phy-4600/lecture_notes/3-14/3d eigenstates
2016-03-24 01:04:06 -04:00

59 lines
1.8 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

❙r❭=❙x,y,z❭
with eigenvalue equations
x̂❙r❭ = x❙r❭
ŷ❙r❭ = y❙r❭
ẑ❙r❭ = z❙r❭
An arbitrary state
❙Ψ❭ = ∫∫∫ dx dy dz ❙x,y,z❭❬x,y,z❙Ψ❭
= ∫ d³r ❙r❭ ❬r❙Ψ❭
Understanding a System:
measure Ĥ, L̂², L̂𝓏 → Constitutes a complete set of commuting observables (except spin)
I.E., There is a set of eigenstates that are eigenstates of all three operators.
Ĥ❙E,l,mₗ❭ = E❙E,l,mₗ❭
L̂²❙E,l,mₗ❭ = l(l+1)ħ²❙E,l,mₗ❭
𝓏❙E,l,mₗ❭ = mₗħ❙E,l,mₗ❭
Ĥ must now include angular momentum
L̂²= (r̂×p̂)(r̂×p̂) = (geometric identity) = r̂²p̂ - (r̂⋅p̂) + ιħr̂⋅p̂
❬r❙r̂²p̂²❙Ψ❭ = r² ❬r❙p̂²❙Ψ❭
r̂² p̂² = L̂² + (r̂⋅p̂)² - ιħ r̂⋅p̂
❬r❙p̂²❙Ψ❭ = 1/r² ❬r❙L̂² + (r̂⋅p̂)² - ιħ r̂⋅p̂❙Ψ❭
❬r❙L̂²❙Ψ❭
❬r❙r̂²⋅p̂²❙Ψ❭ = r ⋅ ħ/ι ∇ ❬r❙Ψ❭ = ħ/ι r ∂/∂r ❬r❙Ψ❭
❬r❙(r̂⋅p̂)²❙Ψ❭ = ❬r❙(r̂⋅p̂)(r̂⋅p̂)❙Ψ❭
= r ħ/ι ∂/∂r ❬r❙r̂⋅p̂❙Ψ❭
= -ħ² r ∂/∂r (r ∂/∂r) ❬r❙Ψ❭
1/2m ❬r❙p̂²❙Ψ❭ = -ħ/2m r/r² ∂/∂r r ∂/∂r ❬r❙Ψ❭ + 1/(2mr²) ❬r❙L²❙Ψ❭
= -ħ²/2m (∂²/∂r² + 2/r ∂/∂r) ❬r❙Ψ❭ + 1/(2mr²) ❬r❙L̂²❙Ψ❭
| ↓ | | ↓ |
linear energy rotational energy
Hamiltonian can now be written
Ĥ = -ħ²/2m (∂²/∂r² + 2/r ∂/∂r) + L̂²/(2mr²) + V(│r│)
With the eigenvalue equation
❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭