mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-04 19:15:07 +00:00
new overview and HW, prob 8
This commit is contained in:
parent
890066b88f
commit
9cdb4a023a
2
HW
2
HW
@ -7,4 +7,4 @@ Chap 5: 2, 6, 8, 12, in-class assignment
|
||||
Chap 9: 7, 11, 12, 13, 14
|
||||
|
||||
Chap 7: 7, 8, one from last class, 11
|
||||
due friday 3-18
|
||||
due friday 3-18, the class one is: show L̂𝓏 and p² commute
|
||||
|
35
lecture_notes/3-23/overview
Normal file
35
lecture_notes/3-23/overview
Normal file
@ -0,0 +1,35 @@
|
||||
Two dimensional harmonic oscillator
|
||||
───────────────────────────────────
|
||||
|
||||
This is an oscillator with potential V(x,y) = μ/2 ω (x² + y²)
|
||||
|
||||
The hamiltonian here leaves us with a 3-dimensional differential equation
|
||||
|
||||
Ĥ = ιp²/2μ + μ/2 ω² (x² + y²) = 1/2μ (p²𝓍 + p²𝓎 + p²𝓏) + μ/2 ω²(x² + y²)
|
||||
|
||||
(pic) This is then split into x,y, and z parts.
|
||||
|
||||
(pic) Solved Ψ(z)
|
||||
|
||||
|
||||
Put together solutions of Ψ(x,y) and Ψ(z).
|
||||
|
||||
(pic) To find position space representation of Ψ(x,y), recall the Hermitian Polynomials solution
|
||||
|
||||
!!! STUDY THIS !!!
|
||||
|
||||
Developed the harmonic oscillator in polar coordinates
|
||||
|
||||
Ĥ𝓍𝓎 = -ħ²\2μ ∇² + μ/2 ω² r²
|
||||
|
||||
(pic) Can be solved using separation of variables.
|
||||
|
||||
Ψ(r,θ) = R(r) Θ(θ)
|
||||
|
||||
The problem is invariant under rotations about z, i.e. L̂𝓏 commutes with Ĥ, so the solutions must be eigenstates of both Ĥ and L̂𝓏.
|
||||
|
||||
Don't use L̂𝓏 Θ = ±ιmħ Θ
|
||||
|
||||
Use L̂𝓏² Θ = -m²ħ² Θ ⇒ Θ(θ) = exp(±imθ)
|
||||
|
||||
(pic) further developed hamiltonian using this information
|
@ -1,6 +1,6 @@
|
||||
Angular momentum system is prepared in the state
|
||||
|
||||
❙Ψ❭ = 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭
|
||||
❙Ψ❭ = 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι͟1͟ ❙20❭
|
||||
√10 √10 √10 √10
|
||||
|
||||
|
||||
@ -18,7 +18,7 @@ For lm = 22 & 20, 𝐋̂² = 6ħ².
|
||||
|
||||
Since the same 𝐋̂² is measures for two states, the sum of the probabilities of measuring those states is the probability of measuring that squared angular momentum.
|
||||
|
||||
𝓟(𝐋̂²=2ħ²) = │❬11❙Ψ❭│² + │❬10❙Ψ❭│².
|
||||
𝓟(𝐋̂²=2ħ²) = │❬11❙Ψ❭│² + │❬10❙Ψ❭│².
|
||||
|
||||
❬11❙Ψ❭ = ❬11❙⎛ 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭ ⎞
|
||||
⎝ √10 √10 √10 √10 ⎠.
|
||||
@ -41,29 +41,29 @@ No need to calculate the other set: since the vector is normalized, the probabil
|
||||
𝓟(𝐋̂²=6ħ²) = ½.
|
||||
|
||||
|
||||
For 𝐋̂𝓏 the eigenvalue equation is
|
||||
For L̂𝓏 the eigenvalue equation is
|
||||
|
||||
𝐋̂𝓏❙lm❭ = mħ❙lm❭,
|
||||
L̂𝓏❙lm❭ = mħ❙lm❭,
|
||||
|
||||
so the expected measurements are,
|
||||
|
||||
for lm = 11 & 21, 𝐋̂𝓏 = ħ.
|
||||
for lm = 11 & 21, L̂𝓏 = ħ.
|
||||
|
||||
for lm = 10 & 20, 𝐋̂𝓏 = 0.
|
||||
for lm = 10 & 20, L̂𝓏 = 0.
|
||||
|
||||
In this case, the probabilities will be
|
||||
|
||||
𝓟(𝐋̂𝓏=ħ) = │❬11❙Ψ❭│² + │❬21❙Ψ❭│² and
|
||||
𝓟(L̂𝓏=ħ) = │❬11❙Ψ❭│² + │❬21❙Ψ❭│² and
|
||||
|
||||
𝓟(𝐋̂𝓏=0) = │❬10❙Ψ❭│² + │❬20❙Ψ❭│².
|
||||
𝓟(L̂𝓏=0) = │❬10❙Ψ❭│² + │❬20❙Ψ❭│².
|
||||
|
||||
The method has already been demonstrated, so taking the probability components and summing,
|
||||
|
||||
(𝐛)
|
||||
|
||||
𝓟(𝐋̂𝓏=ħ) = ²/₁₀.
|
||||
𝓟(L̂𝓏=ħ) = ²/₁₀.
|
||||
|
||||
𝓟(𝐋̂𝓏=0) = ⁸/₁₀.
|
||||
𝓟(L̂𝓏=0) = ⁸/₁₀.
|
||||
|
||||
Histogram of probabilities:
|
||||
|
||||
@ -72,17 +72,17 @@ Histogram of probabilities:
|
||||
╭─────────────────┬────────────────╮
|
||||
1 │ │ │ 1
|
||||
│ │ │
|
||||
.8 │ │ ▧ │ .8
|
||||
│ │ ▧ │
|
||||
│ │ ▧ │
|
||||
.5 │ ▧ ▧ │ ▧ │ .5
|
||||
│ ▧ ▧ │ ▧ │
|
||||
│ ▧ ▧ │ ▧ │
|
||||
│ ▧ ▧ │ ▧ ▧ │
|
||||
.1 │ ▧ ▧ │ ▧ ▧ │ .1
|
||||
.8 │ │ ▓ │ .8
|
||||
│ │ ▓ │
|
||||
│ │ ▓ │
|
||||
.5 │ ▓ ▓ │ ▓ │ .5
|
||||
│ ▓ ▓ │ ▓ │
|
||||
│ ▓ ▓ │ ▓ │
|
||||
│ ▓ ▓ │ ▓ ▓ │
|
||||
.1 │ ▓ ▓ │ ▓ ▓ │ .1
|
||||
╰─────────────────┼────────────────╯
|
||||
2ħ² 6ħ² │ 0 ħ
|
||||
𝐋̂² │ 𝐋̂𝓏
|
||||
2ħ² 6ħ² 0 ħ
|
||||
𝐋̂² L̂𝓏
|
||||
|
||||
h
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
40
solutions/chap7/prob8
Normal file
40
solutions/chap7/prob8
Normal file
@ -0,0 +1,40 @@
|
||||
7.35 is nothing more than a definition of spherical coordinates.
|
||||
|
||||
⎧ x = r sinθ cosϕ
|
||||
⎪
|
||||
⎨ y = r sinθ sinϕ
|
||||
⎪
|
||||
⎩ z = r cosθ
|
||||
|
||||
|
||||
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
|
||||
|
||||
⎧ L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_ - z ∂͟_ )
|
||||
⎪ ∂y ∂y
|
||||
⎪
|
||||
⎨ L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_ - x ∂͟_ )
|
||||
⎪ ∂y ∂y
|
||||
⎪
|
||||
⎪ L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_ - y ∂͟_ )
|
||||
⎩ ∂y ∂y
|
||||
|
||||
Substituing 7.35 into 7.47,
|
||||
|
||||
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
|
||||
⎪ ∂y ∂y
|
||||
⎪
|
||||
⎨ L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
|
||||
⎪ ∂y ∂y
|
||||
⎪
|
||||
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
|
||||
⎩ ∂y ∂y
|
||||
|
||||
|
||||
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
|
||||
⎪ ∂y ∂y
|
||||
⎪
|
||||
⎨ L̂𝓎 = ιħ (r cosθ ∂͟_ + r sinθ cosϕ ∂͟_ )
|
||||
⎪ ∂y ∂y
|
||||
⎪
|
||||
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
|
||||
⎩ ∂y ∂y
|
2452
solutions/chap7/prob8.ps
Normal file
2452
solutions/chap7/prob8.ps
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user