phy-4600/solutions/chap7/prob7

86 lines
3.2 KiB
Plaintext
Raw Permalink Normal View History

Angular momentum system is prepared in the state
2016-03-23 23:43:48 +00:00
❙Ψ❭ = 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι͟1͟ ❙20❭
√10 √10 √10 √10
Possible results of 𝐋² measurement?
The 𝐋̂² operator was developed in lecture and in the text. The related eigenvalue equation is
𝐋̂²❙lm❭ = l(l+1) ħ²❙lm❭
The possible measurements of 𝐋̂² for this system are those associated with the initial state vector, i.e. the values lm = 11, 10, 22, 20.
For lm = 11 & 10, 𝐋̂² = 2ħ²
For lm = 22 & 20, 𝐋̂² = 6ħ².
Since the same 𝐋̂² is measures for two states, the sum of the probabilities of measuring those states is the probability of measuring that squared angular momentum.
2016-03-23 23:43:48 +00:00
𝓟(𝐋̂²=2ħ²) = │❬11❙Ψ❭│² + │❬10❙Ψ❭│².
❬11❙Ψ❭ = ❬11❙⎛ 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭ ⎞
⎝ √10 √10 √10 √10 ⎠.
The eigenstates for this system are LaPlace's spherical harmonic functions, which comprise an orthogonal set, I.E.:
❬lm❙lm❭ = δₗₗ′ δₘₘ′.
│❬11❙Ψ❭│² = │❬11❙ 1͟ ❙11❭│² = ¹/₁₀.
│ √10 │
│❬10❙Ψ❭│² = │❬10❙ 2͟ ❙10❭│² = ⁴/₁₀.
│ √10 │
(𝐚)
𝓟(𝐋̂²=2ħ²) = ½.
No need to calculate the other set: since the vector is normalized, the probability of measuring 𝐋̂²=6ħ² is also
𝓟(𝐋̂²=6ħ²) = ½.
2016-03-23 23:43:48 +00:00
For L̂𝓏 the eigenvalue equation is
2016-03-23 23:43:48 +00:00
𝓏❙lm❭ = mħ❙lm❭,
so the expected measurements are,
2016-03-23 23:43:48 +00:00
for lm = 11 & 21, L̂𝓏 = ħ.
2016-03-23 23:43:48 +00:00
for lm = 10 & 20, L̂𝓏 = 0.
In this case, the probabilities will be
2016-03-23 23:43:48 +00:00
𝓟(L̂𝓏=ħ) = │❬11❙Ψ❭│² + │❬21❙Ψ❭│² and
2016-03-23 23:43:48 +00:00
𝓟(L̂𝓏=0) = │❬10❙Ψ❭│² + │❬20❙Ψ❭│².
The method has already been demonstrated, so taking the probability components and summing,
(𝐛)
2016-03-23 23:43:48 +00:00
𝓟(L̂𝓏=ħ) = ²/₁₀.
2016-03-23 23:43:48 +00:00
𝓟(L̂𝓏=0) = ⁸/₁₀.
Histogram of probabilities:
𝓟 𝓟
╭─────────────────┬────────────────╮
1 │ │ │ 1
│ │ │
2016-03-23 23:43:48 +00:00
.8 │ │ ▓ │ .8
│ │ ▓ │
│ │ ▓ │
.5 │ ▓        ▓    │           ▓    │ .5
   │   ▓        ▓    │           ▓    │    
   │   ▓        ▓    │           ▓    │    
   │   ▓        ▓    │   ▓       ▓    │    
.1 │   ▓        ▓    │   ▓       ▓    │ .1
   ╰─────────────────┼────────────────╯
2016-03-23 23:43:48 +00:00
2ħ² 6ħ² 0 ħ
𝐋̂² L̂𝓏