phy-4600/solutions/chap7/prob8
2016-03-26 18:02:07 -04:00

253 lines
9.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

The transformation from polar coordinates to cartesian is the set of equations
⎧ x = r sinθ cosϕ
⎨ y = r sinθ sinϕ
⎩ z = r cosθ
The transformation from cartesian to polar coordinates is the set
⎧ r = √(x²+y²+z²)
⎪ cos(θ) = z͟ = _͟z͟
⎨ r √(x²+y²+z²)
⎪ tan(ϕ) = y͟
⎩ x
Some differential forms may come in handy.
⎧ dcos(θ) = -sin(θ) dθ
⎪ dtan(ϕ) = _͟1͟ dϕ
⎩ cos²(ϕ)
∂/∂θ:
⎧ ∂͟x = r cosϕ cosθ
⎪ ∂θ
⎨ ∂͟y = r sinϕ cosθ
⎪ ∂θ
⎪ ∂͟z = -r sinθ
⎩ ∂θ
∂/∂ϕ:
⎧ ∂͟x = -r sinθ sinϕ
⎪ ∂ϕ
⎨ ∂͟y = r sinθ cosϕ
⎪ ∂ϕ
⎪ ∂͟z = 0
⎩ ∂ϕ
∂/∂x:
⎧ ∂͟r = √(x²+y²+z²) = x͟
⎪ ∂x r
⎪ ∂͟cos(θ) = -z͟x͟
⎨ ∂x r³
⎪ ∂͟tan(ϕ) = -y͟
⎩ ∂x x²
∂/∂y:
⎧ ∂͟r = √(x²+y²+z²) = y͟
⎪ ∂y r
⎪ ∂͟cos(θ) = -z͟y͟
⎨ ∂y r³
⎪ ∂͟tan(ϕ) = 1͟
⎩ ∂y x
∂/∂z:
⎧ ∂͟r = √(x²+y²+z²) = z͟
⎪ ∂z r
⎪ ∂͟cos(θ) = z͟ = 1͟ ⎛r ∂͟z͟ - z ∂͟r͟⎞ = 1͟ - z͟²
⎨ ∂z r r² ⎝ ∂z ∂z⎠ r r³
⎪ ∂͟tan(ϕ) = 0
⎩ ∂z
These differential forms can be used to transform each cartesian differentiation operator.
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂x ∂x ∂r ∂x ∂cosθ ∂x ∂tanϕ
∂͟ = x͟ ∂͟ - z͟x͟ _͟1͟ ∂͟ - y͟ cos²(ϕ) ∂͟ ;
∂x r ∂r r³ -sinθ ∂θ x² ∂ϕ
∂͟ = sin(θ) cos(ϕ) ∂͟
∂x ∂r
+ 1͟ sin(θ) cos(ϕ) cos(θ) _͟1͟ ∂͟
r sin(θ) ∂θ
- r͟ s͟i͟n͟(ϕ͟) s͟i͟n͟(θ͟) cos²(ϕ͟) ∂͟ ;
r² cos²(ϕ) sin²(θ) ∂ϕ
∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ .
∂x ∂r r ∂θ r sin(θ) ∂ϕ
───────────────────────────────────────────────
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂y ∂y ∂r ∂y ∂cosθ ∂y ∂tanϕ
∂͟ = y͟ ∂͟ - z͟y͟ ∂͟ + 1͟ ∂͟ ;
∂y r ∂r r³ ∂cosθ x ∂tanϕ
∂͟ = sin(θ) sin(ϕ) ∂͟ - 1͟ sin(θ) cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ;
∂y ∂r r -sin(θ) ∂θ r sin(θ) ∂ϕ
∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ .
∂y ∂r r ∂θ r sin(θ) ∂ϕ
───────────────────────────────────────────────
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
∂z ∂z ∂r ∂z ∂cosθ ∂z ∂tanϕ
∂͟ = z͟ ∂͟ + ⎛1͟ - z͟²⎞∂͟ + 0 ;
∂z r ∂r ⎝r r³⎠∂cosθ
∂͟ = cos(θ) ∂͟ + 1͟⎛1 - cos²(θ)⎞ _͟1͟ ∂͟ ;
∂z ∂r r⎝ ⎠ -sin(θ) ∂θ
∂͟ = cos(θ) ∂͟ - _͟1͟_ ⎛1 - cos²(θ)⎞ ∂͟ ;
∂z ∂r rsin(θ)⎝ ⎠ ∂θ
∂͟ = cos(θ) ∂͟ - _͟1͟_ sin²(θ) ∂͟ ;
∂z ∂r rsin(θ) ∂θ
∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ .
∂z ∂r r ∂θ
The set of differential operator transformations is
⎧ ∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟
⎪ ∂x ∂r r ∂θ r sin(θ) ∂ϕ
⎨ ∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟
⎪ ∂y ∂r r ∂θ r sin(θ) ∂ϕ
⎪ ∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟
⎩ ∂z ∂r r ∂θ
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
⎧ L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_ - z ∂͟_ )
⎪ ∂z ∂y
⎨ L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_ - x ∂͟_ )
⎪ ∂x ∂z
⎪ L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_ - y ∂͟_ )
⎩ ∂y ∂x
Substituting 7.35 into 7.47,
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
⎪ ∂z ∂y
⎨ L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
⎪ ∂x ∂z
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
⎩ ∂y ∂x
Substituting the transformed differentiation operators,
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ⎠
⎪ - r cosθ ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞⎞
⎪ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
⎪ L̂𝓎 = -ιħ⎛r cosθ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
⎪ - r sinθ cosϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞⎞
⎪ ⎝ ∂r r ∂θ⎠⎠
⎪ L̂𝓏 = -ιħ⎛r sinθ cosϕ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
⎪ - r sinθ sinϕ ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞⎞
⎩ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
Simplifying...
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ cosθ ∂͟ - sinϕ sin²θ ∂͟
⎪ ⎝ ∂r ∂θ
⎪ - r cosθ sinθ sinϕ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ∂r ∂θ sinθ ∂ϕ⎠
⎪ L̂𝓎 = -ιħ⎛r cosθ sinθ cosϕ ∂͟ + cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟
⎪ ⎝ ∂r ∂θ sinθ ∂ϕ
⎪ - r sinθ cosϕ cosθ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
⎪ ∂r ∂θ⎠
⎪ L̂𝓏 = -ιħ⎛r sin²θ cosϕ sinϕ ∂͟ + sinθ cosθ sinϕ cosϕ ∂͟ + cosϕ c͟o͟s͟ϕ͟ ∂͟
⎪ ⎝ ∂r ∂θ ∂ϕ
⎪ - r sin²θ sinϕ cosϕ ∂͟ - sinθ cosθ sinϕ cosϕ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
⎩ ∂r ∂θ sinθ ∂ϕ⎠
⎧ L̂𝓍 = -ιħ⎛- sinϕ sin²θ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
⎨ L̂𝓎 = -ιħ⎛cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
⎪ ⎝ ∂θ sinθ ∂ϕ ∂θ⎠
⎪ L̂𝓏 = -ιħ⎛cosϕ c͟o͟s͟ϕ͟ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
⎩ ⎝ ∂ϕ sinθ ∂ϕ⎠
⎧ L̂𝓍 = ιħ⎛ sinϕ sin²θ ∂͟ + cos²θ sinϕ ∂͟ + c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
⎨ L̂𝓎 = ιħ⎛-cos²θ cosϕ ∂͟ - sin²θ cosϕ ∂͟ + c͟o͟s͟θ͟ sinϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ ⎠
⎪ L̂𝓏 = -ιħ⎛cos²ϕ ∂͟ + sin²ϕ ∂͟ ⎞
⎩ ⎝ ∂ϕ ∂ϕ⎠
⎧ L̂𝓍 = ιħ⎛ sinϕ ∂͟ + cotθ cosϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂ϕ⎠
⎨ L̂𝓎 = ιħ⎛-cosϕ ∂͟ + cotθ sinϕ ∂͟ ⎞
⎪ ⎝ ∂θ ∂ϕ ⎠
⎪ L̂𝓏 = -ιħ∂͟
⎩ ∂ϕ
The spherical representation is the following set, which perfectly matches the obtained result.
⎧ L̂𝓍 = ιħ (sinϕ ∂͟_ + cosϕ cotθ ∂͟_ )
⎪ ∂θ ∂ϕ
⎨ L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
⎪ ∂θ ∂ϕ
⎪ L̂𝓏 = -ιħ ∂͟_
⎩ ∂ϕ