phy-4600/solutions/chap7/prob5
2016-03-26 18:02:07 -04:00

126 lines
4.7 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

There is an angular momentum system with the state function
❙Ψ❭ = 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭
√29 √29 √29
In general the eigenvalue equation for the L̂𝓏 operator is
𝓏❙l m❭ = m ħ❙l m❭, where m ħ are the possible measurements.
The possible measurements of this system, then, are, for m = {-1, 0, 1}:
-ħ, 0, ħ.
The probability for is given by
│❬1 m❙Ψ❭│², with m = {-1, 0, 1}.
The eigenstates form an orthogonal set such that
❬l m❙l m❭ = δₗₗ′ δₘₘ′.
Then,
❬1 1❙Ψ❭ = ❬1 1❙⎛ 2͟ ❙1 1❭ + ι 3͟ ❙1 0❭ - 4͟ ❙1 -1❭ ⎞
⎝√29 √29 √29 ⎠
= ❬1 1❙ 2͟ ❙1 1❭ = 2͟ .
√29 √29
(𝐚)
│❬1 1❙Ψ❭│² = 4͟ = ⁴/₂₉.
29
Similarly,
│❬1 0❙Ψ❭│² = 9͟ = ⁹/₂₉ and
29
│❬1 -1❙Ψ❭│² = 1͟6͟ = ¹⁶/₂₉.
29
The eigenvalue equations for the L̂𝓏 operator are simplified because L̂𝓏 is diagonal in the z basis. The L̂𝓍 operator produces the same measurements, but the matrix representation of the L̂𝓍 operator must be applied. It is
𝓍
ħ͟ ⎛ 0 1 0 ⎞
√2 ⎜ 1 0 1 ⎟
⎝ 0 1 0 ⎠.
The general eigenvalue equation is
𝓍❙λ,mₗ❭ = λ❙λ,mₗ❭, where the eigenvalues λ are the possible measured values of L̂𝓍. The eigenvalues can be obtained from the secular equation
det│L̂𝓍 - λ𝕀│ = 0
ħ͟ ⎛ 0 1 0 ⎞ - ⎛ λ 0 0 ⎞ = ⎛ -λ ħ/√2 0 ⎞
√2 ⎜ 1 0 1 ⎟ ⎜ 0 λ 0 ⎟ ⎜ ħ/√2 -λ ħ/√2 ⎟
⎝ 0 1 0 ⎠ ⎝ 0 0 λ ⎠ ⎝ 0 ħ/√2 -λ ⎠.
│⎛ -λ ħ/√2 0 ⎞│ = (-λ(λ² - ħ²/2) + (ħ²/2) λ) = -λ³ + ħ²λ.
│⎜ ħ/√2 -λ ħ/√2 ⎟│
│⎝ 0 ħ/√2 -λ ⎠│
λ(-λ² + ħ²) = -λ(λ² - ħ²)) = 0.
One eigenvalue is immediately obvious: λ = 0. The other two are given by
λ² = ħ², so the eigenvalues are
λ = 0,±ħ.
These are exactly the expected measured values for a spin component.
The eigenvalue equations are
𝓍❙1 1❭𝓍 = ħ❙1 1❭𝓍 ,
𝓍❙1 0❭𝓍 = 0❙1 1❭𝓍 , and
𝓍❙1 -1❭𝓍 = -ħ❙1 -1❭𝓍 .
Matrix analysis can be used to find the eigenvectors for these eigenstates. The first one is
ħ͟ ⎛ 0 1 0 ⎞ ⎛ a ⎞ = ħ ⎛ a ⎞, which gives the system
√2 ⎜ 1 0 1 ⎟ ⎜ b ⎟ ⎜ b ⎟
⎝ 0 1 0 ⎠ ⎝ c ⎠ ⎝ c ⎠
⎧ b = √2 a
⎨ (a + c) = √2 b
⎩ b = √2 c
Following this to conclusion just like with spin operators will provide the eigenstates, and then from that the wave function can be expressed using the x basis, and probabilities obtained.
I need to stop here, but I will produce at least sthe histogram from part a:
(𝐜)
𝓟(L̂𝓏)
╭─────────────────────────╮
│ │
│ │
│ │
│ │
│ │
                     │ 
   │                         │    
¹⁶/₂₉ ├   ▓                     │    
 │   ▓                     │    
 │   ▓                     │ 
 │   ▓                     │ 
 │   ▓                     │ 
 │   ▓                     │ 
│   ▓                     │ 
⁹/₂₉ ├   ▓        ▓            │ 
 │   ▓        ▓            │ 
 │   ▓        ▓            │ 
 │   ▓        ▓            │ 
 │   ▓        ▓            │ 
⁴/₂₉ ├   ▓        ▓        ▓   │ 
 │   ▓        ▓        ▓   │ 
 │   ▓        ▓        ▓   │ 
 │   ▓        ▓        ▓   │ 
   ╰─────────────────────────╯
-ħ 0 ħ