mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2025-01-19 02:25:04 +00:00
89 lines
3.2 KiB
Plaintext
89 lines
3.2 KiB
Plaintext
|
Angular momentum system is prepared in the state
|
|||
|
|
|||
|
❙Ψ❭ = 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭
|
|||
|
√10 √10 √10 √10
|
|||
|
|
|||
|
|
|||
|
Possible results of 𝐋² measurement?
|
|||
|
|
|||
|
The 𝐋̂² operator was developed in lecture and in the text. The related eigenvalue equation is
|
|||
|
|
|||
|
𝐋̂²❙lm❭ = l(l+1) ħ²❙lm❭
|
|||
|
|
|||
|
The possible measurements of 𝐋̂² for this system are those associated with the initial state vector, i.e. the values lm = 11, 10, 22, 20.
|
|||
|
|
|||
|
For lm = 11 & 10, 𝐋̂² = 2ħ²
|
|||
|
|
|||
|
For lm = 22 & 20, 𝐋̂² = 6ħ².
|
|||
|
|
|||
|
Since the same 𝐋̂² is measures for two states, the sum of the probabilities of measuring those states is the probability of measuring that squared angular momentum.
|
|||
|
|
|||
|
𝓟(𝐋̂²=2ħ²) = │❬11❙Ψ❭│² + │❬10❙Ψ❭│².
|
|||
|
|
|||
|
❬11❙Ψ❭ = ❬11❙⎛ 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭ ⎞
|
|||
|
⎝ √10 √10 √10 √10 ⎠.
|
|||
|
|
|||
|
The eigenstates for this system are LaPlace's spherical harmonic functions, which comprise an orthogonal set, I.E.:
|
|||
|
|
|||
|
❬lm❙l′m′❭ = δₗₗ′ δₘₘ′.
|
|||
|
|
|||
|
│❬11❙Ψ❭│² = │❬11❙ 1͟ ❙11❭│² = ¹/₁₀.
|
|||
|
│ √10 │
|
|||
|
|
|||
|
│❬10❙Ψ❭│² = │❬10❙ 2͟ ❙10❭│² = ⁴/₁₀.
|
|||
|
│ √10 │
|
|||
|
|
|||
|
(𝐚)
|
|||
|
𝓟(𝐋̂²=2ħ²) = ½.
|
|||
|
|
|||
|
No need to calculate the other set: since the vector is normalized, the probability of measuring 𝐋̂²=6ħ² is also
|
|||
|
|
|||
|
𝓟(𝐋̂²=6ħ²) = ½.
|
|||
|
|
|||
|
|
|||
|
For 𝐋̂𝓏 the eigenvalue equation is
|
|||
|
|
|||
|
𝐋̂𝓏❙lm❭ = mħ❙lm❭,
|
|||
|
|
|||
|
so the expected measurements are,
|
|||
|
|
|||
|
for lm = 11 & 21, 𝐋̂𝓏 = ħ.
|
|||
|
|
|||
|
for lm = 10 & 20, 𝐋̂𝓏 = 0.
|
|||
|
|
|||
|
In this case, the probabilities will be
|
|||
|
|
|||
|
𝓟(𝐋̂𝓏=ħ) = │❬11❙Ψ❭│² + │❬21❙Ψ❭│² and
|
|||
|
|
|||
|
𝓟(𝐋̂𝓏=0) = │❬10❙Ψ❭│² + │❬20❙Ψ❭│².
|
|||
|
|
|||
|
The method has already been demonstrated, so taking the probability components and summing,
|
|||
|
|
|||
|
(𝐛)
|
|||
|
|
|||
|
𝓟(𝐋̂𝓏=ħ) = ²/₁₀.
|
|||
|
|
|||
|
𝓟(𝐋̂𝓏=0) = ⁸/₁₀.
|
|||
|
|
|||
|
Histogram of probabilities:
|
|||
|
|
|||
|
|
|||
|
𝓟 𝓟
|
|||
|
╭─────────────────┬────────────────╮
|
|||
|
1 │ │ │ 1
|
|||
|
│ │ │
|
|||
|
.8 │ │ ▧ │ .8
|
|||
|
│ │ ▧ │
|
|||
|
│ │ ▧ │
|
|||
|
.5 │ ▧ ▧ │ ▧ │ .5
|
|||
|
│ ▧ ▧ │ ▧ │
|
|||
|
│ ▧ ▧ │ ▧ │
|
|||
|
│ ▧ ▧ │ ▧ ▧ │
|
|||
|
.1 │ ▧ ▧ │ ▧ ▧ │ .1
|
|||
|
╰─────────────────┼────────────────╯
|
|||
|
2ħ² 6ħ² │ 0 ħ
|
|||
|
𝐋̂² │ 𝐋̂𝓏
|
|||
|
|
|||
|
h
|
|||
|
|