phy-4600/solutions/exam1/prob3

104 lines
2.9 KiB
Plaintext
Raw Normal View History

2016-02-21 06:05:07 +00:00
|a〉 and |b〉 are eigenstates of a Hermitian operator A with eigenvalues a and b, a ≠ b. The Hamiltonian operator is
2016-02-24 20:38:17 +00:00
Ĥ = |a〉 δ 〈a| + |b〉 δ 〈b|, with δ a real number.
2016-02-21 06:05:07 +00:00
2016-02-24 20:38:17 +00:00
a) The eigenstates of the Hamiltonian can be determined by diagonalizing the Hamiltonian operator's matrix representation. In general,
2016-02-21 06:05:07 +00:00
2016-02-24 20:38:17 +00:00
Ĥ ≐
⎛ 〈a|Ĥ|a〉 〈a|Ĥ|b〉 ⎞
⎝ 〈b|Ĥ|a〉 〈b|Ĥ|b〉 ⎠.
2016-02-24 00:41:02 +00:00
2016-02-24 20:38:17 +00:00
Calculating the individual components:
〈a|Ĥ|a〉 = 〈a|(|a〉 δ 〈a| + |b〉 δ 〈b|)|a〉 =
〈a|Ĥ|a〉 = 〈a|a〉 δ 〈a|a〉 + 〈a|b〉 δ 〈b|a〉 =
〈a|Ĥ|a〉 = δ(1 + 〈a|b〉〈b|a〉),
and because H is a hermitian operator, 〈a|b〉 = 〈b|a〉, so
〈a|Ĥ|a〉 = δ(1 + |〈a|b〉|²);
〈a|Ĥ|b〉 = 〈a|a〉 δ 〈a|b〉 + 〈a|b〉 δ 〈b|b〉 =
〈a|Ĥ|b〉 = δ (〈a|b〉 + 〈a|b〉) = δ 2〈a|b〉;
2016-02-25 05:03:45 +00:00
because of the Hermitian property,
2016-02-24 20:38:17 +00:00
〈b|Ĥ|a〉 = 〈a|Ĥ|b〉 = δ 2〈a|b〉;
finally,
〈b|Ĥ|b〉 = 〈b|(|a〉 δ 〈a| + |b〉 δ 〈b|)|b〉 =
〈b|Ĥ|b〉 = 〈b|a〉 δ 〈a|b〉 + 〈b|b〉 δ 〈b|b〉 =
〈b|Ĥ|b〉 = δ(〈b|a〉〈a|b〉 + 1),
〈b|Ĥ|b〉 = δ(1 + |〈a|b〉|²).
So, the Hamiltonian operator Ĥ ≐
δ ⎛ 1 + |〈a|b〉|² 2〈a|b〉 ⎞
⎝ 2〈a|b〉 1 + |〈a|b〉|² ⎠.
The eigenstates, which I will call |1〉 and |2〉 can be obtained by diagonalizing the Hamiltonian matrix. The first eigenvalue equations are
Ĥ|1〉 = E₁|1〉 and Ĥ|2〉 = E₂|2〉, with the eigenstates represented by the vector matrices, respectively,
⎛α₁⎞ ⎛α₂⎞
⎝β₁⎠ and ⎝β₂⎠.
δ ⎛ 1 + |〈a|b〉|² 2〈a|b〉 ⎞ ⎛α₁⎞ = E₁ ⎛α₁⎞
⎝ 2〈a|b〉 1 + |〈a|b〉|² ⎠ ⎝β₁⎠ ⎝β₁⎠.
This gives the equation α₁ + α₁|〈a|b〉|² + 2β₁〈a|b〉 = E₁α₁, and therefore the ratio between α₁ and β₁,
͟β͟₁͟ = ͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟, or
α₁ 2〈a|b〉
β₁ = ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟)͟
2〈a|b〉
2016-02-25 05:03:45 +00:00
2016-02-24 20:38:17 +00:00
Using the normalization condition, the values of each constant can be obtained. Plugging the value for α₁ into the equation reveals a quadratic equation.
|α₁|² + |β₁|² = 1, so
2016-02-25 05:03:45 +00:00
|α₁|² + | ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈a͟|͟b͟〉͟|͟²͟)͟ |² = 1.
2016-02-24 20:38:17 +00:00
| 2〈a|b〉 |
α₁(1 - E₁) + 2β₁〈a|b〉 + α₁|〈a|b〉|² = 0 and
_________
α₁ = ±√1 - |β₁|², so
_________ _________
2016-02-25 05:03:45 +00:00
±√1 - |β₁|² (1 - E₁) + 2β₁〈a|b〉 + ±√1 - |β₁|² |〈a|b〉|² = 0.
2016-02-24 20:38:17 +00:00
The quadratic formula therefore says that
2016-02-25 05:03:45 +00:00