finished most of chap 7 (a) homework

This commit is contained in:
caes 2016-03-26 18:02:07 -04:00
parent 04c9365a20
commit 563ee4f2f8
7 changed files with 234 additions and 12244 deletions

File diff suppressed because it is too large Load Diff

View File

@ -85,84 +85,41 @@ Matrix analysis can be used to find the eigenvectors for these eigenstates. The
⎧ b = √2 a
⎨ (a + c) = √2 b
⎩ b = √2 c
Following this to conclusion just like with spin operators will provide the eigenstates, and then from that the wave function can be expressed using the x basis, and probabilities obtained.
I need to stop here, but I will produce at least sthe histogram from part a:
(𝐜)
𝓟(L̂𝓏)
Applying the operator to the states in Ψ,
𝓍❙1 1❭ ≐
ħ͟ ⎛ 0 1 0 ⎞⎛1⎞ = ħ͟ ⎛0⎞ = ħ͟ ❙1 0❭.
√2 ⎜ 1 0 1 ⎟⎜0⎟ √2 ⎜1⎟ √2
⎝ 0 1 0 ⎠⎝0⎠ ⎝0⎠
𝓍❙1 0❭ ≐
ħ͟ ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛1⎞ = ħ͟ (❙1 1❭ + ❙1 -1❭), and
√2 ⎜ 1 0 1 ⎟⎜1⎟ √2 ⎜0⎟ √2
⎝ 0 1 0 ⎠⎝0⎠ ⎝1⎠
𝓍❙1 -1❭ ≐
ħ͟ ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛0⎞ = ħ͟ ❙1 0❭.
√2 ⎜ 1 0 1 ⎟⎜0⎟ √2 ⎜1⎟ √2
⎝ 0 1 0 ⎠⎝1⎠ ⎝0⎠
𝓍❙Ψ❭ = ⎛ 2͟ L̂𝓍❙1 1❭ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞
⎝ √29 √29 √29 ⎠
2͟ L̂𝓍❙1 1❭ = 2͟ ħ❙1 0❭,
√29 √58
ι 3͟ L̂𝓍❙1 0❭ = ι 3͟ ħ (❙1 1❭ + ❙1 -1❭), and
√29 √58
4͟ L̂𝓍❙1 -1❭ = 4͟ ħ❙1 0❭.
√29 √58
Then,
𝓍❙Ψ❭ = ħ ⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
⎝ √58 √58 ⎠
Normalizing the function,
C⎛⎛-2͟ ⎞² + ⎛ι 3͟ ⎞² + ⎛ι 3͟ ⎞²⎞ = 1.
⎝⎝√58⎠ ⎝ √58⎠ ⎝ √58⎠ ⎠
C⎛4 - 9 - 9⎞ = 58 = C(14).
⎝ ⎠
C = 58/14 = 29/7.
The probability of measuring one of the possible angular momenta will be given by
│❬l m❙L̂𝓍❙Ψ❭│².
❬1 1❙L̂𝓍❙Ψ❭ = ❬1 1❙2͟9͟⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
7 ⎝ √58 √58 ⎠
= 2͟9͟ ι͟3͟ ❬1 1❙1 1❭ = ι 8͟7͟
7 √58 7√58
𝓍❙Ψ❭ = ⎛ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞
⎝ √29 √29 ⎠
╭─────────────────────────╮
│ │
│ │
│ │
│ │
│ │
                     │ 
   │                         │    
¹⁶/₂₉ ├   ▓                     │    
 │   ▓                     │    
 │   ▓                     │ 
 │   ▓                     │ 
 │   ▓                     │ 
 │   ▓                     │ 
│   ▓                     │ 
⁹/₂₉ ├   ▓        ▓            │ 
 │   ▓        ▓            │ 
 │   ▓        ▓            │ 
 │   ▓        ▓            │ 
 │   ▓        ▓            │ 
⁴/₂₉ ├   ▓        ▓        ▓   │ 
 │   ▓        ▓        ▓   │ 
 │   ▓        ▓        ▓   │ 
 │   ▓        ▓        ▓   │ 
   ╰─────────────────────────╯
-ħ 0 ħ

File diff suppressed because it is too large Load Diff

View File

@ -83,6 +83,3 @@ Histogram of probabilities:
   ╰─────────────────┼────────────────╯
2ħ² 6ħ² 0 ħ
𝐋̂² L̂𝓏
h

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
7.35 is nothing more than a definition of spherical coordinates.
The transformation from polar coordinates to cartesian is the set of equations
⎧ x = r sinθ cosϕ
@ -6,21 +6,142 @@
⎩ z = r cosθ
The transformation from cartesian to polar coordinates is the set
⎧ r = √(x²+y²+z²)
⎪ cos(θ) = z͟ = _͟z͟
⎨ r √(x²+y²+z²)
⎪ tan(ϕ) = y͟
⎩ x
Some differential forms may come in handy.
⎧ dcos(θ) = -sin(θ) dθ
⎪ dtan(ϕ) = _͟1͟ dϕ
⎩ cos²(ϕ)
∂/∂θ:
⎧ ∂x = r cosϕ cosθ ∂θ
⎧ ∂͟x = r cosϕ cosθ
⎪ ∂θ
⎨ ∂y = r sinϕ cosθ ∂θ
⎨ ∂͟y = r sinϕ cosθ
⎪ ∂θ
⎩ ∂z = - r sinθ ∂θ
⎪ ∂͟z = -r sinθ
⎩ ∂θ
∂/∂ϕ:
⎧ ∂x = - r sinθ sinϕ ∂ϕ
⎧ ∂͟x = -r sinθ sinϕ
⎪ ∂ϕ
⎨ ∂y = r sinθ cosϕ ∂ϕ
⎨ ∂͟y = r sinθ cosϕ
⎪ ∂ϕ
⎪ ∂͟z = 0
⎩ ∂ϕ
∂/∂x:
⎧ ∂͟r = √(x²+y²+z²) = x͟
⎪ ∂x r
⎩ ∂z = 0 ∂ϕ
⎪ ∂͟cos(θ) = -z͟x͟
⎨ ∂x r³
⎪ ∂͟tan(ϕ) = -y͟
⎩ ∂x x²
∂/∂y:
⎧ ∂͟r = √(x²+y²+z²) = y͟
⎪ ∂y r
⎪ ∂͟cos(θ) = -z͟y͟
⎨ ∂y r³
⎪ ∂͟tan(ϕ) = 1͟
⎩ ∂y x
∂/∂z:
⎧ ∂͟r = √(x²+y²+z²) = z͟
⎪ ∂z r
⎪ ∂͟cos(θ) = z͟ = 1͟ ⎛r ∂͟z͟ - z ∂͟r͟⎞ = 1͟ - z͟²
⎨ ∂z r r² ⎝ ∂z ∂z⎠ r r³
⎪ ∂͟tan(ϕ) = 0
⎩ ∂z
These differential forms can be used to transform each cartesian differentiation operator.
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂x ∂x ∂r ∂x ∂cosθ ∂x ∂tanϕ
∂͟ = x͟ ∂͟ - z͟x͟ _͟1͟ ∂͟ - y͟ cos²(ϕ) ∂͟ ;
∂x r ∂r r³ -sinθ ∂θ x² ∂ϕ
∂͟ = sin(θ) cos(ϕ) ∂͟
∂x ∂r
+ 1͟ sin(θ) cos(ϕ) cos(θ) _͟1͟ ∂͟
r sin(θ) ∂θ
- r͟ s͟i͟n͟(ϕ͟) s͟i͟n͟(θ͟) cos²(ϕ͟) ∂͟ ;
r² cos²(ϕ) sin²(θ) ∂ϕ
∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ .
∂x ∂r r ∂θ r sin(θ) ∂ϕ
───────────────────────────────────────────────
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂y ∂y ∂r ∂y ∂cosθ ∂y ∂tanϕ
∂͟ = y͟ ∂͟ - z͟y͟ ∂͟ + 1͟ ∂͟ ;
∂y r ∂r r³ ∂cosθ x ∂tanϕ
∂͟ = sin(θ) sin(ϕ) ∂͟ - 1͟ sin(θ) cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ;
∂y ∂r r -sin(θ) ∂θ r sin(θ) ∂ϕ
∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ .
∂y ∂r r ∂θ r sin(θ) ∂ϕ
───────────────────────────────────────────────
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂z ∂z ∂r ∂z ∂cosθ ∂z ∂tanϕ
∂͟ = z͟ ∂͟ + ⎛1͟ - z͟²⎞∂͟ + 0 ;
∂z r ∂r ⎝r r³⎠∂cosθ
∂͟ = cos(θ) ∂͟ + 1͟⎛1 - cos²(θ)⎞ _͟1͟ ∂͟ ;
∂z ∂r r⎝ ⎠ -sin(θ) ∂θ
∂͟ = cos(θ) ∂͟ - _͟1͟_ ⎛1 - cos²(θ)⎞ ∂͟ ;
∂z ∂r rsin(θ)⎝ ⎠ ∂θ
∂͟ = cos(θ) ∂͟ - _͟1͟_ sin²(θ) ∂͟ ;
∂z ∂r rsin(θ) ∂θ
∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ .
∂z ∂r r ∂θ
The set of differential operator transformations is
⎧ ∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟
⎪ ∂x ∂r r ∂θ r sin(θ) ∂ϕ
⎨ ∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟
⎪ ∂y ∂r r ∂θ r sin(θ) ∂ϕ
⎪ ∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟
⎩ ∂z ∂r r ∂θ
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
@ -45,91 +166,87 @@ Substituting 7.35 into 7.47,
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
⎩ ∂y ∂x
Substituting the transformed differentiation operators,
Geometry is shown on the attached notes page.
For L̂𝓍:
∂͟z͟ = -r sinθ
∂θ
∂͟y͟ = r sinθ cosϕ
∂ϕ
𝓍 = -ιħ ( r sinθ sinϕ ∂͟θ͟ ∂͟_ - r cosθ ∂͟ϕ͟ ∂͟_ )
∂θ ∂z ∂ϕ ∂y
𝓍 = ιħ ( -r sinθ sinϕ ∂͟θ͟ ∂͟_ + r cosθ ∂͟ϕ͟ ∂͟_ )
∂z ∂θ ∂y ∂ϕ
𝓍 = ιħ ( ͟r͟ s͟i͟n͟θ͟ sinϕ ∂͟_ + c͟o͟s͟θ͟ ∂͟_ )
-r sinθ ∂θ sinθ cosϕ ∂ϕ
𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ )
∂θ cosϕ ∂ϕ
For L̂𝓎:
∂x = r cosϕ cosθ ∂θ
∂z = 0 ∂ϕ
𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
∂x ∂z
𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_ + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ )
∂θ ∂x ∂ϕ ∂z
𝓎 = ιħ (-r cosθ ∂͟θ͟ ∂͟_ + r sinθ cosϕ ∂͟ϕ͟ ∂͟_ )
∂x ∂θ ∂z ∂ϕ
𝓎 = ιħ (- _͟1͟ cosθ ∂͟_ + r sinθ cosϕ 0 ∂͟_ )
cosϕ cosθ ∂θ ∂ϕ
𝓎 = ιħ (- _͟1͟ ∂͟_ )
cosϕ ∂θ
𝓎 = -ιħ _͟1͟ ∂͟_
cosϕ ∂θ
For L̂𝓏:
∂x = -r sinθ sinϕ ∂ϕ
∂y = r sinθ cosϕ ∂ϕ
𝓏 = -ιħ (r sinθ cosϕ ∂͟͟ϕ͟ ∂͟_ - r sinθ sinϕ ∂͟͟ϕ͟ ∂͟_ )
∂ϕ ∂y ∂ϕ ∂x
𝓏 = -ιħ (r͟ s͟i͟n͟θ͟ c͟o͟s͟ϕ͟ ∂͟_ + r͟ s͟i͟n͟θ͟ s͟i͟n͟ϕ͟ ∂͟_ )
r sinθ cosϕ ∂ϕ r sinθ sinϕ ∂ϕ
𝓏 = -ιħ ∂͟_ ( 1 + 1 )
∂ϕ
𝓏 = -2ιħ ∂͟_
∂ϕ
So, according to my calculus, the final solutions should be the set
⎧ L̂𝓍 = ιħ ( sinϕ ∂͟_ + c͟o͟t͟θ͟ ∂͟_ )
⎪ ∂θ cosϕ ∂ϕ
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ⎠
⎪ - r cosθ ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞⎞
⎪ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
⎨ L̂𝓎 = -ιħ _͟1͟ ∂͟_
⎪ cosϕ ∂θ
⎪ L̂𝓏 = -2ιħ ∂͟_
⎩ ∂ϕ
⎪ L̂𝓎 = -ιħ⎛r cosθ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
⎪ - r sinθ cosϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞⎞
⎪ ⎝ ∂r r ∂θ⎠⎠
⎪ L̂𝓏 = -ιħ⎛r sinθ cosϕ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
⎪ - r sinθ sinϕ ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞⎞
⎩ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
The spherical representation, i.e. ending place, is the set
Simplifying...
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ cosθ ∂͟ - sinϕ sin²θ ∂͟
⎪ ⎝ ∂r ∂θ
⎪ - r cosθ sinθ sinϕ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ∂r ∂θ sinθ ∂ϕ⎠
⎪ L̂𝓎 = -ιħ⎛r cosθ sinθ cosϕ ∂͟ + cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟
⎪ ⎝ ∂r ∂θ sinθ ∂ϕ
⎪ - r sinθ cosϕ cosθ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
⎪ ∂r ∂θ⎠
⎪ L̂𝓏 = -ιħ⎛r sin²θ cosϕ sinϕ ∂͟ + sinθ cosθ sinϕ cosϕ ∂͟ + cosϕ c͟o͟s͟ϕ͟ ∂͟
⎪ ⎝ ∂r ∂θ ∂ϕ
⎪ - r sin²θ sinϕ cosϕ ∂͟ - sinθ cosθ sinϕ cosϕ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
⎩ ∂r ∂θ sinθ ∂ϕ⎠
⎧ L̂𝓍 = -ιħ⎛- sinϕ sin²θ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
⎨ L̂𝓎 = -ιħ⎛cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
⎪ ⎝ ∂θ sinθ ∂ϕ ∂θ⎠
⎪ L̂𝓏 = -ιħ⎛cosϕ c͟o͟s͟ϕ͟ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
⎩ ⎝ ∂ϕ sinθ ∂ϕ⎠
⎧ L̂𝓍 = ιħ⎛ sinϕ sin²θ ∂͟ + cos²θ sinϕ ∂͟ + c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
⎨ L̂𝓎 = ιħ⎛-cos²θ cosϕ ∂͟ - sin²θ cosϕ ∂͟ + c͟o͟s͟θ͟ sinϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ ⎠
⎪ L̂𝓏 = -ιħ⎛cos²ϕ ∂͟ + sin²ϕ ∂͟ ⎞
⎩ ⎝ ∂ϕ ∂ϕ⎠
⎧ L̂𝓍 = ιħ⎛ sinϕ ∂͟ + cotθ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂ϕ⎠
⎨ L̂𝓎 = ιħ⎛-cosϕ ∂͟ + cotθ sinϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂ϕ ⎠
⎪ L̂𝓏 = -ιħ∂͟
⎩ ∂ϕ
The spherical representation is the following set, which perfectly matches the obtained result.
⎧ L̂𝓍 = ιħ (sinϕ ∂͟_ + cosϕ cotθ ∂͟_ )
⎪ ∂θ ∂ϕ
⎪ ∂θ ∂ϕ
⎨ L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
⎪ ∂θ ∂ϕ
⎪ ∂θ ∂ϕ
⎪ L̂𝓏 = -ιħ ∂͟_
⎩ ∂ϕ
My set DOES NOT match this. I must be going about this the wrong way. I have to give it more thought. Perhaps a purely geometric approach will improve my answers: I'll try that over the weekend.
⎩ ∂ϕ

File diff suppressed because it is too large Load Diff