mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2025-01-19 02:35:06 +00:00
108 lines
3.1 KiB
Plaintext
108 lines
3.1 KiB
Plaintext
|
There is an angular momentum system with the state function
|
|||
|
|
|||
|
❙Ψ❭ = 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭
|
|||
|
√29 √29 √29
|
|||
|
|
|||
|
In general the eigenvalue equation for the L̂𝓏 operator is
|
|||
|
|
|||
|
L̂𝓏❙l m❭ = m ħ❙l m❭, where m ħ are the possible measurements.
|
|||
|
|
|||
|
The possible measurements of this system, then, are, for m = {-1, 0, 1}:
|
|||
|
|
|||
|
-ħ, 0, ħ.
|
|||
|
|
|||
|
The probability for is given by
|
|||
|
|
|||
|
│❬1 m′❙Ψ❭│², with m′ = {-1, 0, 1}.
|
|||
|
|
|||
|
The eigenstates form an orthogonal set such that
|
|||
|
|
|||
|
❬l′ m′❙l m❭ = δₗₗ′ δₘₘ′.
|
|||
|
|
|||
|
Then,
|
|||
|
|
|||
|
❬1 1❙Ψ❭ = ❬1 1❙⎛ 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭ ⎞
|
|||
|
⎝√29 √29 √29 ⎠
|
|||
|
|
|||
|
= ❬1 1❙ 2͟ ❙1 1❭ = 2͟ .
|
|||
|
√29 √29
|
|||
|
|
|||
|
(𝐚)
|
|||
|
│❬1 1❙Ψ❭│² = 4͟ = ⁴/₂₉.
|
|||
|
29
|
|||
|
|
|||
|
Similarly,
|
|||
|
|
|||
|
│❬1 0❙Ψ❭│² = 9͟ = ⁹/₂₉ and
|
|||
|
29
|
|||
|
|
|||
|
│❬1 -1❙Ψ❭│² = 1͟6͟ = ¹⁶/₂₉.
|
|||
|
29
|
|||
|
|
|||
|
|
|||
|
The eigenvalue equations for the L̂𝓏 operator are simplified because L̂𝓏 is diagonal in the z basis. The L̂𝓍 operator produces the same measurements, but the matrix representation of the L̂𝓍 operator must be applied. It is
|
|||
|
|
|||
|
L̂𝓍 ≐
|
|||
|
ħ͟ ⎛ 0 1 0 ⎞
|
|||
|
√2 ⎜ 1 0 1 ⎟
|
|||
|
⎝ 0 1 0 ⎠.
|
|||
|
|
|||
|
Applying the operator to the states in Ψ,
|
|||
|
|
|||
|
L̂𝓍❙1 1❭ ≐
|
|||
|
ħ͟ ⎛ 0 1 0 ⎞⎛1⎞ = ħ͟ ⎛0⎞ = ħ͟ ❙1 0❭.
|
|||
|
√2 ⎜ 1 0 1 ⎟⎜0⎟ √2 ⎜1⎟ √2
|
|||
|
⎝ 0 1 0 ⎠⎝0⎠ ⎝0⎠
|
|||
|
|
|||
|
L̂𝓍❙1 0❭ ≐
|
|||
|
ħ͟ ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛1⎞ = ħ͟ (❙1 1❭ + ❙1 -1❭), and
|
|||
|
√2 ⎜ 1 0 1 ⎟⎜1⎟ √2 ⎜0⎟ √2
|
|||
|
⎝ 0 1 0 ⎠⎝0⎠ ⎝1⎠
|
|||
|
|
|||
|
L̂𝓍❙1 -1❭ ≐
|
|||
|
ħ͟ ⎛ 0 1 0 ⎞⎛0⎞ = ħ͟ ⎛0⎞ = ħ͟ ❙1 0❭.
|
|||
|
√2 ⎜ 1 0 1 ⎟⎜0⎟ √2 ⎜1⎟ √2
|
|||
|
⎝ 0 1 0 ⎠⎝1⎠ ⎝0⎠
|
|||
|
|
|||
|
|
|||
|
L̂𝓍❙Ψ❭ = ⎛ 2͟ L̂𝓍❙1 1❭ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞
|
|||
|
⎝ √29 √29 √29 ⎠
|
|||
|
|
|||
|
2͟ L̂𝓍❙1 1❭ = 2͟ ħ❙1 0❭,
|
|||
|
√29 √58
|
|||
|
|
|||
|
ι 3͟ L̂𝓍❙1 0❭ = ι 3͟ ħ (❙1 1❭ + ❙1 -1❭), and
|
|||
|
√29 √58
|
|||
|
|
|||
|
4͟ L̂𝓍❙1 -1❭ = 4͟ ħ❙1 0❭.
|
|||
|
√29 √58
|
|||
|
|
|||
|
Then,
|
|||
|
|
|||
|
L̂𝓍❙Ψ❭ = ħ⎛ -2͟ ❙1 0❭ + ι 3͟ (❙1 1❭ + ❙1 -1❭)⎞
|
|||
|
⎝ √58 √58 ⎠
|
|||
|
|
|||
|
Normalizing the function,
|
|||
|
|
|||
|
C⎛⎛-2͟ ⎞² + ⎛ι 3͟ ⎞² + ⎛ι 3͟ ⎞²⎞ = 1.
|
|||
|
⎝⎝√58⎠ ⎝ √58⎠ ⎝ √58⎠ ⎠
|
|||
|
|
|||
|
|
|||
|
STOPPED HERE
|
|||
|
|
|||
|
C = 58⎛⎛1͟⎞ - ⎛ι 3 ⎞⁻² + ⎛ι 3 ⎞⁻²⎞
|
|||
|
⎝⎝4⎠ ⎝ ⎠ ⎝ ⎠ ⎠
|
|||
|
So,
|
|||
|
|
|||
|
\|❬1 1❙L̂𝓍❙Ψ❭\|^2 =
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
L̂𝓍❙Ψ❭ = ⎛ + ι 3͟ L̂𝓍❙1 0❭ - 4͟ L̂𝓍❙1 -1❭ ⎞
|
|||
|
⎝ √29 √29 ⎠
|
|||
|
|
|||
|
|
|||
|
|