mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-04 19:15:07 +00:00
update
This commit is contained in:
parent
5200afdd36
commit
44ebb2f8de
@ -11,4 +11,4 @@ Quantum State Basis
|
||||
|+x> = C_+ |+z> + C_- |+z>
|
||||
C_+ = e^(i δ_+) / √2 , C_- = e^(i δ_-) / √2
|
||||
|
||||
<+x| S_z |+x> = <S_z> = expectation value
|
||||
<+x| S_z |+x> = <S_z> = expectation value
|
||||
|
11
solutions/chap1/prob14/draft
Normal file
11
solutions/chap1/prob14/draft
Normal file
@ -0,0 +1,11 @@
|
||||
c₊²=.36
|
||||
|
||||
|
||||
___ ___
|
||||
|Ψ〉 = √.90 |+z〉 + √.10 |-z〉
|
||||
___ ___
|
||||
|Ψ〉 = √.20 |+y〉 + √.80 |-y〉 = √.20 ( )
|
||||
___ ___ ___ ___
|
||||
〈Ψ|Ψ〉 = ( 〈+y| √.20 + 〈-y| √.80 ) ( √.90 |+z〉 + √.10 |-z〉 )
|
||||
|
||||
〈+x|Ψ〉 = d
|
@ -28,7 +28,7 @@ The Hamiltonian is measureable, and therefore is an operator. The magnetic field
|
||||
Therefore, the Hamiltonian
|
||||
|
||||
Ĥ ≐ -k B𝓏 ħ/2 ( 1 0 )
|
||||
( 0 -1 ) .
|
||||
( 0 -1 ) .
|
||||
|
||||
The commutator can now be computed. This computation is included on an attached sheet. The computation indicates that Ŝ𝓏Ĥ = ĤŜ𝓏, and therefore the commutator is zero. The Hamiltonian and the spin operator in the z direction commute. A similar computation for the x and y directions should indicate a lack of commutability.
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
37
solutions/exam1/prob1
Normal file
37
solutions/exam1/prob1
Normal file
@ -0,0 +1,37 @@
|
||||
The characteristic equation for the spin operator S𝓏 is
|
||||
|
||||
S𝓏 (S𝓏 + ħ)(S𝓏 - ħ) = 0.
|
||||
|
||||
The eigenvalues, which are the roots of this equation, are
|
||||
|
||||
λ = 0, ±ħ.
|
||||
|
||||
The S𝓏 operator is already diagonalized in its own basis, so the matrix has the immediately constructable form of
|
||||
|
||||
S𝓏 ≐
|
||||
⎛ 1 0 0 ⎞
|
||||
ħ ⎜ 0 0 0 ⎟
|
||||
⎝ 0 0 -1 ⎠
|
||||
|
||||
|
||||
To produce the operator S𝓏, one can apply the rotation matrix for a rotation about the y axis., where the angle of rotation is π/2.
|
||||
|
||||
⎛ cosθ 0 sinθ ⎞ ⎛ 0 0 1 ⎞
|
||||
R = ⎜ 0 1 0 ⎟ = ⎜ 0 1 0 ⎟
|
||||
⎝-sinθ 0 cosθ ⎠ ⎝-1 0 0 ⎠
|
||||
|
||||
S𝓍 = S𝓏 R ≐
|
||||
⎛ 1 0 0 ⎞ ⎛ 0 0 1 ⎞ ⎛ 0 0 1 ⎞
|
||||
ħ ⎜ 0 0 0 ⎟ ⎜ 0 1 0 ⎟ = ⎜ 0 1 0 ⎟
|
||||
⎝ 0 0 -1 ⎠ ⎝-1 0 0 ⎠ ⎝-1 0 0 ⎠
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
The same is true for the S𝓍 operator in its basis. To express this operator in the z basis, however, it must be diagonalized.
|
||||
|
||||
|
||||
|
||||
|
||||
|
2273
solutions/exam1/prob1.ps
Normal file
2273
solutions/exam1/prob1.ps
Normal file
File diff suppressed because it is too large
Load Diff
47
solutions/exam1/prob2
Normal file
47
solutions/exam1/prob2
Normal file
@ -0,0 +1,47 @@
|
||||
͟d͟ ͟\<͟p͟\>͟ = - 〈͟d͟ ͟V͟(͟X͟)͟〉
|
||||
dt dx
|
||||
|
||||
If a particle is subject to potential 〈V(x)〉
|
||||
|
||||
The potential is known, and in the absense of any non-conservative influences, the Hamiltonian is equal to the potential.
|
||||
|
||||
H(x) = V(x)
|
||||
|
||||
H|E〉 = E|E〉
|
||||
|
||||
Ĥ = ͟p̂͟²͟ + V(x̂)
|
||||
2m
|
||||
|
||||
x̂ ≐ x
|
||||
|
||||
p̂ ≐ -ι ħ ͟d͟
|
||||
dx
|
||||
|
||||
p̂² ≐ -ħ² ͟d͟²
|
||||
dx²
|
||||
|
||||
Ĥ = ͟p̂͟²͟ + V(x̂)
|
||||
2m
|
||||
|
||||
|
||||
∞
|
||||
〈p̂〉 = ∫ dx p(x) =
|
||||
-∞
|
||||
|
||||
d/dt ∫ dx p(x) =
|
||||
|
||||
|
||||
|
||||
|
||||
Probably start here:
|
||||
|
||||
〈V(x)〉 = ∫ dx V(x)
|
||||
|
||||
〈d/dx V(x)〉 = ∫ d/dx V(x) dx = V(x)
|
||||
|
||||
d/dt 〈p〉 = d/dt ∫ dx p(x)
|
||||
|
||||
the definition of momentum in function space is
|
||||
|
||||
d/dt p(x) = -d/dx V(x)
|
||||
|
6
solutions/exam1/prob3
Normal file
6
solutions/exam1/prob3
Normal file
@ -0,0 +1,6 @@
|
||||
|a〉 and |b〉 are eigenstates of a Hermitian operator A with eigenvalues a and b, a ≠ b. The Hamiltonian operator is
|
||||
|
||||
Ĥ = |a〉 δ 〈b| + |b〉 δ 〈a|, with δ a real number.
|
||||
|
||||
a)
|
||||
|
Loading…
Reference in New Issue
Block a user