mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2025-01-18 19:35:06 +00:00
132 lines
6.0 KiB
Plaintext
132 lines
6.0 KiB
Plaintext
|
Bound states of a central potential
|
|||
|
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
|||
|
|
|||
|
For any central potential V(r) = V(│r│) the eigenfunctions of H can be
|
|||
|
separated as
|
|||
|
|
|||
|
❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ)
|
|||
|
|
|||
|
(pic) The radial S.E. is
|
|||
|
|
|||
|
⎡−͟ħ͟²⎛ ∂͟²͟ + 2͟ ∂͟ ⎞ + l͟(l͟+͟1͟)ħ͟² + V(│r│) ⎤ Rₑ﹐ₗ(r) = E Rₑ﹐ₗ(r)
|
|||
|
⎣2m ⎝ ∂r² r ∂r ⎠ 2 m r² ⎦
|
|||
|
|
|||
|
(pic) Developed radial schrodinger equation using U(r) replacement
|
|||
|
|
|||
|
Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r
|
|||
|
|
|||
|
⎡−͟ħ͟²⎛ ∂͟²͟ + 2͟ ∂͟ ⎞⎤ U͟ = E ∂͟²͟ U
|
|||
|
⎣2m ⎝ ∂r² r ∂r ⎠⎦ r ∂r²
|
|||
|
|
|||
|
∂͟ U͟ = 1͟ ∂͟ U - U͟
|
|||
|
∂r r r ∂r r²
|
|||
|
|
|||
|
∂͟²͟ U͟ = 1͟ ∂͟²͟ U + 2͟U͟ - 2͟ ∂͟ U
|
|||
|
∂r² r r ∂r² r³ r²∂r
|
|||
|
|
|||
|
⎡−͟ħ͟²⎛ ∂͟²͟ U͟ + 2͟ ∂͟ U͟ ⎞⎤ = E ∂͟²͟ U
|
|||
|
⎣2m ⎝ ∂r² r r ∂r r ⎠⎦ ∂r²
|
|||
|
────────────────────────────────────────────────────────────────────────────────
|
|||
|
⎡−͟ħ͟²⎛ 1͟ ∂͟²͟ U + 2͟U͟ - 2͟ ∂͟ U + 2͟ 1͟ ∂͟ U - 2͟ U͟ ⎞⎤
|
|||
|
⎣2m ⎝ r ∂r² r³ r²∂r r r ∂r r r² ⎠⎦
|
|||
|
|
|||
|
= E 1͟ ∂͟²͟ U + E 2͟U͟ - E 2͟ ∂͟U
|
|||
|
r ∂r² r³ r²∂r
|
|||
|
────────────────────────────────────────────────────────────────────────────────
|
|||
|
⎡−͟ħ͟²⎛ 1͟ ∂͟²͟ + 2͟ - 2͟ ∂͟ + 2͟ ∂͟ - 2͟ ⎞U⎤
|
|||
|
⎣2m ⎝ r ∂r² r³ r²∂r r² ∂r r³⎠ ⎦
|
|||
|
|
|||
|
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
|
|||
|
⎝r ∂r² r³ r²∂r⎠
|
|||
|
────────────────────────────────────────────────────────────────────────────────
|
|||
|
⎡⎛−͟ħ͟² 1͟ ∂͟²͟ + −͟ħ͟² 2͟ - −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ ∂͟ - −͟ħ͟² 2͟ ⎞U⎤
|
|||
|
⎣⎝2m r ∂r² 2m r³ 2m r²∂r 2m r² ∂r 2m r³⎠ ⎦
|
|||
|
|
|||
|
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
|
|||
|
⎝r ∂r² r³ r²∂r⎠
|
|||
|
────────────────────────────────────────────────────────────────────────────────
|
|||
|
⎡⎛−͟ħ͟² 1͟ ∂͟²͟ - −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ ∂͟ + −͟ħ͟² 2͟ - −͟ħ͟² 2͟ ⎞U⎤
|
|||
|
⎣⎝2m r ∂r² 2m r²∂r 2m r² ∂r 2m r³ 2m r³⎠ ⎦
|
|||
|
|
|||
|
= E ⎛1͟ ∂͟²͟ + 2͟ - 2͟ ∂ ⎞U
|
|||
|
⎝r ∂r² r³ r²∂r⎠
|
|||
|
────────────────────────────────────────────────────────────────────────────────
|
|||
|
↓
|
|||
|
Not sure this makes sense, but the final result is
|
|||
|
↓
|
|||
|
|
|||
|
⎡−͟ħ͟²∂͟²͟ - ħ͟² l(l+1) + V(│r│)⎤ Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
|
|||
|
⎣2m ∂r² 2mr² ⎦
|
|||
|
|
|||
|
|
|||
|
Normalization Condition
|
|||
|
|
|||
|
∞ ∞
|
|||
|
∫ │Rₑ﹐ₗ│² r² dr = ∫ │Uₑ﹐ₗ│² dr
|
|||
|
0 0
|
|||
|
|
|||
|
|
|||
|
If V(r) is not more singular at the origin than 1/r^2 then the SE has power
|
|||
|
series solutions.
|
|||
|
|
|||
|
Thus for small r we take U(r) → rˢ
|
|||
|
|
|||
|
(pic) substitute U(r) = rˢ into S.E.
|
|||
|
|
|||
|
Uₑ﹐ₗ(r) ≈ rˢ
|
|||
|
|
|||
|
⎡−͟ħ͟² ∂͟²͟ + ħ͟² l(l+1) + V(│r│)⎤ rˢ = E rˢ
|
|||
|
⎣2m ∂r² 2mr² ⎦
|
|||
|
|
|||
|
−͟ħ͟² s(s-1)∂͟ rˢ⁻² + l͟ (l+1)ħ²rˢ⁻² + V(│r│)rˢ = E rˢ
|
|||
|
2m ∂r 2m
|
|||
|
|
|||
|
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞rˢ⁻² + V(│r│)rˢ = E rˢ
|
|||
|
2m ⎝ ∂r 2m ⎠
|
|||
|
|
|||
|
|
|||
|
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞rˢ⁻² + V(│r│)rˢ = E rˢ
|
|||
|
2m ⎝ ∂r 2m ⎠
|
|||
|
|
|||
|
−͟ħ͟² ⎛s(s-1)∂͟ + l͟ (l+1)ħ²⎞ + V(│r│)r² = E r²
|
|||
|
2m ⎝ ∂r 2m ⎠
|
|||
|
|
|||
|
|
|||
|
For r → 0,
|
|||
|
r² → 0,
|
|||
|
V(r) r² → 0.
|
|||
|
⇓
|
|||
|
s(s-1) + l(l+1) = 0
|
|||
|
⇓
|
|||
|
s = l+1 or s = -l
|
|||
|
|
|||
|
If s = -l, the normalization conditions
|
|||
|
|
|||
|
∞ │∞
|
|||
|
∫ r⁻²ˡ dr = 1/(2l-1) 1/(r²ˡ⁻¹) │ → diverges
|
|||
|
0 │0
|
|||
|
|
|||
|
|
|||
|
So, for small r,
|
|||
|
|
|||
|
Uₑ﹐ₗ(r) → (r→0) → rˡ⁺¹;
|
|||
|
|
|||
|
Rₑ﹐ₗ(r) → (r→0) → rˡ.
|
|||
|
|
|||
|
Eigenfunctions
|
|||
|
━━━━━━━━━━━━━━
|
|||
|
|
|||
|
Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ /r Yₗ﹐ₘ(θ,φ)
|
|||
|
|
|||
|
⇒ d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0
|
|||
|
dρ² ρ² ⎝ρ 4⎠
|
|||
|
|
|||
|
⎡−͟ħ͟² d² + l͟ (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r)
|
|||
|
⎣2m dr² 2mr² r ⎦
|
|||
|
|
|||
|
ρ = √⎛8͟m͟ │E│⎞r
|
|||
|
⎝ ħ² ⎠
|
|||
|
|
|||
|
λ = Z͟e͟² √⎛_͟m͟_͟ ⎞
|
|||
|
ħ ⎝2│E│⎠
|