|a〉 and |b〉 are eigenstates of a Hermitian operator A with eigenvalues a and b, a ≠ b. The Hamiltonian operator is Ĥ = |a〉 δ 〈a| + |b〉 δ 〈b|, with δ a real number. a) The eigenstates of the Hamiltonian can be determined by diagonalizing the Hamiltonian operator's matrix representation. In general, Ĥ ≐ ⎛ 〈a|Ĥ|a〉 〈a|Ĥ|b〉 ⎞ ⎝ 〈b|Ĥ|a〉 〈b|Ĥ|b〉 ⎠. Calculating the individual components: 〈a|Ĥ|a〉 = 〈a|(|a〉 δ 〈a| + |b〉 δ 〈b|)|a〉 = 〈a|Ĥ|a〉 = 〈a|a〉 δ 〈a|a〉 + 〈a|b〉 δ 〈b|a〉 = 〈a|Ĥ|a〉 = δ(1 + 〈a|b〉〈b|a〉), and because H is a hermitian operator, 〈a|b〉 = 〈b|a〉, so 〈a|Ĥ|a〉 = δ(1 + |〈a|b〉|²); 〈a|Ĥ|b〉 = 〈a|a〉 δ 〈a|b〉 + 〈a|b〉 δ 〈b|b〉 = 〈a|Ĥ|b〉 = δ (〈a|b〉 + 〈a|b〉) = δ 2〈a|b〉; because of the Hermitian property, 〈b|Ĥ|a〉 = 〈a|Ĥ|b〉 = δ 2〈a|b〉; finally, 〈b|Ĥ|b〉 = 〈b|(|a〉 δ 〈a| + |b〉 δ 〈b|)|b〉 = 〈b|Ĥ|b〉 = 〈b|a〉 δ 〈a|b〉 + 〈b|b〉 δ 〈b|b〉 = 〈b|Ĥ|b〉 = δ(〈b|a〉〈a|b〉 + 1), 〈b|Ĥ|b〉 = δ(1 + |〈a|b〉|²). So, the Hamiltonian operator Ĥ ≐ δ ⎛ 1 + |〈a|b〉|² 2〈a|b〉 ⎞ ⎝ 2〈a|b〉 1 + |〈a|b〉|² ⎠. The eigenstates, which I will call |1〉 and |2〉 can be obtained by diagonalizing the Hamiltonian matrix. The first eigenvalue equations are Ĥ|1〉 = E₁|1〉 and Ĥ|2〉 = E₂|2〉, with the eigenstates represented by the vector matrices, respectively, ⎛α₁⎞ ⎛α₂⎞ ⎝β₁⎠ and ⎝β₂⎠. δ ⎛ 1 + |〈a|b〉|² 2〈a|b〉 ⎞ ⎛α₁⎞ = E₁ ⎛α₁⎞ ⎝ 2〈a|b〉 1 + |〈a|b〉|² ⎠ ⎝β₁⎠ ⎝β₁⎠. This gives the equation α₁ + α₁|〈a|b〉|² + 2β₁〈a|b〉 = E₁α₁, and therefore the ratio between α₁ and β₁, ͟β͟₁͟ = ͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟, or α₁ 2〈a|b〉 β₁ = ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟)͟ 2〈a|b〉 Using the normalization condition, the values of each constant can be obtained. Plugging the value for α₁ into the equation reveals a quadratic equation. |α₁|² + |β₁|² = 1, so |α₁|² + | ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈a͟|͟b͟〉͟|͟²͟)͟ |² = 1. | 2〈a|b〉 | α₁(1 - E₁) + 2β₁〈a|b〉 + α₁|〈a|b〉|² = 0 and _________ α₁ = ±√1 - |β₁|², so _________ _________ ±√1 - |β₁|² (1 - E₁) + 2β₁〈a|b〉 + ±√1 - |β₁|² |〈a|b〉|² = 0. The quadratic formula therefore says that