diff --git a/lecture_notes/3-14/3d eigenstates b/lecture_notes/3-14/3d eigenstates new file mode 100644 index 0000000..b95912e --- /dev/null +++ b/lecture_notes/3-14/3d eigenstates @@ -0,0 +1,29 @@ +❙r❭=❙x,y,z❭ + +with eigenvalue equations + +x̂❙r❭ = x❙r❭ +ŷ❙r❭ = y❙r❭ +ẑ❙r❭ = z❙r❭ + +An arbitrary state + + ❙Ψ❭ = ∫∫∫ dx dy dz ❙x,y,z❭❬x,y,z❙Ψ❭ + = ∫ d³r ❙r❭ ❬r❙Ψ❭ + + +Understanding a System: + + measure Ĥ, L̂², L̂𝓏 → Constitutes a complete set of commuting observables (except spin) + + I.E., There is a set of eigenstates that are eigenstates of all three operators. + + Ĥ❙E,l,mₗ❭ = E❙E,l,mₗ❭ + + L̂²❙E,l,mₗ❭ = l(l+1)ħ²❙E,l,mₗ❭ + + L̂𝓏❙E,l,mₗ❭ = mₗħ❙E,l,mₗ❭ + + Ĥ must now include angular momentum + + L̂²= (r̂×p̂)(r̂×p̂) = (geometric identity) = r̂²p̂ - (r̂⋅p̂) + ιħr̂⋅p̂ diff --git a/lecture_notes/3-14/rotational invariance b/lecture_notes/3-14/rotational invariance new file mode 100644 index 0000000..a14fb58 --- /dev/null +++ b/lecture_notes/3-14/rotational invariance @@ -0,0 +1,58 @@ +Rotational Invariance + + 𝐩² and 𝐫 are invariant under rotation. + + Consider + + R̂(dϕ k̂) = 1 - ι/ħ L̂𝓏 dϕ + + ❙x - ydϕ,y + xdϕ,z❭ = ❙x,y,z❭ + ∂/∂x ❙ ❭ dϕ + ∂/∂y ❙ ❭ dϕ + + = [1 - ι/ħ p𝓍 (-ydϕ)][1 - ι/ħ p𝓎 (xdϕ)] ❙x,y,z❭ + + = [1 - ι/ħ (x p𝓎 - y p𝓍)dϕ] ❙x,y,z❭ + + (x p𝓎 - y p𝓍) ≝ L̂𝓏 (angular momentum in z axis) + + L̂𝓏 is the z component of L̂ = 𝐫×𝐩̂ + + Commutation: + + [L̂𝓏,p̂𝓏] = [x p𝓎 - y p𝓍,p𝓏] + + = (xp𝓎p𝓍 - yp𝓍p𝓍) - (p𝓍xp𝓎 - p𝓍yp𝓍) + + = [x,p𝓍]p𝓎 - [y,p𝓍]p𝓍 = [x,p𝓍]p𝓎 = ιħp𝓎 + ↓ + 0 + + [L̂𝓏,p̂𝓍] = ιħp̂𝓎 + [L̂𝓏,p̂𝓎] = -ιħp̂𝓎 + [L̂𝓏,p̂𝓏] = 0 + + [L̂𝓏,p̂²] = 0 + i.e. the kinetic energy commutes with the L̂𝓏, so one can measure angular momentum and kinetic energy without disturbing the other. + + Proof: + + [L̂𝓏,p̂²] = [L̂𝓏,p̂𝓍² + p̂𝓎² + p̂𝓏²] + + = [L̂𝓏,p̂𝓍²] + [L̂𝓏,p̂𝓎²] + [L̂𝓏,p̂𝓏²] + + = p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍 + p̂𝓎[L̂𝓏,p̂𝓎] + [L̂𝓏,p̂𝓎]p̂𝓎 + p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏` + + = ιħp̂𝓍p̂𝓎 + ιħp̂𝓎p̂𝓍 - ιħp̂𝓎p̂𝓍 - ιħp̂𝓍p̂𝓎 = 0 + + [L̂𝓏,r̂²] = 0 (homework) → [L̂𝓏,1/r²] = 0 + → [L̂𝓏,V(│r│)] = 0 + + So, + + [L̂𝓏,Ĥ] = 0. + + L̂𝓏 is therefore a constant of motion (time-independent) + - Must do work to change? + + + [L̂²,Ĥ] = 0, so L̂² is also a constant of motion. + diff --git a/lecture_notes/3-14/translation operators b/lecture_notes/3-14/translation operators new file mode 100644 index 0000000..e8d4232 --- /dev/null +++ b/lecture_notes/3-14/translation operators @@ -0,0 +1,20 @@ +Translation Operators + + Matrix mechanical expression: + + T̂(a𝓍 î) ❙x,y,z❭ = ❙x+a𝓍,y,z❭ + T̂(a𝓎 î) ❙x,y,z❭ = ❙x,y+a𝓎,z❭ + T̂(a𝓏 î) ❙x,y,z❭ = ❙x,y,z+a𝓏❭ + + Position space form: + + T(a𝓍 î) = exp(-ι p𝓍 a𝓍/ħ ) + + Translation operators commute since momentum operators commute. + + But, [x̂ᵢ,p̂ⱼ]=ιħδᵢⱼ + + T̂(𝐚) = exp(-ι p𝓍 a𝓍/ħ ) exp(-ι p𝓎 a𝓎/ħ ) exp(-ι p𝓏 a𝓏/ħ ) + = exp(-ι 𝐩 𝐚/ħ ) + + ❬r❙p̂❙Ψ❭ = ħ/ι ∇ ❬r❙Ψ❭ \ No newline at end of file diff --git a/lecture_notes/3-16/3d eigenstates b/lecture_notes/3-16/3d eigenstates new file mode 120000 index 0000000..beb3793 --- /dev/null +++ b/lecture_notes/3-16/3d eigenstates @@ -0,0 +1 @@ +../3-14/3d eigenstates \ No newline at end of file diff --git a/lecture_notes/3-16/Angular Momentum Commutator b/lecture_notes/3-16/Angular Momentum Commutator new file mode 100644 index 0000000..e6371b2 --- /dev/null +++ b/lecture_notes/3-16/Angular Momentum Commutator @@ -0,0 +1,4 @@ +[L̂𝓏,p̂𝓏] = ιħp̂𝓎 +[L̂𝓏,p̂𝓍] = -ιħp̂𝓎 +[L̂𝓏,p̂𝓏] = 0 +[L̂𝓏,p̂²] = \ No newline at end of file diff --git a/lecture_notes/3-16/rotational invariance b/lecture_notes/3-16/rotational invariance new file mode 120000 index 0000000..f6d975a --- /dev/null +++ b/lecture_notes/3-16/rotational invariance @@ -0,0 +1 @@ +../3-14/rotational invariance \ No newline at end of file