phy-4600/lecture_notes/3-25/central potential states

132 lines
6.0 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Bound states of a central potential
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
For any central potential V(r) = V(│r│) the eigenfunctions of H can be
separated as
❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ)
(pic) The radial S.E. is
⎡−͟ħ͟²⎛ ∂͟²͟ + 2͟ ∂͟ ⎞ + l͟(l͟+͟1͟)ħ͟² + V(│r│) ⎤ Rₑ﹐ₗ(r) = E Rₑ﹐ₗ(r)
⎣2m ⎝ ∂r² r ∂r ⎠ 2 m r² ⎦
(pic) Developed radial schrodinger equation using U(r) replacement
Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r
⎡−͟ħ͟²⎛ ∂͟²͟ + 2͟ ∂͟ ⎞⎤ U͟ = E ∂͟²͟ U
⎣2m ⎝ ∂r² r ∂r ⎠⎦ r ∂r²
∂͟ U͟ = 1͟ ∂͟ U - U͟
∂r r r ∂r r²
∂͟²͟ U͟ = 1͟ ∂͟²͟ U + 2͟U͟ - 2͟ ∂͟ U
∂r² r r ∂r² r³ r²∂r
⎡−͟ħ͟²⎛ ∂͟²͟ U͟ + 2͟ ∂͟ U͟ ⎞⎤ = E ∂͟²͟ U
⎣2m ⎝ ∂r² r r ∂r r ⎠⎦ ∂r²
────────────────────────────────────────────────────────────────────────────────
⎡−͟ħ͟²⎛ 1͟ ∂͟²͟ U + 2͟U͟ - 2͟ ∂͟ U + 2͟ 1͟ ∂͟ U - 2͟ U͟ ⎞⎤
⎣2m ⎝ r ∂r² r³ r²∂r r r ∂r r r² ⎠⎦
= E 1͟ ∂͟²͟ U + E 2͟U͟ - E 2͟ ∂͟U
r ∂r² r³ r²∂r
────────────────────────────────────────────────────────────────────────────────
⎡−͟ħ͟²⎛ 1͟ ∂͟²͟ + 2͟ - 2͟ ∂͟ + 2͟ ∂͟ - 2͟ ⎞U⎤
⎣2m ⎝ r ∂r² r³ r²∂r r² ∂r r³⎠ ⎦
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
⎝r ∂r² r³ r²∂r⎠
────────────────────────────────────────────────────────────────────────────────
⎡⎛−͟ħ͟² 1͟ ∂͟²͟ + −͟ħ͟² 2͟ - −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ ∂͟ - −͟ħ͟² 2͟ ⎞U⎤
⎣⎝2m r ∂r² 2m r³ 2m r²∂r 2m r² ∂r 2m r³⎠ ⎦
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
⎝r ∂r² r³ r²∂r⎠
────────────────────────────────────────────────────────────────────────────────
⎡⎛−͟ħ͟² 1͟ ∂͟²͟ - −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ - −͟ħ͟² 2͟ ⎞U⎤
⎣⎝2m r ∂r² 2m r²∂r 2m r² ∂r 2m r³ 2m r³⎠ ⎦
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
⎝r ∂r² r³ r²∂r⎠
────────────────────────────────────────────────────────────────────────────────
Not sure this makes sense, but the final result is
⎡−͟ħ͟²∂͟²͟ - ħ͟² l(l+1) + V(│r│)⎤ Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
⎣2m ∂r² 2mr² ⎦
Normalization Condition
∞ ∞
∫ │Rₑ﹐ₗ│² r² dr = ∫ │Uₑ﹐ₗ│² dr
0 0
If V(r) is not more singular at the origin than 1/r^2 then the SE has power
series solutions.
Thus for small r we take U(r) → rˢ
(pic) substitute U(r) = rˢ into S.E.
Uₑ﹐ₗ(r) ≈ rˢ
⎡−͟ħ͟² ∂͟²͟ + ħ͟² l(l+1) + V(│r│)⎤ rˢ = E rˢ
⎣2m ∂r² 2mr² ⎦
−͟ħ͟² s(s-1)∂͟ rˢ⁻² + l͟ (l+1)ħ²rˢ⁻² + V(│r│)rˢ = E rˢ
2m ∂r 2m
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞rˢ⁻² + V(│r│)rˢ = E rˢ
2m ⎝ ∂r 2m ⎠
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞rˢ⁻² + V(│r│)rˢ = E rˢ
2m ⎝ ∂r 2m ⎠
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞ + V(│r│)r² = E r²
2m ⎝ ∂r 2m ⎠
For r → 0,
r² → 0,
V(r) r² → 0.
s(s-1) + l(l+1) = 0
s = l+1 or s = -l
If s = -l, the normalization conditions
∞ │∞
∫ r⁻²ˡ dr = 1/(2l-1) 1/(r²ˡ⁻¹) │ → diverges
0 │0
So, for small r,
Uₑ﹐ₗ(r) → (r→0) → rˡ⁺¹;
Rₑ﹐ₗ(r) → (r→0) → rˡ.
Eigenfunctions
━━━━━━━━━━━━━━
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ /r Yₗ﹐ₘ(θ,φ)
⇒ d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0
dρ² ρ² ⎝ρ 4⎠
⎡−͟ħ͟² d² + l͟ (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
⎣2m dr² 2mr² r ⎦
ρ = √⎛8͟m͟ │E│⎞r
⎝ ħ² ⎠
λ = Z͟e͟² √⎛_͟m͟_͟ ⎞
ħ ⎝2│E│⎠