mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2025-01-18 23:45:04 +00:00
59 lines
1.8 KiB
Plaintext
59 lines
1.8 KiB
Plaintext
Rotational Invariance
|
||
|
||
𝐩² and 𝐫 are invariant under rotation.
|
||
|
||
Consider
|
||
|
||
R̂(dϕ k̂) = 1 - ι/ħ L̂𝓏 dϕ
|
||
|
||
❙x - ydϕ,y + xdϕ,z❭ = ❙x,y,z❭ + ∂/∂x ❙ ❭ dϕ + ∂/∂y ❙ ❭ dϕ
|
||
|
||
= [1 - ι/ħ p𝓍 (-ydϕ)][1 - ι/ħ p𝓎 (xdϕ)] ❙x,y,z❭
|
||
|
||
= [1 - ι/ħ (x p𝓎 - y p𝓍)dϕ] ❙x,y,z❭
|
||
|
||
(x p𝓎 - y p𝓍) ≝ L̂𝓏 (angular momentum in z axis)
|
||
|
||
L̂𝓏 is the z component of L̂ = 𝐫×𝐩̂
|
||
|
||
Commutation:
|
||
|
||
[L̂𝓏,p̂𝓏] = [x p𝓎 - y p𝓍,p𝓏]
|
||
|
||
= (xp𝓎p𝓍 - yp𝓍p𝓍) - (p𝓍xp𝓎 - p𝓍yp𝓍)
|
||
|
||
= [x,p𝓍]p𝓎 - [y,p𝓍]p𝓍 = [x,p𝓍]p𝓎 = ιħp𝓎
|
||
↓
|
||
0
|
||
|
||
[L̂𝓏,p̂𝓍] = ιħp̂𝓎
|
||
[L̂𝓏,p̂𝓎] = -ιħp̂𝓎
|
||
[L̂𝓏,p̂𝓏] = 0
|
||
|
||
[L̂𝓏,p̂²] = 0
|
||
i.e. the kinetic energy commutes with the L̂𝓏, so one can measure angular momentum and kinetic energy without disturbing the other.
|
||
|
||
Proof:
|
||
|
||
[L̂𝓏,p̂²] = [L̂𝓏,p̂𝓍² + p̂𝓎² + p̂𝓏²]
|
||
|
||
= [L̂𝓏,p̂𝓍²] + [L̂𝓏,p̂𝓎²] + [L̂𝓏,p̂𝓏²]
|
||
|
||
= p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍 + p̂𝓎[L̂𝓏,p̂𝓎] + [L̂𝓏,p̂𝓎]p̂𝓎 + p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏`
|
||
|
||
= ιħp̂𝓍p̂𝓎 + ιħp̂𝓎p̂𝓍 - ιħp̂𝓎p̂𝓍 - ιħp̂𝓍p̂𝓎 = 0
|
||
|
||
[L̂𝓏,r̂²] = 0 (homework) → [L̂𝓏,1/r²] = 0
|
||
→ [L̂𝓏,V(│r│)] = 0
|
||
|
||
So,
|
||
|
||
[L̂𝓏,Ĥ] = 0.
|
||
|
||
L̂𝓏 is therefore a constant of motion (time-independent)
|
||
- Must do work to change?
|
||
|
||
|
||
[L̂²,Ĥ] = 0, so L̂² is also a constant of motion.
|
||
|