still working on exam 1

This commit is contained in:
othocaes 2016-02-24 15:38:17 -05:00
parent 1df3870588
commit 4c4d4d0ead
6 changed files with 5847 additions and 210 deletions

View File

@ -4,36 +4,38 @@ The spin eigenstates and eigenvalues are known from experiment for a spin-1 syst
S𝓏
⎛ 1 0 0 ⎞
ħ ⎜ 0 0 0 ⎟ and
ħ ⎛ 1 0 0 ⎞
⎜ 0 0 0 ⎟ and
⎝ 0 0 -1 ⎠
S𝓍
⎛ 0 1 0 ⎞
ħ ⎜ 1 0 1 ⎟.
⎝ 0 1 0 ⎠
͟ħ͟ ⎛ 0 1 0 ⎞
√2 ⎜ 1 0 1 ⎟.
⎝ 0 1 0 ⎠
Using the matrix representations, the expressions can be evaluated. For the spin-z operator, the expression S𝓏 (S𝓏 + ħ)(S𝓏 - ħ) ≐
⎛ 1 0 0 ⎞ ⎧ ⎛ 1 0 0 ⎞ ⎛ 1 0 0 ⎞ ⎫ ⎧ ⎛ 1 0 0 ⎞ ⎛ 1 0 0 ⎞ ⎫
ħ ⎜ 0 0 0 ⎟ ⎪ ħ ⎜ 0 0 0 ⎟ + ħ ⎜ 0 1 0 ⎟ ⎪ ⎪ ħ ⎜ 0 0 0 ⎟ - ħ ⎜ 0 1 0 ⎟ ⎪,
ħ ⎛ 1 0 0 ⎞ ⎧ ħ ⎛ 1 0 0 ⎞ ħ ⎛ 1 0 0 ⎞ ⎫ ⎧ ħ ⎛ 1 0 0 ⎞ ħ ⎛ 1 0 0 ⎞ ⎫
⎜ 0 0 0 ⎟ ⎪ ⎜ 0 0 0 ⎟ + ⎜ 0 1 0 ⎟ ⎪ ⎪ ⎜ 0 0 0 ⎟ - ⎜ 0 1 0 ⎟ ⎪,
⎝ 0 0 -1 ⎠ ⎩ ⎝ 0 0 -1 ⎠ ⎝ 0 0 1 ⎠ ⎭ ⎩ ⎝ 0 0 -1 ⎠ ⎝ 0 0 1 ⎠ ⎭
which simplifies to the matrix multiplication operation, where 𝟘 represents the 0 matrix,
⎛ 1 0 0 ⎞ ⎛ 2 0 0 ⎞ ⎛ 0 0 0 ⎞
ħ ⎜ 0 0 0 ⎟ ħ ⎜ 0 1 0 ⎟ ħ ⎜ 0 -1 0 ⎟ = 𝟘.
ħ ⎛ 1 0 0 ⎞ ħ ⎛ 2 0 0 ⎞ ħ ⎛ 0 0 0 ⎞
⎜ 0 0 0 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 -1 0 ⎟ = 𝟘.
⎝ 0 0 -1 ⎠ ⎝ 0 0 0 ⎠ ⎝ 0 0 0 ⎠
The multiplication operation apparently returns 𝟘 because the third factor will nullify any terms besides center terms, and the first factor will nullify any center terms.
Similarly, S𝓍 (S𝓍 + ħ)(S𝓍 - ħ) ≐
⎛ 0 1 0 ⎞ ⎛ 1 1 0 ⎞ ⎛ -1 1 0 ⎞ ⎛ 1 1 1 ⎞ ⎛ -1 1 0 ⎞ ⎛ 0 1 0 ⎞
ħ³ ⎜ 1 0 1 ⎟ ⎜ 1 1 1 ⎟ ⎜ 1 -1 1 ⎟ = ħ³ ⎜ 1 2 1 ⎟ ⎜ 1 -1 1 ⎟ = ħ³ ⎜ 1 0 1 ⎟.
⎝ 0 1 0 ⎠ ⎝ 0 1 1 ⎠ ⎝ 0 1 -1 ⎠ ⎝ 1 1 1 ⎠ ⎝ 0 1 -1 ⎠ ⎝ 0 1 0 ⎠
͟ħ͟ ⎛ 0 1 0 ⎞ ͟ħ͟ ⎛ √2 1 0 ⎞ ͟ħ͟ ⎛ -√2 1 0 ⎞
√2 ⎜ 1 0 1 ⎟ √2 ⎜ 1 √2 1 ⎟ √2 ⎜ 1 -√2 1 ⎟.
⎝ 0 1 0 ⎠ ⎝ 0 1 √2 ⎠ ⎝ 0 1 -√2 ⎠
This expression results in the non-zero matrix
Performing the multiplication operation on the last two matrices returns the expression
⎛ 0 1 0 ⎞
ħ³ ⎜ 1 0 1 ⎟.
⎝ 0 1 0 ⎠
͟ħ͟³͟ ⎛ 0 1 0 ⎞ ⎛ -1 0 1 ⎞
2√2 ⎜ 1 0 1 ⎟ ⎜ 0 0 0 ⎟ = 𝟘.
⎝ 0 1 0 ⎠ ⎝ 1 0 -1 ⎠
It is quite obvious that this operation returns 𝟘 since there are no components that will not match with a 0 throughout the multiplication of these matrices. Therefore, the second expression is also equivalent to the zero matrix 𝟘.

View File

@ -1,5 +1,5 @@
%!PS-Adobe-3.0
%%Title: Otho Ulrich: Exam 1, #1
%%Title: Otho Ulrich: Exam 1 #1
%%Creator: paps version 0.6.7 by Dov Grobgeld
%%Pages: (atend)
%%BoundingBox: 0 0 595 841
@ -353,37 +353,6 @@ end_ol
end_ol
} def
/JAA { start_ol
2880 4388 m
2880 4695 3088 4903 x
3296 5112 3596 5112 x
3903 5112 4111 4903 x
4320 4695 4320 4388 x
4320 4088 4111 3880 x
3903 3672 3596 3672 x
3296 3672 3088 3876 x
2880 4082 2880 4388 x
3596 7488 m
2999 7488 2723 6750 x
2448 6012 2448 4388 x
2448 2772 2723 2034 x
2999 1296 3596 1296 x
4200 1296 4476 2034 x
4752 2772 4752 4388 x
4752 6012 4476 6750 x
4200 7488 3596 7488 x
720 4388 m
720 6661 1437 7794 x
2155 8928 3596 8928 x
5044 8928 5762 7797 x
6480 6666 6480 4388 x
6480 2116 5762 985 x
5044 -144 3596 -144 x
2155 -144 1437 988 x
720 2122 720 4388 x
7200 fwd_x
end_ol
} def
/KAA { start_ol
2664 6264 m
4608 6264 l
4608 4104 l
@ -395,6 +364,37 @@ end_ol
2664 0 l
2664 2160 l
7200 fwd_x
end_ol
} def
/KAA { start_ol
1224 216 m
1224 1800 l
1680 1505 2100 1364 x
2520 1224 2908 1224 x
3828 1224 4311 1847 x
4794 2470 4824 3710 x
4549 3331 4122 3141 x
3695 2952 3110 2952 x
1935 2952 1291 3703 x
648 4456 648 5836 x
648 7311 1371 8119 x
2095 8928 3420 8928 x
5026 8928 5753 7857 x
6480 6786 6480 4397 x
6480 2127 5596 991 x
4714 -144 2948 -144 x
2539 -144 2103 -51 x
1668 39 1224 216 x
3465 4392 m
4018 4392 4313 4808 x
4608 5224 4608 6015 x
4608 6799 4313 7215 x
4018 7632 3465 7632 x
2904 7632 2604 7215 x
2304 6799 2304 6015 x
2304 5230 2604 4810 x
2904 4392 3465 4392 x
7200 fwd_x
end_ol
} def
/LAA { start_ol
@ -432,33 +432,33 @@ end_ol
end_ol
} def
/MAA { start_ol
1224 216 m
1224 1800 l
1680 1505 2100 1364 x
2520 1224 2908 1224 x
3828 1224 4311 1847 x
4794 2470 4824 3710 x
4549 3331 4122 3141 x
3695 2952 3110 2952 x
1935 2952 1291 3703 x
648 4456 648 5836 x
648 7311 1371 8119 x
2095 8928 3420 8928 x
5026 8928 5753 7857 x
6480 6786 6480 4397 x
6480 2127 5596 991 x
4714 -144 2948 -144 x
2539 -144 2103 -51 x
1668 39 1224 216 x
3465 4392 m
4018 4392 4313 4808 x
4608 5224 4608 6015 x
4608 6799 4313 7215 x
4018 7632 3465 7632 x
2904 7632 2604 7215 x
2304 6799 2304 6015 x
2304 5230 2604 4810 x
2904 4392 3465 4392 x
2880 4388 m
2880 4695 3088 4903 x
3296 5112 3596 5112 x
3903 5112 4111 4903 x
4320 4695 4320 4388 x
4320 4088 4111 3880 x
3903 3672 3596 3672 x
3296 3672 3088 3876 x
2880 4082 2880 4388 x
3596 7488 m
2999 7488 2723 6750 x
2448 6012 2448 4388 x
2448 2772 2723 2034 x
2999 1296 3596 1296 x
4200 1296 4476 2034 x
4752 2772 4752 4388 x
4752 6012 4476 6750 x
4200 7488 3596 7488 x
720 4388 m
720 6661 1437 7794 x
2155 8928 3596 8928 x
5044 8928 5762 7797 x
6480 6666 6480 4388 x
6480 2116 5762 985 x
5044 -144 3596 -144 x
2155 -144 1437 988 x
720 2122 720 4388 x
7200 fwd_x
end_ol
} def
@ -782,17 +782,6 @@ end_ol
end_ol
} def
/bAA { start_ol
2736 2160 m
4680 2160 l
4680 578 l
3456 -1656 l
2160 -1656 l
2736 578 l
2736 2160 l
7200 fwd_x
end_ol
} def
/cAA { start_ol
4136 8640 m
3579 6408 l
4771 6408 l
@ -830,7 +819,7 @@ end_ol
7200 fwd_x
end_ol
} def
/dAA { start_ol
/cAA { start_ol
2664 7344 m
2664 4752 l
3369 4752 l
@ -852,7 +841,7 @@ end_ol
7200 fwd_x
end_ol
} def
/eAA { start_ol
/dAA { start_ol
4680 3351 m
4680 4214 4351 4735 x
4023 5256 3486 5256 x
@ -887,7 +876,7 @@ end_ol
7200 fwd_x
end_ol
} def
/fAA { start_ol
/eAA { start_ol
3218 5205 m
3218 410 l
4596 410 l
@ -908,7 +897,7 @@ end_ol
5976 fwd_x
end_ol
} def
/gAA { start_ol
/fAA { start_ol
5171 5544 m
5151 5544 4924 5562 x
4698 5580 4377 5598 x
@ -942,7 +931,7 @@ end_ol
5976 fwd_x
end_ol
} def
/iAA { start_ol
/hAA { start_ol
4608 1542 m
4608 1960 4344 2219 x
4082 2479 3693 2563 x
@ -985,7 +974,7 @@ end_ol
5976 fwd_x
end_ol
} def
/jAA { start_ol
/iAA { start_ol
2724 2941 m
2724 2710 2459 2378 x
2194 2046 2194 2036 x
@ -1037,7 +1026,7 @@ end_ol
4320 fwd_x
end_ol
} def
/lAA { start_ol
/kAA { start_ol
1249 3812 m
1249 4023 1926 4171 x
2603 4320 2981 4320 x
@ -1074,7 +1063,7 @@ end_ol
5976 fwd_x
end_ol
} def
/mAA { start_ol
/lAA { start_ol
3207 3909 m
3029 3909 2866 3873 x
2703 3838 2560 3763 x
@ -1115,7 +1104,7 @@ end_ol
5976 fwd_x
end_ol
} def
/nAA { start_ol
/mAA { start_ol
5018 6026 m
5018 410 l
5546 410 l
@ -1146,7 +1135,7 @@ end_ol
5976 fwd_x
end_ol
} def
/oAA { start_ol
/nAA { start_ol
4097 3450 m
4317 3450 4456 3313 x
4594 3175 4594 2953 x
@ -1194,7 +1183,7 @@ end_ol
4392 fwd_x
end_ol
} def
/pAA { start_ol
/oAA { start_ol
5221 3444 m
5170 3444 4910 3658 x
4650 3873 4399 3873 x
@ -1223,7 +1212,7 @@ end_ol
5976 fwd_x
end_ol
} def
/qAA { start_ol
/pAA { start_ol
5204 2016 m
1040 2016 l
1150 1221 1701 743 x
@ -1250,7 +1239,7 @@ end_ol
5976 fwd_x
end_ol
} def
/rAA { start_ol
/qAA { start_ol
4536 1179 m
4536 1545 4189 1743 x
3843 1942 3362 2017 x
@ -1292,7 +1281,7 @@ end_ol
5976 fwd_x
end_ol
} def
/sAA { start_ol
/rAA { start_ol
1418 4176 m
1418 3351 l
1825 3875 2242 4097 x
@ -1327,7 +1316,7 @@ end_ol
5976 fwd_x
end_ol
} def
/tAA { start_ol
/sAA { start_ol
3218 4176 m
3218 410 l
4811 410 l
@ -1350,7 +1339,7 @@ end_ol
5976 fwd_x
end_ol
} def
/uAA { start_ol
/tAA { start_ol
5014 2592 m
991 2592 l
721 2592 721 2802 x
@ -1361,7 +1350,7 @@ end_ol
5976 fwd_x
end_ol
} def
/vAA { start_ol
/uAA { start_ol
3218 6142 m
3218 410 l
4605 410 l
@ -1382,7 +1371,7 @@ end_ol
5976 fwd_x
end_ol
} def
/wAA { start_ol
/vAA { start_ol
3013 4320 m
3979 4320 4642 3665 x
5306 3011 5306 2063 x
@ -1404,7 +1393,7 @@ end_ol
5976 fwd_x
end_ol
} def
/xAA { start_ol
/wAA { start_ol
1850 4176 m
4030 4176 l
4298 4176 4298 3975 x
@ -1434,7 +1423,7 @@ end_ol
5976 fwd_x
end_ol
} def
/yAA { start_ol
/xAA { start_ol
4392 2886 m
4392 3337 4046 3623 x
3702 3909 3145 3909 x
@ -1471,7 +1460,7 @@ end_ol
5976 fwd_x
end_ol
} def
/zAA { start_ol
/yAA { start_ol
4658 4176 m
4658 3816 l
1694 410 l
@ -1492,7 +1481,7 @@ end_ol
5976 fwd_x
end_ol
} def
/ABA { start_ol
/zAA { start_ol
1418 6026 m
1418 3288 l
2161 4320 3250 4320 x
@ -1523,7 +1512,7 @@ end_ol
5976 fwd_x
end_ol
} def
/BBA { start_ol
/ABA { start_ol
2089 1462 m
3420 1462 l
1968 -1190 l
@ -1535,7 +1524,7 @@ end_ol
5976 fwd_x
end_ol
} def
/CBA { start_ol
/BBA { start_ol
4413 0 m
3913 0 l
3006 2594 l
@ -1565,7 +1554,7 @@ end_ol
5976 fwd_x
end_ol
} def
/DBA { start_ol
/CBA { start_ol
4392 0 m
4392 661 l
3547 -144 2560 -144 x
@ -1593,7 +1582,7 @@ end_ol
5976 fwd_x
end_ol
} def
/EBA { start_ol
/DBA { start_ol
3218 6026 m
3218 410 l
4811 410 l
@ -1611,7 +1600,7 @@ end_ol
5976 fwd_x
end_ol
} def
/FBA { start_ol
/EBA { start_ol
2952 2432 m
2952 3172 3252 4057 x
3553 4944 3889 5494 x
@ -1632,7 +1621,7 @@ end_ol
5976 fwd_x
end_ol
} def
/GBA { start_ol
/FBA { start_ol
3218 2592 m
3218 623 l
3218 360 3018 360 x
@ -1653,7 +1642,7 @@ end_ol
5976 fwd_x
end_ol
} def
/HBA { start_ol
/GBA { start_ol
4392 2886 m
4392 3337 4046 3623 x
3702 3909 3145 3909 x
@ -1700,7 +1689,7 @@ end_ol
5976 fwd_x
end_ol
} def
/IBA { start_ol
/HBA { start_ol
1512 -1040 m
1512 -930 1668 -634 x
1824 -339 2016 14 x
@ -1721,7 +1710,7 @@ end_ol
5976 fwd_x
end_ol
} def
/KBA { start_ol
/JBA { start_ol
3362 0 m
2661 0 l
981 3765 l
@ -1746,7 +1735,7 @@ end_ol
5976 fwd_x
end_ol
} def
/LBA { start_ol
/KBA { start_ol
1368 5278 m
1465 5308 1769 5454 x
2074 5600 2383 5680 x
@ -1782,7 +1771,7 @@ end_ol
5976 fwd_x
end_ol
} def
/MBA { start_ol
/LBA { start_ol
3218 410 m
4249 410 l
4514 410 4514 210 x
@ -1808,7 +1797,7 @@ end_ol
5976 fwd_x
end_ol
} def
/NBA { start_ol
/MBA { start_ol
4392 3341 m
4392 4176 l
5328 4176 l
@ -1843,7 +1832,7 @@ end_ol
5976 fwd_x
end_ol
} def
/OBA { start_ol
/NBA { start_ol
1850 1802 m
1850 0 l
914 0 l
@ -1878,7 +1867,7 @@ end_ol
5976 fwd_x
end_ol
} def
/PBA { start_ol
/OBA { start_ol
1130 4176 m
1130 3655 l
1377 4017 1613 4168 x
@ -1921,7 +1910,7 @@ end_ol
5976 fwd_x
end_ol
} def
/QBA { start_ol
/PBA { start_ol
3292 2192 m
5134 410 l
5224 410 l
@ -1962,7 +1951,7 @@ end_ol
5976 fwd_x
end_ol
} def
/RBA { start_ol
/QBA { start_ol
2822 -6 m
940 3765 l
780 3765 l
@ -1993,7 +1982,7 @@ end_ol
5976 fwd_x
end_ol
} def
/SBA { start_ol
/RBA { start_ol
2922 1166 m
3022 1166 l
3313 1166 3513 981 x
@ -2019,7 +2008,7 @@ end_ol
5976 fwd_x
end_ol
} def
/TBA { start_ol
/SBA { start_ol
3020 5105 m
3231 5105 3376 4954 x
3521 4804 3521 4594 x
@ -2046,7 +2035,7 @@ end_ol
5976 fwd_x
end_ol
} def
/UBA { start_ol
/TBA { start_ol
5133 6865 m
3794 5034 3794 2671 x
3794 -2001 l
@ -2060,7 +2049,7 @@ end_ol
5976 fwd_x
end_ol
} def
/VBA { start_ol
/UBA { start_ol
4874 3506 m
4874 2509 l
4874 1332 4356 594 x
@ -2086,7 +2075,7 @@ end_ol
5976 fwd_x
end_ol
} def
/WBA { start_ol
/VBA { start_ol
842 6836 m
813 6877 813 6957 x
813 7036 877 7096 x
@ -2102,7 +2091,7 @@ end_ol
5976 fwd_x
end_ol
} def
/XBA { start_ol
/WBA { start_ol
3384 8006 m
3794 8006 l
3794 -2001 l
@ -2111,7 +2100,7 @@ end_ol
5976 fwd_x
end_ol
} def
/YBA { start_ol
/XBA { start_ol
2642 -2001 m
2232 -2001 l
2232 8006 l
@ -2120,7 +2109,7 @@ end_ol
5976 fwd_x
end_ol
} def
/ZBA { start_ol
/YBA { start_ol
5133 -860 m
5162 -901 5162 -981 x
5162 -1060 5097 -1120 x
@ -2136,7 +2125,7 @@ end_ol
5976 fwd_x
end_ol
} def
/aBA { start_ol
/ZBA { start_ol
842 -889 m
2181 941 2181 3304 x
2181 7977 l
@ -2148,9 +2137,65 @@ end_ol
813 -1090 813 -1009 x
813 -929 842 -889 x
5976 fwd_x
end_ol
} def
/aBA { start_ol
2981 -651 m
2981 -1152 l
-3024 -1152 l
-3024 -651 l
2981 -651 l
0 fwd_x
end_ol
} def
/bBA { start_ol
1271 3146 m
1821 995 l
3822 6984 l
5784 6984 l
6005 6984 6005 6804 x
6005 6624 5784 6624 x
4113 6624 l
1791 0 l
950 2736 l
320 2736 l
100 2736 100 2946 x
100 3146 320 3146 x
1271 3146 l
5976 fwd_x
end_ol
} def
/cBA { start_ol
1008 4692 m
1008 5142 1562 5656 x
2117 6170 2900 6170 x
3639 6170 4200 5650 x
4763 5132 4763 4452 x
4763 4003 4494 3609 x
4225 3215 3303 2367 x
1202 441 l
1202 410 l
4392 410 l
4392 770 l
4392 1040 4602 1040 x
4802 1040 4802 770 x
4802 0 l
864 0 l
864 600 l
3222 2815 l
3921 3504 4136 3813 x
4351 4123 4351 4462 x
4351 4981 3915 5370 x
3478 5760 2900 5760 x
2382 5760 1960 5460 x
1540 5161 1418 4711 x
1356 4512 1202 4512 x
1131 4512 1069 4567 x
1008 4622 1008 4692 x
5976 fwd_x
end_ol
} def
/dBA { start_ol
2922 1166 m
3022 1166 l
3313 1166 3513 981 x
@ -2165,7 +2210,7 @@ end_ol
5976 fwd_x
end_ol
} def
/cBA { start_ol
/eBA { start_ol
5018 5205 m
5018 1854 l
5018 1009 4439 432 x
@ -2196,7 +2241,7 @@ end_ol
5976 fwd_x
end_ol
} def
/dBA { start_ol
/fBA { start_ol
5330 873 m
5330 785 5160 623 x
4990 462 4718 285 x
@ -2226,7 +2271,7 @@ end_ol
5976 fwd_x
end_ol
} def
/eBA { start_ol
/gBA { start_ol
1634 2736 m
1634 410 l
3011 410 l
@ -2259,7 +2304,7 @@ end_ol
5976 fwd_x
end_ol
} def
/fBA { start_ol
/hBA { start_ol
4749 6624 m
4073 6624 3646 6294 x
3218 5965 3218 5377 x
@ -2273,7 +2318,7 @@ end_ol
5976 fwd_x
end_ol
} def
/gBA { start_ol
/iBA { start_ol
1226 6573 m
957 6573 957 6783 x
957 6984 1227 6984 x
@ -2287,7 +2332,7 @@ end_ol
5976 fwd_x
end_ol
} def
/hBA { start_ol
/jBA { start_ol
3218 8006 m
3218 -2001 l
2808 -2001 l
@ -2296,7 +2341,7 @@ end_ol
5976 fwd_x
end_ol
} def
/iBA { start_ol
/kBA { start_ol
4749 -597 m
5018 -597 5018 -807 x
5018 -1008 4748 -1008 x
@ -2310,7 +2355,7 @@ end_ol
5976 fwd_x
end_ol
} def
/jBA { start_ol
/lBA { start_ol
1226 -648 m
1902 -648 2329 -318 x
2757 10 2757 598 x
@ -2324,7 +2369,7 @@ end_ol
5976 fwd_x
end_ol
} def
/kBA { start_ol
/mBA { start_ol
1309 6457 m
1955 7428 3181 7428 x
4407 7428 5058 6457 x
@ -2352,37 +2397,7 @@ end_ol
6336 fwd_x
end_ol
} def
/mBA { start_ol
1008 4692 m
1008 5142 1562 5656 x
2117 6170 2900 6170 x
3639 6170 4200 5650 x
4763 5132 4763 4452 x
4763 4003 4494 3609 x
4225 3215 3303 2367 x
1202 441 l
1202 410 l
4392 410 l
4392 770 l
4392 1040 4602 1040 x
4802 1040 4802 770 x
4802 0 l
864 0 l
864 600 l
3222 2815 l
3921 3504 4136 3813 x
4351 4123 4351 4462 x
4351 4981 3915 5370 x
3478 5760 2900 5760 x
2382 5760 1960 5460 x
1540 5161 1418 4711 x
1356 4512 1202 4512 x
1131 4512 1069 4567 x
1008 4622 1008 4692 x
5976 fwd_x
end_ol
} def
/nBA { start_ol
/oBA { start_ol
5224 3312 m
780 3312 l
510 3312 510 3522 x
@ -2400,7 +2415,38 @@ end_ol
5976 fwd_x
end_ol
} def
/oBA { start_ol
/pBA { start_ol
1634 2325 m
1634 410 l
3011 410 l
3290 410 3290 210 x
3290 0 3012 0 x
699 0 l
432 0 432 210 x
432 410 696 410 x
1224 410 l
1224 5205 l
696 5205 l
432 5205 432 5415 x
432 5616 703 5616 x
3117 5616 l
3921 5616 4469 5143 x
5018 4672 5018 3980 x
5018 3289 4420 2806 x
3822 2325 2962 2325 x
1634 2325 l
1634 2736 m
2994 2736 l
3654 2736 4131 3101 x
4608 3467 4608 3980 x
4608 4484 4176 4844 x
3745 5205 3146 5205 x
1634 5205 l
1634 2736 l
5976 fwd_x
end_ol
} def
/qBA { start_ol
3013 6984 m
2810 6984 2655 6925 x
2499 6867 2436 6804 x
@ -2434,6 +2480,40 @@ end_ol
3672 6666 3483 6825 x
3294 6984 3013 6984 x
5976 fwd_x
end_ol
} def
/rBA { start_ol
4608 3351 m
4608 4176 l
5544 4176 l
5810 4176 5810 3978 x
5810 3765 5546 3765 x
5018 3765 l
5018 -1461 l
5546 -1461 l
5810 -1461 5810 -1661 x
5810 -1872 5545 -1872 x
3649 -1872 l
3384 -1872 3384 -1661 x
3384 -1461 3648 -1461 x
4608 -1461 l
4608 1038 l
3942 72 2818 72 x
1902 72 1274 686 x
648 1300 648 2199 x
648 3098 1274 3709 x
1902 4320 2828 4320 x
3931 4320 4608 3351 x
2828 3909 m
2082 3909 1570 3413 x
1058 2917 1058 2199 x
1058 1482 1570 982 x
2082 482 2828 482 x
3564 482 4086 977 x
4608 1472 4608 2179 x
4608 2918 4096 3413 x
3584 3909 2828 3909 x
5976 fwd_x
end_ol
} def
end end
@ -2441,50 +2521,60 @@ end end
%%EndPrologue
%%Page: 1 1
paps_bop
(+ 36000 807000AAABAACAA+ 64800 807000EAABAAFAA+ 93600 807000GAAHAA+ 115200 807000IAAJAAKAAGAALAAKAAHAAMAA+ 180000 807000GAAJAAIAANAA)paps_exec
(>2950OAAPAAQAARAA+ 250700 807000SAATAAUAAVAAWAAQAAKAA+ 308300 807000XAAYAAZAAaAA+ 344300 807000IAAbAA+ 365900 807000cAAIAA)paps_exec
(* 515800dAAZAAeAABAA+ 551800 807000IAA)paps_exec
(+ 36000 807000AAABAACAA+ 64800 807000EAABAAFAA+ 93600 807000GAAHAA+ 115200 807000IAAHAAJAAIAAKAAJAALAAMAA+ 180000 807000GAAMAAIAANAA)paps_exec
(>4750OAAPAAQAARAA+ 254300 807000SAATAAUAAVAAWAAQAAJAA+ 311900 807000XAAYAAZAAaAA+ 347900 807000IAA+ 362300 807000bAAIAA)paps_exec
(* 515800cAAZAAdAABAA+ 551800 807000IAA)paps_exec
36 797.000000 moveto 559 797.000000 lineto 0 setlinewidth stroke
(+ 36000 779984fAAgAA+ 53928 779984iAAjAA+ 66744 779984lAAmAAnAA+ 90648 779984iAAoAA+ 103536 779984lAApAAqAA+ 127440 779984rAAsAAtAAmAAuAAvAA+ 169272 779984wAAsAAqAApAAlAAxAAwAApAArAA+ 229032 779984tAAmAA+ 246960 779984xAAyAAqAA+ 270864 779984zAA+ 282816 779984ABAlAArAAtAArAABBA+ 324648 779984CBAyAAlAAxAA+ 354528 779984lAApAAqAA+ 378432 779984xAAyAAqAA+ 402336 779984pAAqAArAADBAEBAxAArAA+ 450144 779984tAAgAA+ 468072 779984iAAjAA+ 480888 779984FBAiAAjAA+ 499680 779984GBA+ 511632 779984HBAIBAFBAiAAjAA+ 542376 779984uAA)paps_exec
(+ 36000 768968HBAIBA+ 53928 768968lAAmAAnAA+ 77832 768968iAAoAA+ 90720 768968FBAiAAoAA+ 109584 768968GBA+ 121536 768968HBAIBAFBAiAAoAA+ 152352 768968uAA+ 164304 768968HBAIBA+ 182232 768968lAApAAqAA+ 206136 768968qAAKBAlAAEBADBAlAAxAAqAAnAALBA)paps_exec
(+ 36000 779984eAAfAA+ 53928 779984hAAiAA+ 66744 779984kAAlAAmAA+ 90648 779984hAAnAA+ 103536 779984kAAoAApAA+ 127440 779984qAArAAsAAlAAtAAuAA+ 169272 779984vAArAApAAoAAkAAwAAvAAoAAqAA+ 229032 779984sAAlAA+ 246960 779984wAAxAApAA+ 270864 779984yAA+ 282816 779984zAAkAAqAAsAAqAAABA+ 324648 779984BBAxAAkAAwAA+ 354528 779984kAAoAApAA+ 378432 779984wAAxAApAA+ 402336 779984oAApAAqAACBADBAwAAqAA+ 450144 779984sAAfAA+ 468072 779984hAAiAA+ 480888 779984EBAhAAiAA+ 499680 779984FBA+ 511632 779984GBAHBAEBAhAAiAA+ 542376 779984tAA)paps_exec
(+ 36000 768968GBAHBA+ 53928 768968kAAlAAmAA+ 77832 768968hAAnAA+ 90720 768968EBAhAAnAA+ 109584 768968FBA+ 121536 768968GBAHBAEBAhAAnAA+ 152352 768968tAA+ 164304 768968GBAHBA+ 182232 768968kAAoAApAA+ 206136 768968pAAJBAkAADBACBAkAAwAApAAmAAKBA)paps_exec
()paps_exec
(+ 36000 748808MBAyAAqAA+ 59904 748808rAAsAAtAAmAA+ 89784 748808qAAtAANBAqAAmAArAAxAAlAAxAAqAArAA+ 161496 748808lAAmAAnAA+ 185400 748808qAAtAANBAqAAmAAKBAlAAEBADBAqAArAA+ 257112 748808lAApAAqAA+ 281016 748808OBAmAAwAACBAmAA+ 316872 748808gAApAAwAAPBA+ 346752 748808qAAQBAsAAqAApAAtAAPBAqAAmAAxAA+ 412488 748808gAAwAApAA+ 436392 748808lAA+ 448344 748808rAAsAAtAAmAAuAAvAA+ 490176 748808rAARBArAAxAAqAAPBABBA)paps_exec
(+ 36000 737792lAAmAAnAA+ 59904 737792xAAyAAqAA+ 83808 737792rAAsAAtAAmAAuAAzAA+ 125640 737792lAAmAAnAA+ 149544 737792rAAsAAtAAmAAuAAQBA+ 191376 737792wAAsAAqAApAAlAAxAAwAApAArAA+ 251136 737792tAAmAA+ 269064 737792xAAyAAqAA+ 292968 737792zAA+ 304920 737792ABAlAArAAtAArAABBA+ 346752 737792iAAjAA+ 359568 737792lAAmAAnAA+ 383472 737792iAAoAABBA+ 405792 737792yAAlAAKBAqAA+ 435672 737792xAAyAAqAA+ 459576 737792gAAwAAEBAEBAwAACBAtAAmAANBA)paps_exec
(+ 36000 727712PBAlAAxAApAAtAAQBA+ 77832 727712pAAqAAsAApAAqAArAAqAAmAAxAAlAAxAAtAAwAAmAArAASBA)paps_exec
(+ 36000 748808LBAxAApAA+ 59904 748808qAArAAsAAlAA+ 89784 748808pAAsAAMBApAAlAAqAAwAAkAAwAApAAqAA+ 161496 748808kAAlAAmAA+ 185400 748808pAAsAAMBApAAlAAJBAkAADBACBApAAqAA+ 257112 748808kAAoAApAA+ 281016 748808NBAlAAvAABBAlAA+ 316872 748808fAAoAAvAAOBA+ 346752 748808pAAPBArAApAAoAAsAAOBApAAlAAwAA+ 412488 748808fAAvAAoAA+ 436392 748808kAA+ 448344 748808qAArAAsAAlAAtAAuAA+ 490176 748808qAAQBAqAAwAApAAOBAABA)paps_exec
(+ 36000 737792kAAlAAmAA+ 59904 737792wAAxAApAA+ 83808 737792qAArAAsAAlAAtAAyAA+ 125640 737792kAAlAAmAA+ 149544 737792qAArAAsAAlAAtAAPBA+ 191376 737792vAArAApAAoAAkAAwAAvAAoAAqAA+ 251136 737792sAAlAA+ 269064 737792wAAxAApAA+ 292968 737792yAA+ 304920 737792zAAkAAqAAsAAqAAABA+ 346752 737792hAAiAA+ 359568 737792kAAlAAmAA+ 383472 737792hAAnAAABA+ 405792 737792xAAkAAJBApAA+ 435672 737792wAAxAApAA+ 459576 737792fAAvAADBADBAvAABBAsAAlAAMBA)paps_exec
(+ 36000 727712OBAkAAwAAoAAsAAPBA+ 77832 727712oAApAArAAoAApAAqAApAAlAAwAAkAAwAAsAAvAAlAAqAARBA)paps_exec
()paps_exec
()paps_exec
(+ 36000 696536iAAjAA+ 48816 696536TBA)paps_exec
(+ 83808 686456UBA+ 95760 686456vAA+ 107712 686456VBA+ 125640 686456VBA+ 137592 686456WBA)paps_exec
(+ 71856 676376HBA+ 83808 676376XBA+ 95760 676376VBA+ 107712 676376VBA+ 125640 676376VBA+ 137592 676376YBA+ 149544 676376lAAmAAnAA)paps_exec
(+ 83808 666296ZBA+ 95760 666296VBA+ 107712 666296VBA+ 119664 666296uAAvAA+ 137592 666296aBA)paps_exec
(+ 36000 655280iAAoAA+ 48888 655280TBA)paps_exec
(+ 83808 645200UBA+ 95760 645200VBA+ 107712 645200vAA+ 119664 645200VBA+ 131616 645200WBA)paps_exec
(+ 71856 635120HBA+ 83808 635120XBA+ 95760 635120vAA+ 107712 635120VBA+ 119664 635120vAA+ 131616 635120YBAbBA)paps_exec
(+ 83808 625040ZBA+ 95760 625040VBA+ 107712 625040vAA+ 119664 625040VBA+ 131616 625040aBA)paps_exec
(+ 36000 696536hAAiAA+ 48816 696536SBA)paps_exec
(+ 71856 686456GBA+ 83808 686456TBA+ 95760 686456uAA+ 107712 686456UBA+ 125640 686456UBA+ 137592 686456VBA)paps_exec
(+ 83808 676376WBA+ 95760 676376UBA+ 107712 676376UBA+ 125640 676376UBA+ 137592 676376XBA+ 149544 676376kAAlAAmAA)paps_exec
(+ 83808 666296YBA+ 95760 666296UBA+ 107712 666296UBA+ 119664 666296tAAuAA+ 137592 666296ZBA)paps_exec
(+ 36000 655280hAAnAA+ 48888 655280SBA)paps_exec
(+ 71856 645200aBAGBAaBA+ 89784 645200TBA+ 101736 645200UBA+ 113688 645200uAA+ 125640 645200UBA+ 137592 645200VBA)paps_exec
(+ 71856 635120bBAcBA+ 89784 635120WBA+ 101736 635120uAA+ 113688 635120UBA+ 125640 635120uAA+ 137592 635120XBAdBA)paps_exec
(+ 89784 625040YBA+ 101736 625040UBA+ 113688 625040uAA+ 125640 625040UBA+ 137592 625040ZBA)paps_exec
()paps_exec
(+ 36000 604880cBArAAtAAmAANBA+ 71856 604880xAAyAAqAA+ 95760 604880PBAlAAxAApAAtAAQBA+ 137592 604880pAAqAAsAApAAqAArAAqAAmAAxAAlAAxAAtAAwAAmAArAABBA+ 239184 604880xAAyAAqAA+ 263088 604880qAAQBAsAApAAqAArAArAAtAAwAAmAArAA+ 334800 604880dBAlAAmAA+ 358704 604880ABAqAA+ 376632 604880qAAKBAlAAEBADBAlAAxAAqAAnAAbBA+ 442368 604880eBAwAApAA+ 466272 604880xAAyAAqAA+ 490176 604880rAAsAAtAAmAAuAAzAA)paps_exec
(+ 36000 593864wAAsAAqAApAAlAAxAAwAApAABBA+ 95760 593864xAAyAAqAA+ 119664 593864qAAQBAsAApAAqAArAArAAtAAwAAmAA+ 185400 593864iAAjAA+ 198216 593864FBAiAAjAA+ 217008 593864GBA+ 228960 593864HBAIBAFBAiAAjAA+ 259704 593864uAA+ 271656 593864HBAIBA+ 289584 593864TBA)paps_exec
(+ 36000 604880eBAqAAsAAlAAMBA+ 71856 604880wAAxAApAA+ 95760 604880OBAkAAwAAoAAsAAPBA+ 137592 604880oAApAArAAoAApAAqAApAAlAAwAAkAAwAAsAAvAAlAAqAAABA+ 239184 604880wAAxAApAA+ 263088 604880pAAPBArAAoAApAAqAAqAAsAAvAAlAAqAA+ 334800 604880fBAkAAlAA+ 358704 604880zAApAA+ 376632 604880pAAJBAkAADBACBAkAAwAApAAmAAdBA+ 442368 604880gBAvAAoAA+ 466272 604880wAAxAApAA+ 490176 604880qAArAAsAAlAAtAAyAA)paps_exec
(+ 36000 593864vAArAApAAoAAkAAwAAvAAoAAABA+ 95760 593864wAAxAApAA+ 119664 593864pAAPBArAAoAApAAqAAqAAsAAvAAlAA+ 185400 593864hAAiAA+ 198216 593864EBAhAAiAA+ 217008 593864FBA+ 228960 593864GBAHBAEBAhAAiAA+ 259704 593864tAA+ 271656 593864GBAHBA+ 289584 593864SBA)paps_exec
()paps_exec
(+ 71856 573704UBA+ 83808 573704vAA+ 95760 573704VBA+ 113688 573704VBA+ 125640 573704WBA+ 137592 573704fBA+ 161496 573704UBA+ 173448 573704vAA+ 185400 573704VBA+ 203328 573704VBA+ 215280 573704WBA+ 263088 573704UBA+ 275040 573704vAA+ 286992 573704VBA+ 298944 573704VBA+ 310896 573704WBA+ 322848 573704gBA+ 334800 573704fBA+ 358704 573704UBA+ 370656 573704vAA+ 382608 573704VBA+ 400536 573704VBA+ 412488 573704WBA+ 454320 573704UBA+ 466272 573704vAA+ 478224 573704VBA+ 490176 573704VBA+ 502128 573704WBA+ 514080 573704gBA)paps_exec
(+ 59904 563624HBA+ 71856 563624XBA+ 83808 563624VBA+ 95760 563624VBA+ 113688 563624VBA+ 125640 563624YBA+ 137592 563624hBA+ 149544 563624HBA+ 161496 563624XBA+ 173448 563624VBA+ 185400 563624VBA+ 203328 563624VBA+ 215280 563624YBA+ 233208 563624GBA+ 251136 563624HBA+ 263088 563624XBA+ 275040 563624VBA+ 286992 563624vAA+ 298944 563624VBA+ 310896 563624YBA+ 322848 563624hBA+ 334800 563624hBA+ 346752 563624HBA+ 358704 563624XBA+ 370656 563624VBA+ 382608 563624VBA+ 400536 563624VBA+ 412488 563624YBA+ 430416 563624uAA+ 442368 563624HBA+ 454320 563624XBA+ 466272 563624VBA+ 478224 563624vAA+ 490176 563624VBA+ 502128 563624YBA+ 514080 563624hBABBA)paps_exec
(+ 71856 553544ZBA+ 83808 553544VBA+ 95760 553544VBA+ 107712 553544uAAvAA+ 125640 553544aBA+ 137592 553544iBA+ 161496 553544ZBA+ 173448 553544VBA+ 185400 553544VBA+ 197352 553544uAAvAA+ 215280 553544aBA+ 263088 553544ZBA+ 275040 553544VBA+ 286992 553544VBA+ 298944 553544vAA+ 310896 553544aBA+ 322848 553544jBA+ 334800 553544iBA+ 358704 553544ZBA+ 370656 553544VBA+ 382608 553544VBA+ 394560 553544uAAvAA+ 412488 553544aBA+ 454320 553544ZBA+ 466272 553544VBA+ 478224 553544VBA+ 490176 553544vAA+ 502128 553544aBA+ 514080 553544jBA)paps_exec
(+ 59904 573704GBA+ 71856 573704TBA+ 83808 573704uAA+ 95760 573704UBA+ 113688 573704UBA+ 125640 573704VBA+ 137592 573704hBA+ 149544 573704GBA+ 161496 573704TBA+ 173448 573704uAA+ 185400 573704UBA+ 203328 573704UBA+ 215280 573704VBA+ 251136 573704GBA+ 263088 573704TBA+ 275040 573704uAA+ 286992 573704UBA+ 298944 573704UBA+ 310896 573704VBA+ 322848 573704iBA+ 334800 573704hBA+ 346752 573704GBA+ 358704 573704TBA+ 370656 573704uAA+ 382608 573704UBA+ 400536 573704UBA+ 412488 573704VBA+ 442368 573704GBA+ 454320 573704TBA+ 466272 573704uAA+ 478224 573704UBA+ 490176 573704UBA+ 502128 573704VBA+ 514080 573704iBA)paps_exec
(+ 71856 563624WBA+ 83808 563624UBA+ 95760 563624UBA+ 113688 563624UBA+ 125640 563624XBA+ 137592 563624jBA+ 161496 563624WBA+ 173448 563624UBA+ 185400 563624UBA+ 203328 563624UBA+ 215280 563624XBA+ 233208 563624FBA+ 263088 563624WBA+ 275040 563624UBA+ 286992 563624uAA+ 298944 563624UBA+ 310896 563624XBA+ 322848 563624jBA+ 334800 563624jBA+ 358704 563624WBA+ 370656 563624UBA+ 382608 563624UBA+ 400536 563624UBA+ 412488 563624XBA+ 430416 563624tAA+ 454320 563624WBA+ 466272 563624UBA+ 478224 563624uAA+ 490176 563624UBA+ 502128 563624XBA+ 514080 563624jBAABA)paps_exec
(+ 71856 553544YBA+ 83808 553544UBA+ 95760 553544UBA+ 107712 553544tAAuAA+ 125640 553544ZBA+ 137592 553544kBA+ 161496 553544YBA+ 173448 553544UBA+ 185400 553544UBA+ 197352 553544tAAuAA+ 215280 553544ZBA+ 263088 553544YBA+ 275040 553544UBA+ 286992 553544UBA+ 298944 553544uAA+ 310896 553544ZBA+ 322848 553544lBA+ 334800 553544kBA+ 358704 553544YBA+ 370656 553544UBA+ 382608 553544UBA+ 394560 553544tAAuAA+ 412488 553544ZBA+ 454320 553544YBA+ 466272 553544UBA+ 478224 553544UBA+ 490176 553544uAA+ 502128 553544ZBA+ 514080 553544lBA)paps_exec
()paps_exec
(+ 36000 531800CBAyAAtAAdBAyAA+ 71856 531800rAAtAAPBAsAAEBAtAAgAAtAAqAArAA+ 137592 531800xAAwAA+ 155520 531800xAAyAAqAA+ 179424 531800PBAlAAxAApAAtAAQBA+ 221256 531800PBADBAEBAxAAtAAsAAEBAtAAdBAlAAxAAtAAwAAmAA+ 310896 531800wAAsAAqAApAAlAAxAAtAAwAAmAABBA+ 376632 531800CBAyAAqAApAAqAA+ 412488 531800kBA+ 421992 531800pAAqAAsAApAAqAArAAqAAmAAxAArAA+ 487728 531800xAAyAAqAA+ 511632 531800VBA)paps_exec
(+ 36000 521720PBAlAAxAApAAtAAQBABBA)paps_exec
(+ 36000 531800BBAxAAsAAfBAxAA+ 71856 531800qAAsAAOBArAADBAsAAfAAsAApAAqAA+ 137592 531800wAAvAA+ 155520 531800wAAxAApAA+ 179424 531800OBAkAAwAAoAAsAAPBA+ 221256 531800OBACBADBAwAAsAArAADBAsAAfBAkAAwAAsAAvAAlAA+ 310896 531800vAArAApAAoAAkAAwAAsAAvAAlAAABA+ 376632 531800BBAxAApAAoAApAA+ 412488 531800mBA+ 421992 531800oAApAArAAoAApAAqAApAAlAAwAAqAA+ 487728 531800wAAxAApAA+ 511632 531800UBA)paps_exec
(+ 36000 521720OBAkAAwAAoAAsAAPBAABA)paps_exec
()paps_exec
(+ 71856 501560UBA+ 83808 501560vAA+ 95760 501560VBA+ 113688 501560VBA+ 125640 501560WBA+ 149544 501560UBA+ 161496 501560mBA+ 173448 501560VBA+ 185400 501560VBA+ 197352 501560WBA+ 221256 501560UBA+ 233208 501560VBA+ 251136 501560VBA+ 263088 501560VBA+ 275040 501560WBA)paps_exec
(+ 59904 489896HBA+ 71856 489896XBA+ 83808 489896VBA+ 95760 489896VBA+ 113688 489896VBA+ 125640 489896YBA+ 137592 489896HBA+ 149544 489896XBA+ 161496 489896VBA+ 173448 489896vAA+ 185400 489896VBA+ 197352 489896YBA+ 209304 489896HBA+ 221256 489896XBA+ 233208 489896VBA+ 245160 489896uAAvAA+ 263088 489896VBA+ 275040 489896YBA+ 286992 489896nBA+ 298944 489896kBAbBA)paps_exec
(+ 71856 479816ZBA+ 83808 479816VBA+ 95760 479816VBA+ 107712 479816uAAvAA+ 125640 479816aBA+ 149544 479816ZBA+ 161496 479816VBA+ 173448 479816VBA+ 185400 479816VBA+ 197352 479816aBA+ 221256 479816ZBA+ 233208 479816VBA+ 251136 479816VBA+ 263088 479816VBA+ 275040 479816aBA)paps_exec
(+ 59904 501560GBA+ 71856 501560TBA+ 83808 501560uAA+ 95760 501560UBA+ 113688 501560UBA+ 125640 501560VBA+ 137592 501560GBA+ 149544 501560TBA+ 161496 501560cBA+ 173448 501560UBA+ 185400 501560UBA+ 197352 501560VBA+ 209304 501560GBA+ 221256 501560TBA+ 233208 501560UBA+ 251136 501560UBA+ 263088 501560UBA+ 275040 501560VBA)paps_exec
(+ 71856 489896WBA+ 83808 489896UBA+ 95760 489896UBA+ 113688 489896UBA+ 125640 489896XBA+ 149544 489896WBA+ 161496 489896UBA+ 173448 489896uAA+ 185400 489896UBA+ 197352 489896XBA+ 221256 489896WBA+ 233208 489896UBA+ 245160 489896tAAuAA+ 263088 489896UBA+ 275040 489896XBA+ 286992 489896oBA+ 298944 489896mBAdBA)paps_exec
(+ 71856 479816YBA+ 83808 479816UBA+ 95760 479816UBA+ 107712 479816tAAuAA+ 125640 479816ZBA+ 149544 479816YBA+ 161496 479816UBA+ 173448 479816UBA+ 185400 479816UBA+ 197352 479816ZBA+ 221256 479816YBA+ 233208 479816UBA+ 251136 479816UBA+ 263088 479816UBA+ 275040 479816ZBA)paps_exec
()paps_exec
(+ 36000 458072MBAyAAqAA+ 59904 458072PBADBAEBAxAAtAAsAAEBAtAAdBAlAAxAAtAAwAAmAA+ 149544 458072wAAsAAqAApAAlAAxAAtAAwAAmAA+ 209304 458072lAAsAAsAAlAApAAqAAmAAxAAEBARBA+ 275040 458072pAAqAAxAADBApAAmAArAA+ 322848 458072kBA+ 332352 458072ABAqAAdBAlAADBArAAqAA+ 380160 458072xAAyAAqAA+ 404064 458072xAAyAAtAApAAnAA+ 439920 458072gAAlAAdBAxAAwAApAA+ 481752 458072CBAtAAEBAEBA)paps_exec
(+ 36000 447992mAADBAEBAEBAtAAgAARBA+ 83808 447992lAAmAARBA+ 107712 447992xAAqAApAAPBArAA+ 143568 447992ABAqAArAAtAAnAAqAArAA+ 191376 447992dBAqAAmAAxAAqAApAA+ 233208 447992xAAqAApAAPBArAABBA+ 275040 447992lAAmAAnAA+ 298944 447992xAAyAAqAA+ 322848 447992gAAtAApAArAAxAA+ 358704 447992gAAlAAdBAxAAwAApAA+ 400536 447992CBAtAAEBAEBA+ 430416 447992mAADBAEBAEBAtAAgAARBA+ 478224 447992lAAmAARBA+ 502128 447992dBAqAAmAAxAAqAApAA)paps_exec
(+ 36000 437912xAAqAApAAPBArAAbBA)paps_exec
(+ 36000 458072LBAxAApAA+ 59904 458072OBACBADBAwAAsAArAADBAsAAfBAkAAwAAsAAvAAlAA+ 149544 458072vAArAApAAoAAkAAwAAsAAvAAlAA+ 209304 458072kAArAArAAkAAoAApAAlAAwAADBAQBA+ 275040 458072oAApAAwAACBAoAAlAAqAA+ 322848 458072mBA+ 332352 458072zAApAAfBAkAACBAqAApAA+ 380160 458072wAAxAApAA+ 404064 458072wAAxAAsAAoAAmAA+ 439920 458072fAAkAAfBAwAAvAAoAA+ 481752 458072BBAsAADBADBA)paps_exec
(+ 36000 447992lAACBADBADBAsAAfAAQBA+ 83808 447992kAAlAAQBA+ 107712 447992wAApAAoAAOBAqAA+ 143568 447992zAApAAqAAsAAmAApAAqAA+ 191376 447992fBApAAlAAwAApAAoAA+ 233208 447992wAApAAoAAOBAqAAABA+ 275040 447992kAAlAAmAA+ 298944 447992wAAxAApAA+ 322848 447992fAAsAAoAAqAAwAA+ 358704 447992fAAkAAfBAwAAvAAoAA+ 400536 447992BBAsAADBADBA+ 430416 447992lAACBADBADBAsAAfAAQBA+ 478224 447992kAAlAAQBA+ 502128 447992fBApAAlAAwAApAAoAA)paps_exec
(+ 36000 437912wAApAAoAAOBAqAAdBA)paps_exec
()paps_exec
(+ 36000 416816iAAtAAPBAtAAEBAlAApAAEBARBABBA+ 101736 416816iAAoAA+ 114624 416816FBAiAAoAA+ 133488 416816GBA+ 145440 416816HBAIBAFBAiAAoAA+ 176256 416816uAA+ 188208 416816HBAIBA+ 206136 416816TBA)paps_exec
(+ 36000 416816hAAsAAOBAsAADBAkAAoAADBAQBAABA+ 101736 416816hAAnAA+ 114624 416816EBAhAAnAA+ 133488 416816FBA+ 145440 416816GBAHBAEBAhAAnAA+ 176256 416816tAA+ 188208 416816GBAHBA+ 206136 416816SBA)paps_exec
()paps_exec
(+ 77832 396656UBA+ 89784 396656VBA+ 101736 396656vAA+ 113688 396656VBA+ 125640 396656WBA+ 137592 396656UBA+ 149544 396656vAA+ 161496 396656vAA+ 173448 396656VBA+ 185400 396656WBA+ 197352 396656UBA+ 209304 396656uAAvAA+ 233208 396656vAA+ 251136 396656VBA+ 263088 396656WBA+ 304920 396656UBA+ 316872 396656vAA+ 328824 396656vAA+ 340776 396656vAA+ 352728 396656WBA+ 364680 396656UBA+ 376632 396656uAAvAA+ 400536 396656vAA+ 418464 396656VBA+ 430416 396656WBA+ 472248 396656UBA+ 484200 396656VBA+ 496152 396656vAA+ 508104 396656VBA+ 520056 396656WBA)paps_exec
(+ 59904 386576HBAoBA+ 77832 386576XBA+ 89784 386576vAA+ 101736 386576VBA+ 113688 386576vAA+ 125640 386576YBA+ 137592 386576XBA+ 149544 386576vAA+ 161496 386576vAA+ 173448 386576vAA+ 185400 386576YBA+ 197352 386576XBA+ 215280 386576vAA+ 227232 386576uAAvAA+ 251136 386576vAA+ 263088 386576YBA+ 275040 386576nBA+ 286992 386576HBAoBA+ 304920 386576XBA+ 316872 386576vAA+ 328824 386576mBA+ 340776 386576vAA+ 352728 386576YBA+ 364680 386576XBA+ 382608 386576vAA+ 394560 386576uAAvAA+ 418464 386576vAA+ 430416 386576YBA+ 442368 386576nBA+ 454320 386576HBAoBA+ 472248 386576XBA+ 484200 386576vAA+ 496152 386576VBA+ 508104 386576vAA+ 520056 386576YBAbBA)paps_exec
(+ 77832 376496ZBA+ 89784 376496VBA+ 101736 376496vAA+ 113688 376496VBA+ 125640 376496aBA+ 137592 376496ZBA+ 149544 376496VBA+ 161496 376496vAA+ 173448 376496vAA+ 185400 376496aBA+ 197352 376496ZBA+ 215280 376496VBA+ 233208 376496vAA+ 245160 376496uAAvAA+ 263088 376496aBA+ 304920 376496ZBA+ 316872 376496vAA+ 328824 376496vAA+ 340776 376496vAA+ 352728 376496aBA+ 364680 376496ZBA+ 382608 376496VBA+ 400536 376496vAA+ 412488 376496uAAvAA+ 430416 376496aBA+ 472248 376496ZBA+ 484200 376496VBA+ 496152 376496vAA+ 508104 376496VBA+ 520056 376496aBA)paps_exec
(+ 53928 396656aBAGBAaBA+ 77832 396656TBA+ 89784 396656UBA+ 101736 396656uAA+ 113688 396656UBA+ 125640 396656VBA+ 137592 396656aBAGBAaBA+ 155520 396656TBA+ 167472 396656bBAcBA+ 191376 396656uAA+ 209304 396656UBA+ 227232 396656VBA+ 239184 396656aBAGBAaBA+ 257112 396656TBA+ 269064 396656tAAbBAcBA+ 304920 396656uAA+ 328824 396656UBA+ 340776 396656VBA)paps_exec
(+ 53928 386576bBAcBA+ 77832 386576WBA+ 89784 386576uAA+ 101736 386576UBA+ 113688 386576uAA+ 125640 386576XBA+ 137592 386576bBAcBA+ 155520 386576WBA+ 173448 386576uAA+ 185400 386576bBAcBA+ 209304 386576uAA+ 227232 386576XBA+ 239184 386576bBAcBA+ 257112 386576WBA+ 281016 386576uAA+ 292968 386576tAAbBAcBA+ 328824 386576uAA+ 340776 386576XBAdBA)paps_exec
(+ 77832 376496YBA+ 89784 376496UBA+ 101736 376496uAA+ 113688 376496UBA+ 125640 376496ZBA+ 155520 376496YBA+ 173448 376496UBA+ 191376 376496uAA+ 203328 376496bBAcBA+ 227232 376496ZBA+ 257112 376496YBA+ 281016 376496UBA+ 304920 376496uAA+ 316872 376496tAAbBAcBA+ 340776 376496ZBA)paps_exec
()paps_exec
(+ 36000 356336pBApAAoAAfAAvAAoAAOBAsAAlAAMBA+ 101736 356336wAAxAApAA+ 125640 356336OBACBADBAwAAsAArAADBAsAAfBAkAAwAAsAAvAAlAA+ 215280 356336vAArAApAAoAAkAAwAAsAAvAAlAA+ 275040 356336vAAlAA+ 292968 356336wAAxAApAA+ 316872 356336DBAkAAqAAwAA+ 346752 356336wAABBAvAA+ 370656 356336OBAkAAwAAoAAsAAfBApAAqAA+ 424440 356336oAApAAwAACBAoAAlAAqAA+ 472248 356336wAAxAApAA+ 496152 356336pAAPBArAAoAApAAqAAqAAsAAvAAlAA)paps_exec
()paps_exec
(+ 47952 336176aBAGBAaBAqBAaBA+ 77832 336176TBA+ 89784 336176UBA+ 101736 336176uAA+ 113688 336176UBA+ 125640 336176VBA+ 137592 336176TBA+ 149544 336176tAAuAA+ 173448 336176UBA+ 191376 336176uAA+ 203328 336176VBA)paps_exec
(+ 53928 324512cBAbBAcBA+ 77832 324512WBA+ 89784 324512uAA+ 101736 324512UBA+ 113688 324512uAA+ 125640 324512XBA+ 137592 324512WBA+ 155520 324512UBA+ 173448 324512UBA+ 191376 324512UBA+ 203328 324512XBA+ 215280 324512oBA+ 227232 324512mBAdBA)paps_exec
(+ 77832 314432YBA+ 89784 314432UBA+ 101736 314432uAA+ 113688 314432UBA+ 125640 314432ZBA+ 137592 314432YBA+ 155520 314432uAA+ 173448 314432UBA+ 185400 314432tAAuAA+ 203328 314432ZBA)paps_exec
()paps_exec
(+ 36000 292688eAAwAA+ 53928 292688sAAqAA+ 71856 292688rBACBAsAAwAApAA+ 107712 292688vAAzAAJBAsAAvAACBAqAA+ 155520 292688wAAxAAkAAwAA+ 185400 292688wAAxAAsAAqAA+ 215280 292688vAArAApAAoAAkAAwAAsAAvAAlAA+ 275040 292688oAApAAwAACBAoAAlAAqAA+ 322848 292688mBA+ 332352 292688qAAsAAlAAfBApAA+ 368208 292688wAAxAApAAoAApAA+ 404064 292688kAAoAApAA+ 427968 292688lAAvAA+ 445896 292688fBAvAAOBArAAvAAlAApAAlAAwAAqAA+ 511632 292688wAAxAAkAAwAA)paps_exec
(+ 36000 282608BBAsAADBADBA+ 65880 282608lAAvAAwAA+ 89784 282608OBAkAAwAAfBAxAA+ 125640 282608BBAsAAwAAxAA+ 155520 282608kAA+ 167472 282608UBA+ 179424 282608wAAxAAoAAvAACBAMBAxAAvAACBAwAA+ 245160 282608wAAxAApAA+ 269064 282608OBACBADBAwAAsAArAADBAsAAfBAkAAwAAsAAvAAlAA+ 358704 282608vAAfAA+ 376632 282608wAAxAApAAqAApAA+ 412488 282608OBAkAAwAAoAAsAAfBApAAqAAdBA+ 472248 282608LBAxAApAAoAApAAfAAvAAoAApAAABA)paps_exec
(+ 36000 270944wAAxAApAA+ 59904 270944qAApAAfBAvAAlAAmAA+ 101736 270944pAAPBArAAoAApAAqAAqAAsAAvAAlAA+ 167472 270944sAAqAA+ 185400 270944kAADBAqAAvAA+ 215280 270944pAArBACBAsAAJBAkAADBApAAlAAwAA+ 281016 270944wAAvAA+ 298944 270944wAAxAApAA+ 322848 270944yAApAAoAAvAA+ 352728 270944OBAkAAwAAoAAsAAPBA+ 394560 270944mBAdBA)paps_exec
paps_eop
showpage
%%Pages: 1

View File

@ -1,8 +1,89 @@
|a〉 and |b〉 are eigenstates of a Hermitian operator A with eigenvalues a and b, a ≠ b. The Hamiltonian operator is
Ĥ = |a〉 δ 〈b| + |b〉 δ 〈a|, with δ a real number.
Ĥ = |a〉 δ 〈a| + |b〉 δ 〈b|, with δ a real number.
a) The eigenstates of the Hamiltonian can be determined by
a) The eigenstates of the Hamiltonian can be determined by diagonalizing the Hamiltonian operator's matrix representation. In general,
🔋
Ĥ ≐
⎛ 〈a|Ĥ|a〉 〈a|Ĥ|b〉 ⎞
⎝ 〈b|Ĥ|a〉 〈b|Ĥ|b〉 ⎠.
Calculating the individual components:
〈a|Ĥ|a〉 = 〈a|(|a〉 δ 〈a| + |b〉 δ 〈b|)|a〉 =
〈a|Ĥ|a〉 = 〈a|a〉 δ 〈a|a〉 + 〈a|b〉 δ 〈b|a〉 =
〈a|Ĥ|a〉 = δ(1 + 〈a|b〉〈b|a〉),
and because H is a hermitian operator, 〈a|b〉 = 〈b|a〉, so
〈a|Ĥ|a〉 = δ(1 + |〈a|b〉|²);
〈a|Ĥ|b〉 = 〈a|a〉 δ 〈a|b〉 + 〈a|b〉 δ 〈b|b〉 =
〈a|Ĥ|b〉 = δ (〈a|b〉 + 〈a|b〉) = δ 2〈a|b〉;
because of the hermition property,
〈b|Ĥ|a〉 = 〈a|Ĥ|b〉 = δ 2〈a|b〉;
finally,
〈b|Ĥ|b〉 = 〈b|(|a〉 δ 〈a| + |b〉 δ 〈b|)|b〉 =
〈b|Ĥ|b〉 = 〈b|a〉 δ 〈a|b〉 + 〈b|b〉 δ 〈b|b〉 =
〈b|Ĥ|b〉 = δ(〈b|a〉〈a|b〉 + 1),
〈b|Ĥ|b〉 = δ(1 + |〈a|b〉|²).
So, the Hamiltonian operator Ĥ ≐
δ ⎛ 1 + |〈a|b〉|² 2〈a|b〉 ⎞
⎝ 2〈a|b〉 1 + |〈a|b〉|² ⎠.
The eigenstates, which I will call |1〉 and |2〉 can be obtained by diagonalizing the Hamiltonian matrix. The first eigenvalue equations are
Ĥ|1〉 = E₁|1〉 and Ĥ|2〉 = E₂|2〉, with the eigenstates represented by the vector matrices, respectively,
⎛α₁⎞ ⎛α₂⎞
⎝β₁⎠ and ⎝β₂⎠.
δ ⎛ 1 + |〈a|b〉|² 2〈a|b〉 ⎞ ⎛α₁⎞ = E₁ ⎛α₁⎞
⎝ 2〈a|b〉 1 + |〈a|b〉|² ⎠ ⎝β₁⎠ ⎝β₁⎠.
This gives the equation α₁ + α₁|〈a|b〉|² + 2β₁〈a|b〉 = E₁α₁, and therefore the ratio between α₁ and β₁,
͟β͟₁͟ = ͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟, or
α₁ 2〈a|b〉
β₁ = ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟)͟
2〈a|b〉
Using the normalization condition, the values of each constant can be obtained. Plugging the value for α₁ into the equation reveals a quadratic equation.
|α₁|² + |β₁|² = 1, so
|α₁|² + | ͟α͟₁͟(͟E͟₁͟ ͟-͟ ͟1͟ ͟-͟ ͟|͟〈͟a͟|͟b͟〉͟|͟²͟)͟ |² = 1.
| 2〈a|b〉 |
α₁(1 - E₁) + 2β₁〈a|b〉 + α₁|〈a|b〉|² = 0 and
_________
α₁ = ±√1 - |β₁|², so
_________ _________
±√̅1 - |β₁|² (1 - E₁) + 2β₁〈a|b〉 + ±√1 - |β₁|² |〈a|b〉|² = 0.
The quadratic formula therefore says that

2786
solutions/exam1/prob3.ps Normal file

File diff suppressed because it is too large Load Diff

47
solutions/exam1/prob4 Normal file
View File

@ -0,0 +1,47 @@
Two operators' matrix representations are known in the |1〉, |2〉, |3〉 basis, where and b are real numbers:
A ≐ B ≐
⎛ a 0 0 ⎞ ⎛ b 0 0 ⎞
⎜ 0 -a 0 ⎟ ⎜ 0 0 -ιb ⎟
⎝ 0 0 -a ⎠ and ⎝ 0 ιb 0 ⎠.
B exhibits a degenerate spectrum when it has repeated eigenvalues. The eigenvalues of B are obtained from its characteristic equation.
|⎛ b-λ 0 0 ⎞|
|⎜ 0 -λ -ιb ⎟| = 0, i.e.
|⎝ 0 ιb -λ ⎠|
(b - λ)(λ² + ι²b²) = (b - λ)(λ² - b²) = (b - λ)(b - λ)(b + λ) = 0.
(a) The eigenvalues for this operator are therefore λ = b,b,-b. Since b appears twice, the operator exhibits a degenerate spectrum.
To find if A and B commute, their commutator need be evaluated. They commute if the value is 0. The commutator of two operators is defined as
[Â,B̂] = Â B̂ - B̂ Â.
For the given operators, then, the commutator is
⎛ a 0 0 ⎞ ⎛ b 0 0 ⎞ ⎛ b 0 0 ⎞ ⎛ a 0 0 ⎞
⎜ 0 -a 0 ⎟ ⎜ 0 0 -ιb ⎟ - ⎜ 0 0 -ιb ⎟ ⎜ 0 -a 0 ⎟
⎝ 0 0 -a ⎠ ⎝ 0 ιb 0 ⎠ ⎝ 0 ιb 0 ⎠ ⎝ 0 0 -a ⎠,
which reduces to
⎛ ab 0 0 ⎞ ⎛ ab 0 0 ⎞
⎜ 0 0 ιab ⎟ - ⎜ 0 0 ιab ⎟ = 0.
⎝ 0 -ιab 0 ⎠ ⎝ 0 -ιab 0 ⎠
(b) Therefore, these operators commute.
Since the operators commute, they share common eigenstates. Therefore, if the eigenstates for one operator can be determined, they are determined for both operators. Since the problem states that a new set of orthonormal kets need be determined, and the given set are the eigenstates related to the operator A, then the eigenstates of the operator B should be determined.
The eigenvalues are already known (λ = b,b,-b.), and using the eigenvalue equations, the eigenstates can be determined. The eigenvalue equation
⎛ b 0 0 ⎞ ⎛ α₁ ⎞ ⎛ b α₁ ⎞ ⎛ α₁ ⎞
⎜ 0 0 -ιb ⎟ ⎜ β₁ ⎟ = ⎜ -ι b γ₁ ⎟ = b ⎜ β₁ ⎟
⎝ 0 ιb 0 ⎠ ⎝ γ₁ ⎠ ⎝ ι b β₁ ⎠ ⎝ γ₁ ⎠ reveals
-ι γ₁ = β₁, and
ι b β₁ = γ₁

2631
solutions/exam1/prob4.ps Normal file

File diff suppressed because it is too large Load Diff