0 1 ⎟⎜0⎟ √2 ⎜1⎟ √2
|
||||
⎝ 0 1 0 ⎠⎝1⎠ ⎝0⎠
|
||||
|
||||
|
||||
L̂𝓍❙Ψ❭ = ⎛ 2͟ L̂𝓍❙1 1❭ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞
|
||||
⎝ √29 √29 √29 ⎠
|
||||
|
||||
2͟ L̂𝓍❙1 1❭ = 2͟ ħ❙1 0❭,
|
||||
√29 √58
|
||||
|
||||
ι 3͟ L̂𝓍❙1 0❭ = ι 3͟ ħ (❙1 1❭ + ❙1 -1❭), and
|
||||
√29 √58
|
||||
|
||||
4͟ L̂𝓍❙1 -1❭ = 4͟ ħ❙1 0❭.
|
||||
√29 √58
|
||||
|
||||
Then,
|
||||
|
||||
L̂𝓍❙Ψ❭ = ħ⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
|
||||
⎝ √58 √58 ⎠
|
||||
|
||||
Normalizing the function,
|
||||
|
||||
C⎛⎛-2͟ ⎞² + ⎛ι 3͟ ⎞² + ⎛ι 3͟ ⎞²⎞ = 1.
|
||||
⎝⎝√58⎠ ⎝ √58⎠ ⎝ √58⎠ ⎠
|
||||
|
||||
|
||||
STOPPED HERE
|
||||
|
||||
C = 58⎛⎛1͟⎞ - ⎛ι 3 ⎞⁻² + ⎛ι 3 ⎞⁻²⎞
|
||||
⎝⎝4⎠ ⎝ ⎠ ⎝ ⎠ ⎠
|
||||
So,
|
||||
|
||||
\|❬1 1❙L̂𝓍❙Ψ❭\|^2 =
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
L̂𝓍❙Ψ❭ = ⎛ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞
|
||||
⎝ √29 √29 ⎠
|
||||
|
||||
|
||||
|
3448
solutions/chap7/prob5.ps
Normal file
3448
solutions/chap7/prob5.ps
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user