mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-05 02:35:07 +00:00
253 lines
9.2 KiB
Plaintext
253 lines
9.2 KiB
Plaintext
The transformation from polar coordinates to cartesian is the set of equations
|
||
|
||
⎧ x = r sinθ cosϕ
|
||
⎪
|
||
⎨ y = r sinθ sinϕ
|
||
⎪
|
||
⎩ z = r cosθ
|
||
|
||
The transformation from cartesian to polar coordinates is the set
|
||
|
||
⎧ r = √(x²+y²+z²)
|
||
⎪
|
||
⎪ cos(θ) = z͟ = _͟z͟
|
||
⎨ r √(x²+y²+z²)
|
||
⎪
|
||
⎪ tan(ϕ) = y͟
|
||
⎩ x
|
||
|
||
Some differential forms may come in handy.
|
||
|
||
⎧ dcos(θ) = -sin(θ) dθ
|
||
⎨
|
||
⎪ dtan(ϕ) = _͟1͟ dϕ
|
||
⎩ cos²(ϕ)
|
||
|
||
∂/∂θ:
|
||
|
||
⎧ ∂͟x = r cosϕ cosθ
|
||
⎪ ∂θ
|
||
⎪
|
||
⎨ ∂͟y = r sinϕ cosθ
|
||
⎪ ∂θ
|
||
⎪
|
||
⎪ ∂͟z = -r sinθ
|
||
⎩ ∂θ
|
||
|
||
∂/∂ϕ:
|
||
|
||
⎧ ∂͟x = -r sinθ sinϕ
|
||
⎪ ∂ϕ
|
||
⎪
|
||
⎨ ∂͟y = r sinθ cosϕ
|
||
⎪ ∂ϕ
|
||
⎪
|
||
⎪ ∂͟z = 0
|
||
⎩ ∂ϕ
|
||
|
||
∂/∂x:
|
||
|
||
⎧ ∂͟r = √(x²+y²+z²) = x͟
|
||
⎪ ∂x r
|
||
⎪
|
||
⎪ ∂͟cos(θ) = -z͟x͟
|
||
⎨ ∂x r³
|
||
⎪
|
||
⎪ ∂͟tan(ϕ) = -y͟
|
||
⎩ ∂x x²
|
||
|
||
∂/∂y:
|
||
|
||
⎧ ∂͟r = √(x²+y²+z²) = y͟
|
||
⎪ ∂y r
|
||
⎪
|
||
⎪ ∂͟cos(θ) = -z͟y͟
|
||
⎨ ∂y r³
|
||
⎪
|
||
⎪ ∂͟tan(ϕ) = 1͟
|
||
⎩ ∂y x
|
||
|
||
∂/∂z:
|
||
|
||
⎧ ∂͟r = √(x²+y²+z²) = z͟
|
||
⎪ ∂z r
|
||
⎪
|
||
⎪ ∂͟cos(θ) = z͟ = 1͟ ⎛r ∂͟z͟ - z ∂͟r͟⎞ = 1͟ - z͟²
|
||
⎨ ∂z r r² ⎝ ∂z ∂z⎠ r r³
|
||
⎪
|
||
⎪ ∂͟tan(ϕ) = 0
|
||
⎩ ∂z
|
||
|
||
|
||
These differential forms can be used to transform each cartesian differentiation operator.
|
||
|
||
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
|
||
∂x ∂x ∂r ∂x ∂cosθ ∂x ∂tanϕ
|
||
|
||
∂͟ = x͟ ∂͟ - z͟x͟ _͟1͟ ∂͟ - y͟ cos²(ϕ) ∂͟ ;
|
||
∂x r ∂r r³ -sinθ ∂θ x² ∂ϕ
|
||
|
||
∂͟ = sin(θ) cos(ϕ) ∂͟
|
||
∂x ∂r
|
||
+ 1͟ sin(θ) cos(ϕ) cos(θ) _͟1͟ ∂͟
|
||
r sin(θ) ∂θ
|
||
- r͟ s͟i͟n͟(ϕ͟) s͟i͟n͟(θ͟) cos²(ϕ͟) ∂͟ ;
|
||
r² cos²(ϕ) sin²(θ) ∂ϕ
|
||
|
||
∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ .
|
||
∂x ∂r r ∂θ r sin(θ) ∂ϕ
|
||
|
||
───────────────────────────────────────────────
|
||
|
||
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
|
||
∂y ∂y ∂r ∂y ∂cosθ ∂y ∂tanϕ
|
||
|
||
∂͟ = y͟ ∂͟ - z͟y͟ ∂͟ + 1͟ ∂͟ ;
|
||
∂y r ∂r r³ ∂cosθ x ∂tanϕ
|
||
|
||
∂͟ = sin(θ) sin(ϕ) ∂͟ - 1͟ sin(θ) cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ;
|
||
∂y ∂r r -sin(θ) ∂θ r sin(θ) ∂ϕ
|
||
|
||
∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ .
|
||
∂y ∂r r ∂θ r sin(θ) ∂ϕ
|
||
|
||
───────────────────────────────────────────────
|
||
|
||
∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟ + ∂͟t͟a͟n͟ϕ͟ ∂͟ ;
|
||
∂z ∂z ∂r ∂z ∂cosθ ∂z ∂tanϕ
|
||
|
||
∂͟ = z͟ ∂͟ + ⎛1͟ - z͟²⎞∂͟ + 0 ;
|
||
∂z r ∂r ⎝r r³⎠∂cosθ
|
||
|
||
∂͟ = cos(θ) ∂͟ + 1͟⎛1 - cos²(θ)⎞ _͟1͟ ∂͟ ;
|
||
∂z ∂r r⎝ ⎠ -sin(θ) ∂θ
|
||
|
||
∂͟ = cos(θ) ∂͟ - _͟1͟_ ⎛1 - cos²(θ)⎞ ∂͟ ;
|
||
∂z ∂r rsin(θ)⎝ ⎠ ∂θ
|
||
|
||
∂͟ = cos(θ) ∂͟ - _͟1͟_ sin²(θ) ∂͟ ;
|
||
∂z ∂r rsin(θ) ∂θ
|
||
|
||
∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ .
|
||
∂z ∂r r ∂θ
|
||
|
||
|
||
The set of differential operator transformations is
|
||
|
||
⎧ ∂͟ = sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟
|
||
⎪ ∂x ∂r r ∂θ r sin(θ) ∂ϕ
|
||
⎪
|
||
⎨ ∂͟ = sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟
|
||
⎪ ∂y ∂r r ∂θ r sin(θ) ∂ϕ
|
||
⎪
|
||
⎪ ∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟
|
||
⎩ ∂z ∂r r ∂θ
|
||
|
||
|
||
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
|
||
|
||
⎧ L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_ - z ∂͟_ )
|
||
⎪ ∂z ∂y
|
||
⎪
|
||
⎨ L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_ - x ∂͟_ )
|
||
⎪ ∂x ∂z
|
||
⎪
|
||
⎪ L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_ - y ∂͟_ )
|
||
⎩ ∂y ∂x
|
||
|
||
Substituting 7.35 into 7.47,
|
||
|
||
⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ )
|
||
⎪ ∂z ∂y
|
||
⎪
|
||
⎨ L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ )
|
||
⎪ ∂x ∂z
|
||
⎪
|
||
⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
|
||
⎩ ∂y ∂x
|
||
|
||
Substituting the transformed differentiation operators,
|
||
|
||
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞
|
||
⎪ ⎝ ⎝ ∂r r ∂θ⎠
|
||
⎪
|
||
⎪ - r cosθ ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞⎞
|
||
⎪ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
|
||
⎪
|
||
⎪
|
||
⎪ L̂𝓎 = -ιħ⎛r cosθ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞
|
||
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
|
||
⎨
|
||
⎪ - r sinθ cosϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞⎞
|
||
⎪ ⎝ ∂r r ∂θ⎠⎠
|
||
⎪
|
||
⎪
|
||
⎪ L̂𝓏 = -ιħ⎛r sinθ cosϕ⎛sin(θ) sin(ϕ) ∂͟ + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟ + c͟o͟s͟(ϕ͟) ∂͟ ⎞
|
||
⎪ ⎝ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠
|
||
⎪
|
||
⎪ - r sinθ sinϕ ⎛sin(θ) cos(ϕ) ∂͟ + 1͟ cos(ϕ) cos(θ) ∂͟ - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞⎞
|
||
⎩ ⎝ ∂r r ∂θ r sin(θ) ∂ϕ⎠⎠
|
||
|
||
Simplifying...
|
||
|
||
⎧ L̂𝓍 = -ιħ⎛r sinθ sinϕ cosθ ∂͟ - sinϕ sin²θ ∂͟
|
||
⎪ ⎝ ∂r ∂θ
|
||
⎪
|
||
⎪ - r cosθ sinθ sinϕ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
|
||
⎪ ∂r ∂θ sinθ ∂ϕ⎠
|
||
⎪
|
||
⎪
|
||
⎪ L̂𝓎 = -ιħ⎛r cosθ sinθ cosϕ ∂͟ + cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟
|
||
⎪ ⎝ ∂r ∂θ sinθ ∂ϕ
|
||
⎨
|
||
⎪ - r sinθ cosϕ cosθ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
|
||
⎪ ∂r ∂θ⎠
|
||
⎪
|
||
⎪
|
||
⎪ L̂𝓏 = -ιħ⎛r sin²θ cosϕ sinϕ ∂͟ + sinθ cosθ sinϕ cosϕ ∂͟ + cosϕ c͟o͟s͟ϕ͟ ∂͟
|
||
⎪ ⎝ ∂r ∂θ ∂ϕ
|
||
⎪
|
||
⎪ - r sin²θ sinϕ cosϕ ∂͟ - sinθ cosθ sinϕ cosϕ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
|
||
⎩ ∂r ∂θ sinθ ∂ϕ⎠
|
||
|
||
|
||
⎧ L̂𝓍 = -ιħ⎛- sinϕ sin²θ ∂͟ - cos²θ sinϕ ∂͟ - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
|
||
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
|
||
⎪
|
||
⎨ L̂𝓎 = -ιħ⎛cosθ cosϕ cosθ ∂͟ - c͟o͟s͟θ͟ sinϕ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞
|
||
⎪ ⎝ ∂θ sinθ ∂ϕ ∂θ⎠
|
||
⎪
|
||
⎪ L̂𝓏 = -ιħ⎛cosϕ c͟o͟s͟ϕ͟ ∂͟ + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
|
||
⎩ ⎝ ∂ϕ sinθ ∂ϕ⎠
|
||
|
||
|
||
⎧ L̂𝓍 = ιħ⎛ sinϕ sin²θ ∂͟ + cos²θ sinϕ ∂͟ + c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
|
||
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ⎠
|
||
⎪
|
||
⎨ L̂𝓎 = ιħ⎛-cos²θ cosϕ ∂͟ - sin²θ cosϕ ∂͟ + c͟o͟s͟θ͟ sinϕ ∂͟ ⎞
|
||
⎪ ⎝ ∂θ ∂θ sinθ ∂ϕ ⎠
|
||
⎪
|
||
⎪ L̂𝓏 = -ιħ⎛cos²ϕ ∂͟ + sin²ϕ ∂͟ ⎞
|
||
⎩ ⎝ ∂ϕ ∂ϕ⎠
|
||
|
||
|
||
⎧ L̂𝓍 = ιħ⎛ sinϕ ∂͟ + cotθ cosϕ ∂͟ ⎞
|
||
⎪ ⎝ ∂θ ∂ϕ⎠
|
||
⎪
|
||
⎨ L̂𝓎 = ιħ⎛-cosϕ ∂͟ + cotθ sinϕ ∂͟ ⎞
|
||
⎪ ⎝ ∂θ ∂ϕ ⎠
|
||
⎪
|
||
⎪ L̂𝓏 = -ιħ∂͟
|
||
⎩ ∂ϕ
|
||
|
||
The spherical representation is the following set, which perfectly matches the obtained result.
|
||
|
||
⎧ L̂𝓍 = ιħ (sinϕ ∂͟_ + cosϕ cotθ ∂͟_ )
|
||
⎪ ∂θ ∂ϕ
|
||
⎪
|
||
⎨ L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
|
||
⎪ ∂θ ∂ϕ
|
||
⎪
|
||
⎪ L̂𝓏 = -ιħ ∂͟_
|
||
⎩ ∂ϕ
|