phy-4600/lecture_notes/3-23/overview

42 lines
1.5 KiB
Plaintext
Raw Permalink Normal View History

2016-03-23 23:43:48 +00:00
Two dimensional harmonic oscillator
───────────────────────────────────
2016-03-24 05:04:06 +00:00
This is an oscillator with potential V(x,y) = μ/2 ω² (x² + y²)
2016-03-23 23:43:48 +00:00
The hamiltonian here leaves us with a 3-dimensional differential equation
Ĥ = ιp²/2μ + μ/2 ω² (x² + y²) = 1/2μ (p²𝓍 + p²𝓎 + p²𝓏) + μ/2 ω²(x² + y²)
(pic) This is then split into x,y, and z parts.
(pic) Solved Ψ(z)
Put together solutions of Ψ(x,y) and Ψ(z).
2016-03-24 05:04:06 +00:00
(pic) To find position space representation of Ψ(x,y), recall the Hermitian-- HARMONIC? DUBIOUS Polynomials solution
2016-03-23 23:43:48 +00:00
!!! STUDY THIS !!!
Developed the harmonic oscillator in polar coordinates
2016-03-24 05:04:06 +00:00
𝓍𝓎 = -ħ²/2μ ∇² + μ/2 ω² r²
= -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r + 1/r² ∂²/∂θ²) + μ/2 ω² r².
2016-03-23 23:43:48 +00:00
(pic) Can be solved using separation of variables.
Ψ(r,θ) = R(r) Θ(θ)
The problem is invariant under rotations about z, i.e. L̂𝓏 commutes with Ĥ, so the solutions must be eigenstates of both Ĥ and L̂𝓏.
Don't use L̂𝓏 Θ = ±ιmħ Θ
Use L̂𝓏² Θ = -m²ħ² Θ ⇒ Θ(θ) = exp(±imθ)
2016-03-24 05:04:06 +00:00
(pic) further developed hamiltonian using this information
𝓍𝓎 = -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r + 1/r² ∂²/∂θ²) + μ/2 ω² r².
= -ħ²/2μ (∂²/∂r² + 1/r ∂/∂r) + -ħ²/(2μr²) L̂𝓏²/ħ² + μ ω² r²/2
𝓏² ≐ ħ²∂²/∂θ²
𝓏 ≐ -ιħ∂/∂θ