mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-04 18:55:06 +00:00
adding new lectures: 3d eigenstates, rotation, angular momentum
This commit is contained in:
parent
677105e073
commit
a9a0d33b50
29
lecture_notes/3-14/3d eigenstates
Normal file
29
lecture_notes/3-14/3d eigenstates
Normal file
@ -0,0 +1,29 @@
|
||||
❙r❭=❙x,y,z❭
|
||||
|
||||
with eigenvalue equations
|
||||
|
||||
x̂❙r❭ = x❙r❭
|
||||
ŷ❙r❭ = y❙r❭
|
||||
ẑ❙r❭ = z❙r❭
|
||||
|
||||
An arbitrary state
|
||||
|
||||
❙Ψ❭ = ∫∫∫ dx dy dz ❙x,y,z❭❬x,y,z❙Ψ❭
|
||||
= ∫ d³r ❙r❭ ❬r❙Ψ❭
|
||||
|
||||
|
||||
Understanding a System:
|
||||
|
||||
measure Ĥ, L̂², L̂𝓏 → Constitutes a complete set of commuting observables (except spin)
|
||||
|
||||
I.E., There is a set of eigenstates that are eigenstates of all three operators.
|
||||
|
||||
Ĥ❙E,l,mₗ❭ = E❙E,l,mₗ❭
|
||||
|
||||
L̂²❙E,l,mₗ❭ = l(l+1)ħ²❙E,l,mₗ❭
|
||||
|
||||
L̂𝓏❙E,l,mₗ❭ = mₗħ❙E,l,mₗ❭
|
||||
|
||||
Ĥ must now include angular momentum
|
||||
|
||||
L̂²= (r̂×p̂)(r̂×p̂) = (geometric identity) = r̂²p̂ - (r̂⋅p̂) + ιħr̂⋅p̂
|
58
lecture_notes/3-14/rotational invariance
Normal file
58
lecture_notes/3-14/rotational invariance
Normal file
@ -0,0 +1,58 @@
|
||||
Rotational Invariance
|
||||
|
||||
𝐩² and 𝐫 are invariant under rotation.
|
||||
|
||||
Consider
|
||||
|
||||
R̂(dϕ k̂) = 1 - ι/ħ L̂𝓏 dϕ
|
||||
|
||||
❙x - ydϕ,y + xdϕ,z❭ = ❙x,y,z❭ + ∂/∂x ❙ ❭ dϕ + ∂/∂y ❙ ❭ dϕ
|
||||
|
||||
= [1 - ι/ħ p𝓍 (-ydϕ)][1 - ι/ħ p𝓎 (xdϕ)] ❙x,y,z❭
|
||||
|
||||
= [1 - ι/ħ (x p𝓎 - y p𝓍)dϕ] ❙x,y,z❭
|
||||
|
||||
(x p𝓎 - y p𝓍) ≝ L̂𝓏 (angular momentum in z axis)
|
||||
|
||||
L̂𝓏 is the z component of L̂ = 𝐫×𝐩̂
|
||||
|
||||
Commutation:
|
||||
|
||||
[L̂𝓏,p̂𝓏] = [x p𝓎 - y p𝓍,p𝓏]
|
||||
|
||||
= (xp𝓎p𝓍 - yp𝓍p𝓍) - (p𝓍xp𝓎 - p𝓍yp𝓍)
|
||||
|
||||
= [x,p𝓍]p𝓎 - [y,p𝓍]p𝓍 = [x,p𝓍]p𝓎 = ιħp𝓎
|
||||
↓
|
||||
0
|
||||
|
||||
[L̂𝓏,p̂𝓍] = ιħp̂𝓎
|
||||
[L̂𝓏,p̂𝓎] = -ιħp̂𝓎
|
||||
[L̂𝓏,p̂𝓏] = 0
|
||||
|
||||
[L̂𝓏,p̂²] = 0
|
||||
i.e. the kinetic energy commutes with the L̂𝓏, so one can measure angular momentum and kinetic energy without disturbing the other.
|
||||
|
||||
Proof:
|
||||
|
||||
[L̂𝓏,p̂²] = [L̂𝓏,p̂𝓍² + p̂𝓎² + p̂𝓏²]
|
||||
|
||||
= [L̂𝓏,p̂𝓍²] + [L̂𝓏,p̂𝓎²] + [L̂𝓏,p̂𝓏²]
|
||||
|
||||
= p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍 + p̂𝓎[L̂𝓏,p̂𝓎] + [L̂𝓏,p̂𝓎]p̂𝓎 + p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏`
|
||||
|
||||
= ιħp̂𝓍p̂𝓎 + ιħp̂𝓎p̂𝓍 - ιħp̂𝓎p̂𝓍 - ιħp̂𝓍p̂𝓎 = 0
|
||||
|
||||
[L̂𝓏,r̂²] = 0 (homework) → [L̂𝓏,1/r²] = 0
|
||||
→ [L̂𝓏,V(│r│)] = 0
|
||||
|
||||
So,
|
||||
|
||||
[L̂𝓏,Ĥ] = 0.
|
||||
|
||||
L̂𝓏 is therefore a constant of motion (time-independent)
|
||||
- Must do work to change?
|
||||
|
||||
|
||||
[L̂²,Ĥ] = 0, so L̂² is also a constant of motion.
|
||||
|
20
lecture_notes/3-14/translation operators
Normal file
20
lecture_notes/3-14/translation operators
Normal file
@ -0,0 +1,20 @@
|
||||
Translation Operators
|
||||
|
||||
Matrix mechanical expression:
|
||||
|
||||
T̂(a𝓍 î) ❙x,y,z❭ = ❙x+a𝓍,y,z❭
|
||||
T̂(a𝓎 î) ❙x,y,z❭ = ❙x,y+a𝓎,z❭
|
||||
T̂(a𝓏 î) ❙x,y,z❭ = ❙x,y,z+a𝓏❭
|
||||
|
||||
Position space form:
|
||||
|
||||
T(a𝓍 î) = exp(-ι p𝓍 a𝓍/ħ )
|
||||
|
||||
Translation operators commute since momentum operators commute.
|
||||
|
||||
But, [x̂ᵢ,p̂ⱼ]=ιħδᵢⱼ
|
||||
|
||||
T̂(𝐚) = exp(-ι p𝓍 a𝓍/ħ ) exp(-ι p𝓎 a𝓎/ħ ) exp(-ι p𝓏 a𝓏/ħ )
|
||||
= exp(-ι 𝐩 𝐚/ħ )
|
||||
|
||||
❬r❙p̂❙Ψ❭ = ħ/ι ∇ ❬r❙Ψ❭
|
1
lecture_notes/3-16/3d eigenstates
Symbolic link
1
lecture_notes/3-16/3d eigenstates
Symbolic link
@ -0,0 +1 @@
|
||||
../3-14/3d eigenstates
|
4
lecture_notes/3-16/Angular Momentum Commutator
Normal file
4
lecture_notes/3-16/Angular Momentum Commutator
Normal file
@ -0,0 +1,4 @@
|
||||
[L̂𝓏,p̂𝓏] = ιħp̂𝓎
|
||||
[L̂𝓏,p̂𝓍] = -ιħp̂𝓎
|
||||
[L̂𝓏,p̂𝓏] = 0
|
||||
[L̂𝓏,p̂²] =
|
1
lecture_notes/3-16/rotational invariance
Symbolic link
1
lecture_notes/3-16/rotational invariance
Symbolic link
@ -0,0 +1 @@
|
||||
../3-14/rotational invariance
|
Loading…
Reference in New Issue
Block a user