Bound states of a central potential ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ For any central potential V(r) = V(│r│) the eigenfunctions of H can be separated as ❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) (pic) The radial S.E. is ⎡−͟ħ͟²⎛ ∂͟²͟ + 2͟ ∂͟ ⎞ + l͟(l͟+͟1͟)ħ͟² + V(│r│) ⎤ Rₑ﹐ₗ(r) = E Rₑ﹐ₗ(r) ⎣2m ⎝ ∂r² r ∂r ⎠ 2 m r² ⎦ (pic) Developed radial schrodinger equation using U(r) replacement Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r ⎡−͟ħ͟²⎛ ∂͟²͟ + 2͟ ∂͟ ⎞⎤ U͟ = E ∂͟²͟ U ⎣2m ⎝ ∂r² r ∂r ⎠⎦ r ∂r² ∂͟ U͟ = 1͟ ∂͟ U - U͟ ∂r r r ∂r r² ∂͟²͟ U͟ = 1͟ ∂͟²͟ U + 2͟U͟ - 2͟ ∂͟ U ∂r² r r ∂r² r³ r²∂r ⎡−͟ħ͟²⎛ ∂͟²͟ U͟ + 2͟ ∂͟ U͟ ⎞⎤ = E ∂͟²͟ U ⎣2m ⎝ ∂r² r r ∂r r ⎠⎦ ∂r² ──────────────────────────────────────────────────────────────────────────────── ⎡−͟ħ͟²⎛ 1͟ ∂͟²͟ U + 2͟U͟ - 2͟ ∂͟ U + 2͟ 1͟ ∂͟ U - 2͟ U͟ ⎞⎤ ⎣2m ⎝ r ∂r² r³ r²∂r r r ∂r r r² ⎠⎦ = E 1͟ ∂͟²͟ U + E 2͟U͟ - E 2͟ ∂͟U r ∂r² r³ r²∂r ──────────────────────────────────────────────────────────────────────────────── ⎡−͟ħ͟²⎛ 1͟ ∂͟²͟ + 2͟ - 2͟ ∂͟ + 2͟ ∂͟ - 2͟ ⎞U⎤ ⎣2m ⎝ r ∂r² r³ r²∂r r² ∂r r³⎠ ⎦ = E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U ⎝r ∂r² r³ r²∂r⎠ ──────────────────────────────────────────────────────────────────────────────── ⎡⎛−͟ħ͟² 1͟ ∂͟²͟ + −͟ħ͟² 2͟ - −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ ∂͟ - −͟ħ͟² 2͟ ⎞U⎤ ⎣⎝2m r ∂r² 2m r³ 2m r²∂r 2m r² ∂r 2m r³⎠ ⎦ = E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U ⎝r ∂r² r³ r²∂r⎠ ──────────────────────────────────────────────────────────────────────────────── ⎡⎛−͟ħ͟² 1͟ ∂͟²͟ - −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ - −͟ħ͟² 2͟ ⎞U⎤ ⎣⎝2m r ∂r² 2m r²∂r 2m r² ∂r 2m r³ 2m r³⎠ ⎦ = E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U ⎝r ∂r² r³ r²∂r⎠ ──────────────────────────────────────────────────────────────────────────────── ↓ Not sure this makes sense, but the final result is ↓ ⎡−͟ħ͟²∂͟²͟ - ħ͟² l(l+1) + V(│r│)⎤ Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r) ⎣2m ∂r² 2mr² ⎦ Normalization Condition ∞ ∞ ∫ │Rₑ﹐ₗ│² r² dr = ∫ │Uₑ﹐ₗ│² dr 0 0 If V(r) is not more singular at the origin than 1/r^2 then the SE has power series solutions. Thus for small r we take U(r) → rˢ (pic) substitute U(r) = rˢ into S.E. Uₑ﹐ₗ(r) ≈ rˢ ⎡−͟ħ͟² ∂͟²͟ + ħ͟² l(l+1) + V(│r│)⎤ rˢ = E rˢ ⎣2m ∂r² 2mr² ⎦ −͟ħ͟² s(s-1)∂͟ rˢ⁻² + l͟ (l+1)ħ²rˢ⁻² + V(│r│)rˢ = E rˢ 2m ∂r 2m −͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞rˢ⁻² + V(│r│)rˢ = E rˢ 2m ⎝ ∂r 2m ⎠ −͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞rˢ⁻² + V(│r│)rˢ = E rˢ 2m ⎝ ∂r 2m ⎠ −͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞ + V(│r│)r² = E r² 2m ⎝ ∂r 2m ⎠ For r → 0, r² → 0, V(r) r² → 0. ⇓ s(s-1) + l(l+1) = 0 ⇓ s = l+1 or s = -l If s = -l, the normalization conditions ∞ │∞ ∫ r⁻²ˡ dr = 1/(2l-1) 1/(r²ˡ⁻¹) │ → diverges 0 │0 So, for small r, Uₑ﹐ₗ(r) → (r→0) → rˡ⁺¹; Rₑ﹐ₗ(r) → (r→0) → rˡ. Eigenfunctions ━━━━━━━━━━━━━━ Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ /r Yₗ﹐ₘ(θ,φ) ⇒ d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0 dρ² ρ² ⎝ρ 4⎠ ⎡−͟ħ͟² d² + l͟ (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r) ⎣2m dr² 2mr² r ⎦ ρ = √⎛8͟m͟ │E│⎞r ⎝ ħ² ⎠ λ = Z͟e͟² √⎛_͟m͟_͟ ⎞ ħ ⎝2│E│⎠