❙r❭=❙x,y,z❭ with eigenvalue equations x̂❙r❭ = x❙r❭ ŷ❙r❭ = y❙r❭ ẑ❙r❭ = z❙r❭ An arbitrary state ❙Ψ❭ = ∫∫∫ dx dy dz ❙x,y,z❭❬x,y,z❙Ψ❭ = ∫ d³r ❙r❭ ❬r❙Ψ❭ Understanding a System: measure Ĥ, L̂², L̂𝓏 → Constitutes a complete set of commuting observables (except spin) I.E., There is a set of eigenstates that are eigenstates of all three operators. Ĥ❙E,l,mₗ❭ = E❙E,l,mₗ❭ L̂²❙E,l,mₗ❭ = l(l+1)ħ²❙E,l,mₗ❭ L̂𝓏❙E,l,mₗ❭ = mₗħ❙E,l,mₗ❭ Ĥ must now include angular momentum L̂²= (r̂×p̂)(r̂×p̂) = (geometric identity) = r̂²p̂ - (r̂⋅p̂) + ιħr̂⋅p̂ ❬r❙r̂²p̂²❙Ψ❭ = r² ❬r❙p̂²❙Ψ❭ r̂² p̂² = L̂² + (r̂⋅p̂)² - ιħ r̂⋅p̂ ❬r❙p̂²❙Ψ❭ = 1/r² ❬r❙L̂² + (r̂⋅p̂)² - ιħ r̂⋅p̂❙Ψ❭ ❬r❙L̂²❙Ψ❭ ❬r❙r̂²⋅p̂²❙Ψ❭ = r ⋅ ħ/ι ∇ ❬r❙Ψ❭ = ħ/ι r ∂/∂r ❬r❙Ψ❭ ❬r❙(r̂⋅p̂)²❙Ψ❭ = ❬r❙(r̂⋅p̂)(r̂⋅p̂)❙Ψ❭ = r ħ/ι ∂/∂r ❬r❙r̂⋅p̂❙Ψ❭ = -ħ² r ∂/∂r (r ∂/∂r) ❬r❙Ψ❭ 1/2m ❬r❙p̂²❙Ψ❭ = -ħ/2m r/r² ∂/∂r r ∂/∂r ❬r❙Ψ❭ + 1/(2mr²) ❬r❙L²❙Ψ❭ = -ħ²/2m (∂²/∂r² + 2/r ∂/∂r) ❬r❙Ψ❭ + 1/(2mr²) ❬r❙L̂²❙Ψ❭ | ↓ | | ↓ | linear energy rotational energy Hamiltonian can now be written Ĥ = -ħ²/2m (∂²/∂r² + 2/r ∂/∂r) + L̂²/(2mr²) + V(│r│) With the eigenvalue equation ❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭