mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-05 02:05:06 +00:00
126 lines
4.7 KiB
Plaintext
126 lines
4.7 KiB
Plaintext
There is an angular momentum system with the state function
|
||
|
||
❙Ψ❭ = 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭
|
||
√29 √29 √29
|
||
|
||
In general the eigenvalue equation for the L̂𝓏 operator is
|
||
|
||
L̂𝓏❙l m❭ = m ħ❙l m❭, where m ħ are the possible measurements.
|
||
|
||
The possible measurements of this system, then, are, for m = {-1, 0, 1}:
|
||
|
||
-ħ, 0, ħ.
|
||
|
||
The probability for is given by
|
||
|
||
│❬1 m′❙Ψ❭│², with m′ = {-1, 0, 1}.
|
||
|
||
The eigenstates form an orthogonal set such that
|
||
|
||
❬l′ m′❙l m❭ = δₗₗ′ δₘₘ′.
|
||
|
||
Then,
|
||
|
||
❬1 1❙Ψ❭ = ❬1 1❙⎛ 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭ ⎞
|
||
⎝√29 √29 √29 ⎠
|
||
|
||
= ❬1 1❙ 2͟ ❙1 1❭ = 2͟ .
|
||
√29 √29
|
||
|
||
(𝐚)
|
||
│❬1 1❙Ψ❭│² = 4͟ = ⁴/₂₉.
|
||
29
|
||
|
||
Similarly,
|
||
|
||
│❬1 0❙Ψ❭│² = 9͟ = ⁹/₂₉ and
|
||
29
|
||
|
||
│❬1 -1❙Ψ❭│² = 1͟6͟ = ¹⁶/₂₉.
|
||
29
|
||
|
||
|
||
The eigenvalue equations for the L̂𝓏 operator are simplified because L̂𝓏 is diagonal in the z basis. The L̂𝓍 operator produces the same measurements, but the matrix representation of the L̂𝓍 operator must be applied. It is
|
||
|
||
L̂𝓍 ≐
|
||
ħ͟ ⎛ 0 1 0 ⎞
|
||
√2 ⎜ 1 0 1 ⎟
|
||
⎝ 0 1 0 ⎠.
|
||
|
||
The general eigenvalue equation is
|
||
|
||
L̂𝓍❙λ,mₗ❭ = λ❙λ,mₗ❭, where the eigenvalues λ are the possible measured values of L̂𝓍. The eigenvalues can be obtained from the secular equation
|
||
|
||
det│L̂𝓍 - λ𝕀│ = 0
|
||
|
||
ħ͟ ⎛ 0 1 0 ⎞ - ⎛ λ 0 0 ⎞ = ⎛ -λ ħ/√2 0 ⎞
|
||
√2 ⎜ 1 0 1 ⎟ ⎜ 0 λ 0 ⎟ ⎜ ħ/√2 -λ ħ/√2 ⎟
|
||
⎝ 0 1 0 ⎠ ⎝ 0 0 λ ⎠ ⎝ 0 ħ/√2 -λ ⎠.
|
||
|
||
│⎛ -λ ħ/√2 0 ⎞│ = (-λ(λ² - ħ²/2) + (ħ²/2) λ) = -λ³ + ħ²λ.
|
||
│⎜ ħ/√2 -λ ħ/√2 ⎟│
|
||
│⎝ 0 ħ/√2 -λ ⎠│
|
||
|
||
λ(-λ² + ħ²) = -λ(λ² - ħ²)) = 0.
|
||
|
||
One eigenvalue is immediately obvious: λ = 0. The other two are given by
|
||
|
||
λ² = ħ², so the eigenvalues are
|
||
λ = 0,±ħ.
|
||
|
||
These are exactly the expected measured values for a spin component.
|
||
|
||
The eigenvalue equations are
|
||
|
||
L̂𝓍❙1 1❭𝓍 = ħ❙1 1❭𝓍 ,
|
||
L̂𝓍❙1 0❭𝓍 = 0❙1 1❭𝓍 , and
|
||
L̂𝓍❙1 -1❭𝓍 = -ħ❙1 -1❭𝓍 .
|
||
|
||
Matrix analysis can be used to find the eigenvectors for these eigenstates. The first one is
|
||
|
||
ħ͟ ⎛ 0 1 0 ⎞ ⎛ a ⎞ = ħ ⎛ a ⎞, which gives the system
|
||
√2 ⎜ 1 0 1 ⎟ ⎜ b ⎟ ⎜ b ⎟
|
||
⎝ 0 1 0 ⎠ ⎝ c ⎠ ⎝ c ⎠
|
||
|
||
⎧ b = √2 a
|
||
⎨ (a + c) = √2 b
|
||
⎩ b = √2 c
|
||
|
||
Following this to conclusion just like with spin operators will provide the eigenstates, and then from that the wave function can be expressed using the x basis, and probabilities obtained.
|
||
|
||
|
||
I need to stop here, but I will produce at least sthe histogram from part a:
|
||
|
||
(𝐜)
|
||
|
||
𝓟(L̂𝓏)
|
||
|
||
╭─────────────────────────╮
|
||
│ │
|
||
│ │
|
||
│ │
|
||
│ │
|
||
│ │
|
||
│ │
|
||
│ │
|
||
¹⁶/₂₉ ├ ▓ │
|
||
│ ▓ │
|
||
│ ▓ │
|
||
│ ▓ │
|
||
│ ▓ │
|
||
│ ▓ │
|
||
│ ▓ │
|
||
⁹/₂₉ ├ ▓ ▓ │
|
||
│ ▓ ▓ │
|
||
│ ▓ ▓ │
|
||
│ ▓ ▓ │
|
||
│ ▓ ▓ │
|
||
⁴/₂₉ ├ ▓ ▓ ▓ │
|
||
│ ▓ ▓ ▓ │
|
||
│ ▓ ▓ ▓ │
|
||
│ ▓ ▓ ▓ │
|
||
╰─────────────────────────╯
|
||
-ħ 0 ħ
|
||
|
||
|