phy-4600/solutions/chap7/prob7
2016-03-26 18:02:07 -04:00

86 lines
3.2 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Angular momentum system is prepared in the state
❙Ψ❭ = 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι͟1͟ ❙20❭
√10 √10 √10 √10
Possible results of 𝐋² measurement?
The 𝐋̂² operator was developed in lecture and in the text. The related eigenvalue equation is
𝐋̂²❙lm❭ = l(l+1) ħ²❙lm❭
The possible measurements of 𝐋̂² for this system are those associated with the initial state vector, i.e. the values lm = 11, 10, 22, 20.
For lm = 11 & 10, 𝐋̂² = 2ħ²
For lm = 22 & 20, 𝐋̂² = 6ħ².
Since the same 𝐋̂² is measures for two states, the sum of the probabilities of measuring those states is the probability of measuring that squared angular momentum.
𝓟(𝐋̂²=2ħ²) = │❬11❙Ψ❭│² + │❬10❙Ψ❭│².
❬11❙Ψ❭ = ❬11❙⎛ 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭ ⎞
⎝ √10 √10 √10 √10 ⎠.
The eigenstates for this system are LaPlace's spherical harmonic functions, which comprise an orthogonal set, I.E.:
❬lm❙lm❭ = δₗₗ′ δₘₘ′.
│❬11❙Ψ❭│² = │❬11❙ 1͟ ❙11❭│² = ¹/₁₀.
│ √10 │
│❬10❙Ψ❭│² = │❬10❙ 2͟ ❙10❭│² = ⁴/₁₀.
│ √10 │
(𝐚)
𝓟(𝐋̂²=2ħ²) = ½.
No need to calculate the other set: since the vector is normalized, the probability of measuring 𝐋̂²=6ħ² is also
𝓟(𝐋̂²=6ħ²) = ½.
For L̂𝓏 the eigenvalue equation is
𝓏❙lm❭ = mħ❙lm❭,
so the expected measurements are,
for lm = 11 & 21, L̂𝓏 = ħ.
for lm = 10 & 20, L̂𝓏 = 0.
In this case, the probabilities will be
𝓟(L̂𝓏=ħ) = │❬11❙Ψ❭│² + │❬21❙Ψ❭│² and
𝓟(L̂𝓏=0) = │❬10❙Ψ❭│² + │❬20❙Ψ❭│².
The method has already been demonstrated, so taking the probability components and summing,
(𝐛)
𝓟(L̂𝓏=ħ) = ²/₁₀.
𝓟(L̂𝓏=0) = ⁸/₁₀.
Histogram of probabilities:
𝓟 𝓟
╭─────────────────┬────────────────╮
1 │ │ │ 1
│ │ │
.8 │ │ ▓ │ .8
│ │ ▓ │
│ │ ▓ │
.5 │ ▓        ▓    │           ▓    │ .5
   │   ▓        ▓    │           ▓    │    
   │   ▓        ▓    │           ▓    │    
   │   ▓        ▓    │   ▓       ▓    │    
.1 │   ▓        ▓    │   ▓       ▓    │ .1
   ╰─────────────────┼────────────────╯
2ħ² 6ħ² 0 ħ
𝐋̂² L̂𝓏