phy-4600/lecture_notes/3-14/3d eigenstates

59 lines
1.8 KiB
Plaintext
Raw Normal View History

❙r❭=❙x,y,z❭
with eigenvalue equations
x̂❙r❭ = x❙r❭
ŷ❙r❭ = y❙r❭
ẑ❙r❭ = z❙r❭
An arbitrary state
❙Ψ❭ = ∫∫∫ dx dy dz ❙x,y,z❭❬x,y,z❙Ψ❭
= ∫ d³r ❙r❭ ❬r❙Ψ❭
Understanding a System:
measure Ĥ, L̂², L̂𝓏 → Constitutes a complete set of commuting observables (except spin)
I.E., There is a set of eigenstates that are eigenstates of all three operators.
Ĥ❙E,l,mₗ❭ = E❙E,l,mₗ❭
L̂²❙E,l,mₗ❭ = l(l+1)ħ²❙E,l,mₗ❭
𝓏❙E,l,mₗ❭ = mₗħ❙E,l,mₗ❭
Ĥ must now include angular momentum
L̂²= (r̂×p̂)(r̂×p̂) = (geometric identity) = r̂²p̂ - (r̂⋅p̂) + ιħr̂⋅p̂
2016-03-17 12:37:18 +00:00
❬r❙r̂²p̂²❙Ψ❭ = r² ❬r❙p̂²❙Ψ❭
r̂² p̂² = L̂² + (r̂⋅p̂)² - ιħ r̂⋅p̂
❬r❙p̂²❙Ψ❭ = 1/r² ❬r❙L̂² + (r̂⋅p̂)² - ιħ r̂⋅p̂❙Ψ❭
❬r❙L̂²❙Ψ❭
❬r❙r̂²⋅p̂²❙Ψ❭ = r ⋅ ħ/ι ∇ ❬r❙Ψ❭ = ħ/ι r ∂/∂r ❬r❙Ψ❭
❬r❙(r̂⋅p̂)²❙Ψ❭ = ❬r❙(r̂⋅p̂)(r̂⋅p̂)❙Ψ❭
= r ħ/ι ∂/∂r ❬r❙r̂⋅p̂❙Ψ❭
= -ħ² r ∂/∂r (r ∂/∂r) ❬r❙Ψ❭
1/2m ❬r❙p̂²❙Ψ❭ = -ħ/2m r/r² ∂/∂r r ∂/∂r ❬r❙Ψ❭ + 1/(2mr²) ❬r❙L²❙Ψ❭
= -ħ²/2m (∂²/∂r² + 2/r ∂/∂r) ❬r❙Ψ❭ + 1/(2mr²) ❬r❙L̂²❙Ψ❭
| ↓ | | ↓ |
linear energy rotational energy
Hamiltonian can now be written
Ĥ = -ħ²/2m (∂²/∂r² + 2/r ∂/∂r) + L̂²/(2mr²) + V(│r│)
With the eigenvalue equation
2016-03-24 05:04:06 +00:00
❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭