cs-5821/hw3/.Rhistory

158 lines
5.3 KiB
R
Raw Normal View History

2017-02-09 08:17:03 +00:00
auto = read.table("auto.data",header=T,na.strings="?")
auto$mpg01=rep(0,397)
auto$mpg01[auto$mpg>median(auto$mpg)]=1
2017-02-10 03:59:23 +00:00
library(ISLR)
2017-02-09 08:17:03 +00:00
library(MASS)
library(class)
2017-02-10 03:59:23 +00:00
train_bools <- (auto$year %% 2 == 0)
train_data = auto[train_bools,]
test_data = auto[!train_bools,]
help(knn)
help(knn)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
train
test
2017-02-09 08:17:03 +00:00
?knn
2017-02-10 03:59:23 +00:00
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
cl
length(cl)
length(train)
nrows(train)
nrow(train)
2017-02-09 08:17:03 +00:00
train.X
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
train.X
2017-02-10 03:59:23 +00:00
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
2017-02-09 08:17:03 +00:00
test.X
2017-02-10 03:59:23 +00:00
train.X
2017-02-09 08:17:03 +00:00
train.mpg01 = auto$mpg01[train_bools]
2017-02-10 03:59:23 +00:00
train.mpg01
length(train.mpg01)
nrow(train.X)
knn(train.X,train.Y,train.mpg01,K=1)
knn(train.X,train.Y,train.mpg01,k=1)
knn(train.X,test.X,train.mpg01,k=1)
2017-02-09 08:17:03 +00:00
train.X
2017-02-10 03:59:23 +00:00
na.omit(train.X)
?na.omit
na.omit(train.X)
na.omit(train.X)
knn(na.omit(train.X),test.X,train.mpg01,k=1)
knn(na.omit(train.X),test.X,na.omit(train.mpg01),k=1)
knn(na.omit(train.X),na.omit(test.X),na.omit(train.mpg01),k=1)
train.mpg012 = na.omit(auto$mpg01)[train_bools]
train.mpg012
2017-02-09 08:17:03 +00:00
train.mpg01
2017-02-10 03:59:23 +00:00
nrow(train)
na.omit(auto)
auto
na.omit(auto)
summary(auto)
summary(na.omit(auto))
Auto = na.omit(auto)
auto = na.omit(auto)
ncol(auto)
nrow(auto)
auto <- na.omit(auto)
train_bools <- (auto$year %% 2 == 0)
train_data = auto[train_bools,]
test_data = auto[!train_bools,]
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
train.mpg01 = auto$mpg01[train_bools]
2017-02-09 08:17:03 +00:00
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
2017-02-10 03:59:23 +00:00
mean(knn.pred != auto$mpg01)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=2)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=3)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=4)
mean(knn.pred != test_data$mpg0)
knn.pred
length(knn.pred)
dim(knn.pred)
length(test_data)
ncol(test_data)
nrow(test_data)
2017-02-09 08:17:03 +00:00
q()
2017-02-10 04:12:09 +00:00
qda.fit
fit.qda
qda.fit
auto
qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data)
import(MASS)
qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data)
import(class)
library(MASS)
qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data)
qda.fit
> mean(qda.pred$class!=test_data$mpg01,na.rm=T)
mean(qda.pred$class!=test_data$mpg01,na.rm=T)
qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
qda.pred=predict(qda.fit,test_data,na.rm=T)
mean(qda.pred$class!=test_data$mpg01,na.rm=T)
qda.fit=qda(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data)
qda.pred=predict(qda.fit,test_data,na.rm=T)
mean(qda.pred$class!=test_data$mpg01,na.rm=T)
qda.fit
qda.pred=predict(qda.fit,test_data,na.rm=T)
mean(qda.pred$class!=test_data$mpg01,na.rm=T)
glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial)
glm.probs=predict(glm.fit,test_data,type="response")
glm.pred=rep(0,199)
glm.pred[glm.probs>.5]=1
mean(glm.pred!=test_data$mpg01)
glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial)
glm.probs=predict(glm.fit,test_data,type="response")
glm.pred=rep(0,length(test_data)
glm.pred[glm.probs>.5]=1
mean(glm.pred!=test_data$mpg01)
glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial)
glm.probs=predict(glm.fit,test_data,type="response")
glm.pred=rep(0,length(test_data))
glm.pred[glm.probs>.5]=1
mean(glm.pred!=test_data$mpg01)
glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial)
glm.probs=predict(glm.fit,test_data,type="response")
glm.pred=rep(0,length(test_data))
glm.pred[glm.probs>.5]=1
mean(glm.pred!=test_data$mpg01)
glm.pred
glm.pred=rep(0,length(test_data))
glm.pred
test_data
glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial)
glm.probs=predict(glm.fit,test_data,type="response")
glm.pred=rep(0,nrow(test_data))
glm.pred[glm.probs>.5]=1
mean(glm.pred!=test_data$mpg01)
set.seed(1)
auto <- na.omit(auto)
train_bools <- (auto$year %% 2 == 0)
train_data = auto[train_bools,]
test_data = auto[!train_bools,]
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[train_bools,]
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[!train_bools,]
train.mpg01 = auto$mpg01[train_bools]
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=2)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=3)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=4)
mean(knn.pred != test_data$mpg0)
import(class)
library(class)
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=2)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=3)
mean(knn.pred != test_data$mpg01)
knn.pred = knn(train.X,test.X,train.mpg01,k=4)
mean(knn.pred != test_data$mpg0)
q()