2016-03-24 05:04:06 +00:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								There is an angular momentum system with the state function
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    ❙Ψ❭ = 2͟ ❙1 1❭ + ι   3͟ ❙1 0❭ - 4͟ ❙1 -1❭ 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								         √29         √29       √29       
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								In general the eigenvalue equation for the L̂𝓏   operator is
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    L̂𝓏  ❙l m❭ = m ħ❙l m❭, where m ħ are the possible measurements.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								The possible measurements of this system, then, are, for m = {-1, 0, 1}:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    -ħ, 0, ħ.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								The probability for is given by
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    │❬1 m′  ❙Ψ❭│², with m′   = {-1, 0, 1}.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								The eigenstates form an orthogonal set such that 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    ❬l′   m′  ❙l m❭ = δₗₗ′ δₘₘ′.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								Then,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    ❬1 1❙Ψ❭ = ❬1 1❙⎛ 2͟ ❙1 1❭ + ι   3͟ ❙1 0❭ - 4͟ ❙1 -1❭ ⎞
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								                   ⎝√29         √29       √29       ⎠
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								            = ❬1 1❙ 2͟ ❙1 1❭ = 2͟ .
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								                   √29       √29
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								(𝐚  )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    │❬1 1❙Ψ❭│² = 4͟ = ⁴/₂₉.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								                 29
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								Similarly,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    │❬1 0❙Ψ❭│² = 9͟ = ⁹/₂₉ and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								                 29
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    │❬1 -1❙Ψ❭│² = 1͟6͟ = ¹⁶/₂₉.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								                  29
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								The eigenvalue equations for the L̂𝓏   operator are simplified because L̂𝓏   is diagonal in the z basis. The L̂𝓍   operator produces the same measurements, but the matrix representation of the L̂𝓍   operator must be applied. It is
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    L̂𝓍   ≐
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								        ħ͟  ⎛ 0 1 0 ⎞
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								        √2 ⎜ 1 0 1 ⎟
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								           ⎝ 0 1 0 ⎠.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2016-03-26 00:08:04 +00:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								The general eigenvalue equation is 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    L̂𝓍  ❙λ,mₗ❭ = λ❙λ,mₗ❭, where the eigenvalues λ are the possible measured values of L̂𝓍  . The eigenvalues can be obtained from the secular equation
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    det│L̂𝓍   - λ𝕀│ = 0
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    ħ͟  ⎛ 0 1 0 ⎞ - ⎛ λ 0 0 ⎞ = ⎛   -λ  ħ/√2   0  ⎞        
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    √2 ⎜ 1 0 1 ⎟   ⎜ 0 λ 0 ⎟   ⎜  ħ/√2  -λ  ħ/√2 ⎟     
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       ⎝ 0 1 0 ⎠   ⎝ 0 0 λ ⎠   ⎝    0  ħ/√2  -λ  ⎠.    
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    │⎛   -λ  ħ/√2   0  ⎞│ = (-λ(λ² - ħ²/2) + (ħ²/2) λ) = -λ³ + ħ²λ.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    │⎜  ħ/√2  -λ  ħ/√2 ⎟│                                   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    │⎝    0  ħ/√2  -λ  ⎠│
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    λ(-λ² + ħ²) = -λ(λ² - ħ²)) = 0.        
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								One eigenvalue is immediately obvious: λ = 0. The other two are given by
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    λ² = ħ², so the eigenvalues are
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    λ = 0,±ħ.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								These are exactly the expected measured values for a spin component.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								The eigenvalue equations are 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    L̂𝓍  ❙1  1❭𝓍   =  ħ❙1  1❭𝓍   ,
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    L̂𝓍  ❙1  0❭𝓍   =  0❙1  1❭𝓍   , and
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								    L̂𝓍  ❙1 -1❭𝓍   = -ħ❙1 -1❭𝓍   .
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								Matrix analysis can be used to find the eigenvectors for these eigenstates. The first one is
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    ħ͟  ⎛ 0 1 0 ⎞ ⎛ a ⎞ = ħ ⎛ a ⎞, which gives the system
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								    √2 ⎜ 1 0 1 ⎟ ⎜ b ⎟     ⎜ b ⎟
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       ⎝ 0 1 0 ⎠ ⎝ c ⎠     ⎝ c ⎠
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								⎧ b = √2 a    
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								⎨ (a + c) = √2 b
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								⎩ b = √2 c
							 
						 
					
						
							
								
									
										
										
										
											2016-03-24 05:04:06 +00:00 
										
									 
								 
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
									
										
										
										
											2016-03-26 22:02:07 +00:00 
										
									 
								 
							 
							
								
									
										 
									 
								
							 
							
								 
							 
							
								
									
								 
							
							
								Following this to conclusion just like with spin operators will provide the eigenstates, and then from that the wave function can be expressed using the x basis, and probabilities obtained.
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								I need to stop here, but I will produce at least sthe histogram from part a:
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								(𝐜  )
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								𝓟  (L̂𝓏  )     
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       ╭─────────────────────────╮
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │                         │ 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │                         │ 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │                         │ 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │                         │ 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │                         │ 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								       │                                  │ 
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								       │                                  │    
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								 ¹⁶/₂₉ ├   ▓                     │    
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								       │   ▓                              │    
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								       │   ▓                              │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								       │   ▓                              │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								       │   ▓                              │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								       │   ▓                              │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
										 
									
								 
							
							
								       │   ▓                              │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  ⁹/₂₉ ├   ▓        ▓            │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │   ▓        ▓            │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │   ▓        ▓            │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │   ▓        ▓            │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │   ▓        ▓            │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								  ⁴/₂₉ ├   ▓        ▓        ▓   │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │   ▓        ▓        ▓   │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │   ▓        ▓        ▓   │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       │   ▓        ▓        ▓   │   
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								       ╰─────────────────────────╯
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								           -ħ       0       ħ    
							 
						 
					
						
							
								
							 
							
								
							 
							
								 
							 
							
								
									
								 
							
							
								            
							 
						 
					
						
							
								
									
										
										
										
											2016-03-24 05:04:06 +00:00