mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-10-31 22:58:05 +00:00 
			
		
		
		
	update
This commit is contained in:
		
							parent
							
								
									5200afdd36
								
							
						
					
					
						commit
						44ebb2f8de
					
				| @ -11,4 +11,4 @@ Quantum State Basis | ||||
| 		|+x> = C_+ |+z> + C_- |+z> | ||||
| 		C_+ = e^(i δ_+) / √2 ,  C_- = e^(i δ_-) / √2 | ||||
| 
 | ||||
| 		<+x| S_z |+x> = <S_z> = expectation value | ||||
| 		<+x| S_z |+x> = <S_z> = expectation value | ||||
|  | ||||
							
								
								
									
										11
									
								
								solutions/chap1/prob14/draft
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										11
									
								
								solutions/chap1/prob14/draft
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,11 @@ | ||||
| c₊²=.36 | ||||
| 
 | ||||
| 
 | ||||
|        ___         ___ | ||||
| |Ψ〉 = √.90 |+z〉 + √.10 |-z〉 | ||||
|        ___         ___ | ||||
| |Ψ〉 = √.20 |+y〉 + √.80 |-y〉 = √.20 ( ) | ||||
|                 ___         ___      ___         ___ | ||||
| 〈Ψ|Ψ〉 = ( 〈+y| √.20 + 〈-y| √.80 ) ( √.90 |+z〉 + √.10 |-z〉 ) | ||||
| 
 | ||||
| 〈+x|Ψ〉 = d | ||||
| @ -28,7 +28,7 @@ The Hamiltonian is measureable, and therefore is an operator. The magnetic field | ||||
| Therefore, the Hamiltonian | ||||
| 
 | ||||
|     Ĥ ≐ -k B𝓏 ħ/2  ( 1  0 ) | ||||
| 	          ( 0 -1 ) . | ||||
|                   ( 0 -1 ) . | ||||
| 
 | ||||
| The commutator can now be computed. This computation is included on an attached sheet. The computation indicates that Ŝ𝓏Ĥ = ĤŜ𝓏, and therefore the commutator is zero. The Hamiltonian and the spin operator in the z direction commute. A similar computation for the x and y directions should indicate a lack of commutability. | ||||
| 
 | ||||
|  | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										37
									
								
								solutions/exam1/prob1
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								solutions/exam1/prob1
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,37 @@ | ||||
| The characteristic equation for the spin operator S𝓏 is | ||||
| 
 | ||||
|     S𝓏 (S𝓏 + ħ)(S𝓏 - ħ) = 0. | ||||
| 
 | ||||
| The eigenvalues, which are the roots of this equation, are | ||||
| 
 | ||||
|     λ = 0, ±ħ. | ||||
| 
 | ||||
| The S𝓏 operator is already diagonalized in its own basis, so the matrix has the immediately constructable form of | ||||
| 
 | ||||
|     S𝓏 ≐ | ||||
|             ⎛ 1 0 0  ⎞ | ||||
|           ħ ⎜ 0 0 0  ⎟ | ||||
|             ⎝ 0 0 -1 ⎠ | ||||
| 
 | ||||
| 
 | ||||
| To produce the operator S𝓏, one can apply the rotation matrix for a rotation about the y axis., where the angle of rotation is π/2. | ||||
| 
 | ||||
|             ⎛ cosθ  0  sinθ ⎞   ⎛ 0  0  1 ⎞    | ||||
|         R = ⎜   0   1   0   ⎟ = ⎜ 0  1  0 ⎟   | ||||
|             ⎝-sinθ  0  cosθ ⎠   ⎝-1  0  0 ⎠ | ||||
| 
 | ||||
| S𝓍 = S𝓏 R ≐  | ||||
|            ⎛ 1 0 0  ⎞ ⎛ 0  0  1 ⎞   ⎛ 0  0  1 ⎞ | ||||
|          ħ ⎜ 0 0 0  ⎟ ⎜ 0  1  0 ⎟ = ⎜ 0  1  0 ⎟ | ||||
|            ⎝ 0 0 -1 ⎠ ⎝-1  0  0 ⎠   ⎝-1  0  0 ⎠ | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| The same is true for the S𝓍 operator in its basis. To express this operator in the z basis, however, it must be diagonalized.  | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
							
								
								
									
										2273
									
								
								solutions/exam1/prob1.ps
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2273
									
								
								solutions/exam1/prob1.ps
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										47
									
								
								solutions/exam1/prob2
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										47
									
								
								solutions/exam1/prob2
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,47 @@ | ||||
| ͟d͟ ͟\<͟p͟\>͟ = - 〈͟d͟ ͟V͟(͟X͟)͟〉 | ||||
|   dt           dx | ||||
| 
 | ||||
|   If a particle is subject to potential 〈V(x)〉 | ||||
| 
 | ||||
| The potential is known, and in the absense of any non-conservative influences, the Hamiltonian is equal to the potential. | ||||
| 
 | ||||
| H(x) = V(x)  | ||||
| 
 | ||||
| H|E〉 = E|E〉 | ||||
| 
 | ||||
| Ĥ = ͟p̂͟²͟ + V(x̂) | ||||
|      2m | ||||
| 
 | ||||
| x̂ ≐ x | ||||
| 
 | ||||
| p̂ ≐ -ι ħ  ͟d͟ | ||||
|           dx | ||||
| 
 | ||||
| p̂² ≐ -ħ²  ͟d͟² | ||||
|           dx² | ||||
| 
 | ||||
| Ĥ = ͟p̂͟²͟ + V(x̂) | ||||
|      2m | ||||
| 
 | ||||
| 
 | ||||
|       ∞ | ||||
| 〈p̂〉 = ∫ dx p(x) =  | ||||
|      -∞ | ||||
| 
 | ||||
| d/dt ∫ dx p(x) =  | ||||
|        | ||||
| 
 | ||||
| 
 | ||||
|        | ||||
| Probably start here: | ||||
| 
 | ||||
| 〈V(x)〉 = ∫ dx V(x)  | ||||
| 
 | ||||
| 〈d/dx V(x)〉 = ∫ d/dx V(x) dx = V(x) | ||||
| 
 | ||||
| d/dt 〈p〉 = d/dt ∫ dx p(x)  | ||||
| 
 | ||||
| the definition of momentum in function space is  | ||||
| 
 | ||||
|     d/dt p(x) = -d/dx V(x) | ||||
| 
 | ||||
							
								
								
									
										6
									
								
								solutions/exam1/prob3
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								solutions/exam1/prob3
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,6 @@ | ||||
| |a〉 and |b〉 are eigenstates of a Hermitian operator A with eigenvalues a and b, a ≠ b. The Hamiltonian operator is | ||||
| 
 | ||||
|     Ĥ = |a〉 δ 〈b| + |b〉 δ 〈a|, with δ a real number. | ||||
| 
 | ||||
| a)  | ||||
| 
 | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user