phy-4600/solutions/exam1/prob3
2016-02-25 00:03:45 -05:00

104 lines
2.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

|a〉 and |b〉 are eigenstates of a Hermitian operator A with eigenvalues a and b, a ≠ b. The Hamiltonian operator is
Ĥ = |a〉 δ 〈a| + |b〉 δ 〈b|, with δ a real number.
a) The eigenstates of the Hamiltonian can be determined by diagonalizing the Hamiltonian operator's matrix representation. In general,
Ĥ ≐
⎛ 〈a|Ĥ|a〉 〈a|Ĥ|b〉 ⎞
⎝ 〈b|Ĥ|a〉 〈b|Ĥ|b〉 ⎠.
Calculating the individual components:
〈a|Ĥ|a〉 = 〈a|(|a〉 δ 〈a| + |b〉 δ 〈b|)|a〉 =
〈a|Ĥ|a〉 = 〈a|a〉 δ 〈a|a〉 + 〈a|b〉 δ 〈b|a〉 =
〈a|Ĥ|a〉 = δ(1 + 〈a|b〉〈b|a〉),
and because H is a hermitian operator, 〈a|b〉 = 〈b|a〉, so
〈a|Ĥ|a〉 = δ(1 + |〈a|b〉|²);
〈a|Ĥ|b〉 = 〈a|a〉 δ 〈a|b〉 + 〈a|b〉 δ 〈b|b〉 =
〈a|Ĥ|b〉 = δ (〈a|b〉 + 〈a|b〉) = δ 2〈a|b〉;
because of the Hermitian property,
〈b|Ĥ|a〉 = 〈a|Ĥ|b〉 = δ 2〈a|b〉;
finally,
〈b|Ĥ|b〉 = 〈b|(|a〉 δ 〈a| + |b〉 δ 〈b|)|b〉 =
〈b|Ĥ|b〉 = 〈b|a〉 δ 〈a|b〉 + 〈b|b〉 δ 〈b|b〉 =
〈b|Ĥ|b〉 = δ(〈b|a〉〈a|b〉 + 1),
〈b|Ĥ|b〉 = δ(1 + |〈a|b〉|²).
So, the Hamiltonian operator Ĥ ≐
δ ⎛ 1 + |〈a|b〉|² 2〈a|b〉 ⎞
⎝ 2〈a|b〉 1 + |〈a|b〉|² ⎠.
The eigenstates, which I will call |1〉 and |2〉 can be obtained by diagonalizing the Hamiltonian matrix. The first eigenvalue equations are
Ĥ|1〉 = E₁|1〉 and Ĥ|2〉 = E₂|2〉, with the eigenstates represented by the vector matrices, respectively,
⎛α₁⎞ ⎛α₂⎞
⎝β₁⎠ and ⎝β₂⎠.
δ ⎛ 1 + |〈a|b〉|² 2〈a|b〉 ⎞ ⎛α₁⎞ = E₁ ⎛α₁⎞
⎝ 2〈a|b〉 1 + |〈a|b〉|² ⎠ ⎝β₁⎠ ⎝β₁⎠.
This gives the equation α₁ + α₁|〈a|b〉|² + 2β₁〈a|b〉 = E₁α₁, and therefore the ratio between α₁ and β₁,
͟β͟₁͟ = ͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟, or
α₁ 2〈a|b〉
β₁ = ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟)͟
2〈a|b〉
Using the normalization condition, the values of each constant can be obtained. Plugging the value for α₁ into the equation reveals a quadratic equation.
|α₁|² + |β₁|² = 1, so
|α₁|² + | ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈a͟|͟b͟〉͟|͟²͟)͟ |² = 1.
| 2〈a|b〉 |
α₁(1 - E₁) + 2β₁〈a|b〉 + α₁|〈a|b〉|² = 0 and
_________
α₁ = ±√1 - |β₁|², so
_________ _________
±√1 - |β₁|² (1 - E₁) + 2β₁〈a|b〉 + ±√1 - |β₁|² |〈a|b〉|² = 0.
The quadratic formula therefore says that