mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-10-31 22:58:05 +00:00 
			
		
		
		
	working on chap 7 hw
This commit is contained in:
		
							parent
							
								
									9cdb4a023a
								
							
						
					
					
						commit
						3991cf6fcf
					
				
							
								
								
									
										2
									
								
								HW
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								HW
									
									
									
									
									
								
							| @ -6,5 +6,5 @@ Chap 5: 2, 6, 8, 12, in-class assignment | ||||
| 
 | ||||
| Chap 9: 7, 11, 12, 13, 14 | ||||
| 
 | ||||
| Chap 7: 7, 8, one from last class, 11 | ||||
| Chap 7: 5, 7, 8, one from last class, 11 | ||||
|     due friday 3-18, the class one is: show L̂𝓏 and p² commute | ||||
|  | ||||
| @ -55,4 +55,4 @@ Understanding a System: | ||||
| 
 | ||||
|         With the eigenvalue equation | ||||
| 
 | ||||
|             ❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭ | ||||
|             ❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭ | ||||
|  | ||||
| @ -42,7 +42,7 @@ Rotational Invariance | ||||
| 
 | ||||
|             = p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍  | ||||
|                 + p̂𝓎[L̂𝓏,p̂𝓎] + [L̂𝓏,p̂𝓎]p̂𝓎  | ||||
|                     + p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏  (f.n. 1) | ||||
|                     + p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏  note¹ | ||||
| 
 | ||||
|             = ιħp̂𝓍p̂𝓎 + ιħp̂𝓎p̂𝓍 - ιħp̂𝓎p̂𝓍 - ιħp̂𝓍p̂𝓎 = 0 | ||||
| 
 | ||||
| @ -69,7 +69,7 @@ Rotational Invariance | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| (f.n. 1) | ||||
| note¹ | ||||
| 
 | ||||
| 
 | ||||
|             [L̂𝓏,p̂𝓍²] = [L̂𝓏,p̂𝓍 p̂𝓍]  | ||||
|  | ||||
| @ -1,7 +1,7 @@ | ||||
| Two dimensional harmonic oscillator | ||||
| ─────────────────────────────────── | ||||
| 
 | ||||
|     This is an oscillator with potential V(x,y) = μ/2 ω (x² + y²) | ||||
|     This is an oscillator with potential V(x,y) = μ/2 ω² (x² + y²) | ||||
| 
 | ||||
|     The hamiltonian here leaves us with a 3-dimensional differential equation | ||||
| 
 | ||||
| @ -14,13 +14,14 @@ Two dimensional harmonic oscillator | ||||
| 
 | ||||
|         Put together solutions of Ψ(x,y) and Ψ(z). | ||||
| 
 | ||||
|         (pic) To find position space representation of Ψ(x,y), recall the Hermitian Polynomials solution | ||||
|         (pic) To find position space representation of Ψ(x,y), recall the Hermitian-- HARMONIC? DUBIOUS Polynomials solution | ||||
| 
 | ||||
|             !!! STUDY THIS !!! | ||||
| 
 | ||||
|     Developed the harmonic oscillator in polar coordinates | ||||
| 
 | ||||
|     Ĥ𝓍𝓎 = -ħ²\2μ ∇² + μ/2 ω² r² | ||||
|     Ĥ𝓍𝓎 = -ħ²/2μ ∇² + μ/2 ω² r² | ||||
|         = -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r + 1/r² ∂²/∂θ²) + μ/2 ω² r². | ||||
| 
 | ||||
|     (pic) Can be solved using separation of variables. | ||||
| 
 | ||||
| @ -32,4 +33,10 @@ Two dimensional harmonic oscillator | ||||
| 
 | ||||
|         Use L̂𝓏² Θ = -m²ħ² Θ ⇒ Θ(θ) = exp(±imθ) | ||||
| 
 | ||||
|         (pic) further developed hamiltonian using this information | ||||
|         (pic) further developed hamiltonian using this information | ||||
| 
 | ||||
|     Ĥ𝓍𝓎 = -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r + 1/r² ∂²/∂θ²) + μ/2 ω² r². | ||||
|         = -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r) + -ħ²/(2μr²) L̂𝓏²/ħ² + μ ω² r²/2 | ||||
| 
 | ||||
|     L̂𝓏² ≐ ħ²∂²/∂θ² | ||||
|     L̂𝓏 ≐ -ιħ∂/∂θ | ||||
							
								
								
									
										21
									
								
								solutions/chap7/lectureprob
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								solutions/chap7/lectureprob
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,21 @@ | ||||
| This problem associated with chapter 7 was assigned during lecture. | ||||
| 
 | ||||
| Does L̂𝓏 commute with 𝐫̂²? | ||||
| 
 | ||||
| 	[L̂𝓏,𝐫̂²] = L̂𝓏 𝐫̂² - 𝐫̂² L̂𝓏. | ||||
| 
 | ||||
| 	L̂𝓏 𝐫̂² - 𝐫̂² L̂𝓏. | ||||
| 
 | ||||
| Using the position representations, in spherical coordinates, | ||||
| 
 | ||||
| 	L̂𝓏 ≐ -ιħ∂/∂θ and 𝐫̂² ≐ 𝐫², | ||||
| 
 | ||||
| 	L̂𝓏 𝐫̂² - 𝐫̂² L̂𝓏 = 𝐫² ιħ∂/∂θ - ιħ∂/∂θ 𝐫². | ||||
| 
 | ||||
| 𝐫² has no θ dependence, so it can be separated from any quantity differentiated with respect to theta, I.E., | ||||
| 
 | ||||
|     ∂/∂θ 𝐫² = 𝐫² ∂/∂θ. | ||||
| 
 | ||||
|     𝐫² ιħ∂/∂θ - ιħ∂/∂θ 𝐫² = 𝐫² ιħ∂/∂θ -  𝐫² ιħ∂/∂θ = 0 = [L̂𝓏,𝐫̂²] = 0. | ||||
| 
 | ||||
|     [L̂𝓏,𝐫̂²] = 0, so these quantities commute. | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										107
									
								
								solutions/chap7/prob5
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										107
									
								
								solutions/chap7/prob5
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,107 @@ | ||||
| There is an angular momentum system with the state function | ||||
| 
 | ||||
|     ❙Ψ❭ = 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭  | ||||
|          √29         √29       √29        | ||||
| 
 | ||||
| In general the eigenvalue equation for the L̂𝓏 operator is | ||||
| 
 | ||||
|     L̂𝓏❙l m❭ = m ħ❙l m❭, where m ħ are the possible measurements. | ||||
| 
 | ||||
| The possible measurements of this system, then, are, for m = {-1, 0, 1}: | ||||
| 
 | ||||
|     -ħ, 0, ħ. | ||||
| 
 | ||||
| The probability for is given by | ||||
| 
 | ||||
|     │❬1 m′❙Ψ❭│², with m′ = {-1, 0, 1}. | ||||
| 
 | ||||
| The eigenstates form an orthogonal set such that  | ||||
| 
 | ||||
|     ❬l′ m′❙l m❭ = δₗₗ′ δₘₘ′. | ||||
| 
 | ||||
| Then, | ||||
| 
 | ||||
|     ❬1 1❙Ψ❭ = ❬1 1❙⎛ 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭ ⎞ | ||||
|                    ⎝√29         √29       √29       ⎠ | ||||
| 
 | ||||
|             = ❬1 1❙ 2͟ ❙1 1❭ = 2͟ . | ||||
|                    √29       √29 | ||||
| 
 | ||||
| (𝐚) | ||||
|     │❬1 1❙Ψ❭│² = 4͟ = ⁴/₂₉. | ||||
|                  29 | ||||
| 
 | ||||
| Similarly, | ||||
| 
 | ||||
|     │❬1 0❙Ψ❭│² = 9͟ = ⁹/₂₉ and | ||||
|                  29 | ||||
| 
 | ||||
|     │❬1 -1❙Ψ❭│² = 1͟6͟ = ¹⁶/₂₉. | ||||
|                   29 | ||||
| 
 | ||||
| 
 | ||||
| The eigenvalue equations for the L̂𝓏 operator are simplified because L̂𝓏 is diagonal in the z basis. The L̂𝓍 operator produces the same measurements, but the matrix representation of the L̂𝓍 operator must be applied. It is | ||||
| 
 | ||||
|     L̂𝓍 ≐ | ||||
|         ħ͟  ⎛ 0 1 0 ⎞ | ||||
|         √2 ⎜ 1 0 1 ⎟ | ||||
|            ⎝ 0 1 0 ⎠. | ||||
| 
 | ||||
| Applying the operator to the states in Ψ, | ||||
| 
 | ||||
|     L̂𝓍❙1 1❭ ≐  | ||||
|                 ħ͟  ⎛ 0 1 0 ⎞⎛1⎞ = ħ͟ ⎛0⎞ =  ħ͟ ❙1 0❭. | ||||
|                √2  ⎜ 1 0 1 ⎟⎜0⎟  √2 ⎜1⎟   √2  | ||||
|                    ⎝ 0 1 0 ⎠⎝0⎠     ⎝0⎠  | ||||
| 
 | ||||
|     L̂𝓍❙1 0❭ ≐ | ||||
|                 ħ͟  ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛1⎞ =  ħ͟ (❙1 1❭ + ❙1 -1❭), and | ||||
|                √2  ⎜ 1 0 1 ⎟⎜1⎟  √2 ⎜0⎟   √2  | ||||
|                    ⎝ 0 1 0 ⎠⎝0⎠     ⎝1⎠ | ||||
| 
 | ||||
|     L̂𝓍❙1 -1❭ ≐ | ||||
|                 ħ͟  ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛0⎞ =  ħ͟ ❙1 0❭. | ||||
|                √2  ⎜ 1 0 1 ⎟⎜0⎟  √2 ⎜1⎟   √2  | ||||
|                    ⎝ 0 1 0 ⎠⎝1⎠     ⎝0⎠ | ||||
| 
 | ||||
| 
 | ||||
|     L̂𝓍❙Ψ❭ =  ⎛  2͟ L̂𝓍❙1 1❭ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞ | ||||
|              ⎝ √29           √29        √29         ⎠ | ||||
| 
 | ||||
|      2͟ L̂𝓍❙1 1❭ =  2͟ ħ❙1 0❭,  | ||||
|     √29          √58     | ||||
| 
 | ||||
|     ι 3͟ L̂𝓍❙1 0❭ = ι 3͟ ħ (❙1 1❭ + ❙1 -1❭), and | ||||
|      √29           √58 | ||||
| 
 | ||||
|      4͟ L̂𝓍❙1 -1❭ =  4͟ ħ❙1 0❭. | ||||
|     √29           √58 | ||||
| 
 | ||||
| Then, | ||||
| 
 | ||||
|     L̂𝓍❙Ψ❭ =  ħ⎛ -2͟  ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞ | ||||
|               ⎝ √58         √58                 ⎠ | ||||
| 
 | ||||
| Normalizing the function, | ||||
| 
 | ||||
|     C⎛⎛-2͟ ⎞² + ⎛ι 3͟ ⎞² + ⎛ι 3͟ ⎞²⎞ = 1. | ||||
|      ⎝⎝√58⎠    ⎝ √58⎠    ⎝ √58⎠ ⎠ | ||||
| 
 | ||||
| 
 | ||||
|  STOPPED HERE  | ||||
|   | ||||
|     C = 58⎛⎛1͟⎞ - ⎛ι 3 ⎞⁻² + ⎛ι 3 ⎞⁻²⎞ | ||||
|           ⎝⎝4⎠   ⎝    ⎠     ⎝    ⎠  ⎠ | ||||
| So, | ||||
| 
 | ||||
|     \|❬1 1❙L̂𝓍❙Ψ❭\|^2 =  | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|     L̂𝓍❙Ψ❭ =  ⎛  + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞ | ||||
|              ⎝     √29        √29         ⎠              | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
							
								
								
									
										3448
									
								
								solutions/chap7/prob5.ps
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3448
									
								
								solutions/chap7/prob5.ps
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
		Loading…
	
		Reference in New Issue
	
	Block a user