mirror of
				https://asciireactor.com/otho/cs-5821.git
				synced 2025-10-31 17:58:04 +00:00 
			
		
		
		
	added R log
This commit is contained in:
		
							parent
							
								
									84a0b4cfc9
								
							
						
					
					
						commit
						b0c1b3ed08
					
				
							
								
								
									
										
											BIN
										
									
								
								hw3/.RData
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								hw3/.RData
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										426
									
								
								hw3/.Rhistory
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										426
									
								
								hw3/.Rhistory
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,426 @@ | ||||
| auto = read.table("auto.data",header=T,na.strings="?") | ||||
| length(x=auto$mpg) | ||||
| glm | ||||
| glm.pred | ||||
| help(rep) | ||||
| glm.pred=rep(FALSE,397) | ||||
| glm.pred | ||||
| medium(auto$mpg) | ||||
| median(auto$mpg) | ||||
| glm.pred[auto$mpg>median(auto$mpg)]=T | ||||
| glm.pred | ||||
| contour(auto) | ||||
| contour(glm.pred ~ auto$mpg) | ||||
| contour(glm.pred,auto$mpg) | ||||
| help(contour) | ||||
| contour(auto$mpg,auto$horsepower,glm.pred) | ||||
| glm.pred | ||||
| length(glm.pred) | ||||
| table(glm.pred,auto$mpg) | ||||
| table(glm.pred,auto$mpg,auto$horsepower) | ||||
| glm.pred=rep(0,397) | ||||
| glm.pred[auto$mpg>median(auto$mpg)]=1 | ||||
| glm.pred | ||||
| auto$mpg01=rep(0,397) | ||||
| auto$mpg01[auto$mpg>median(auto$mpg)]=1 | ||||
| auto$mpg01 | ||||
| auto$mpg01 | ||||
| auto$mpg01 | ||||
| plots(auto) | ||||
| plot(auto) | ||||
| boxplot(auto) | ||||
| boxplot.matrix(auto) | ||||
| help(boxplot) | ||||
| boxplot(auto$mpg01,auto) | ||||
| boxplot(auto$mpg,auto) | ||||
| boxplot(auto$mpg) | ||||
| boxplot(auto) | ||||
| boxplot(mpg01 ~ auto) | ||||
| boxplot(mpg01 ~) | ||||
| boxplot(auto$mpg01 ~ auto) | ||||
| attach(auto) | ||||
| boxplot(mpg01) | ||||
| boxplot(mpg01 ~ auto) | ||||
| boxplot(mpg01 ~ auto,auto) | ||||
| boxplot(mpg01 ~ auto,data = auto) | ||||
| help(plot.table) | ||||
| plot.table(auto) | ||||
| help(plot.table) | ||||
| plot(auto) | ||||
| plot(auto,t="box") | ||||
| help(plot.table) | ||||
| help(plot.table,plot.frame=1) | ||||
| help(plot.table) | ||||
| help(plot.table,frame.plot=1) | ||||
| help(plot.table) | ||||
| help(plot.table,frame.plot=is.num) | ||||
| help(plot.table) | ||||
| plot(auto,t="box",frame.plot=1) | ||||
| plot(auto,frame.plot=1) | ||||
| plot(auto,frame.plot=1) | ||||
| plot(auto,frame.plot=is.num) | ||||
| plot(auto,frame.plot=0) | ||||
| plot(auto,frame.plot="0") | ||||
| plot(auto,frame.plot="1") | ||||
| plot(auto,frame.plot=TRUE) | ||||
| plot(auto,frame.plot=FALSE) | ||||
| plot(auto,frame.plot=TRUE) | ||||
| plot(auto,frame.plot=T) | ||||
| plot(auto,frame.plot=1) | ||||
| boxplot(mpg~mpg01,auto) | ||||
| boxplot(mpg01 ~ mpg,auto) | ||||
| boxplot(mpg01 ~ *,auto) | ||||
| boxplot(mpg01 ~ ,auto) | ||||
| boxplot(mpg01 ~ auto,auto) | ||||
| boxplot(mpg01,auto) | ||||
| boxplot(auto) | ||||
| boxplot(auto,y=mpg01) | ||||
| boxplot(auto,y=mpg) | ||||
| boxplot(data = auto) | ||||
| boxplot(auto) | ||||
| help(for) | ||||
| plot(auto,frame.plot=1) | ||||
| plot(auto) | ||||
| names(auto) | ||||
| auto$name | ||||
| help(sample) | ||||
| x <- 1:12 | ||||
| x | ||||
| sample(x) | ||||
| help(sample) | ||||
| sample(x,replace=T) | ||||
| sample(x,replace=T) | ||||
| sample(x,replace=F) | ||||
| c | ||||
| x | ||||
| sample(x,replace=T) | ||||
| x | ||||
| help(sample) | ||||
| sample(x[x>9]) | ||||
| sample(x[x>8]) | ||||
| help(sample) | ||||
| x <- 1:10 | ||||
| sample(x[x>8]) | ||||
| sample(x[x>]) | ||||
| help(sample) | ||||
| help(sample) | ||||
| help(sample) | ||||
| sample(auto,size=length(mpg01)/2) | ||||
| x <- length(mpg01) | ||||
| sample(x,size=length(mpg01)/2) | ||||
| auto[sample(x,size=length(mpg01)/2)] | ||||
| auto$mpg[sample(x,size=length(mpg01)/2)] | ||||
| help(data.frame) | ||||
| data.frame( | ||||
| help(data.frame) | ||||
| auto[sample(x,size=length(mpg01)/2)] | ||||
| train = sample(x,size=length(mpg01)/2) | ||||
| train =  | ||||
| auto[train] | ||||
| auto$mpg[train] | ||||
| auto$mpg[train,] | ||||
| auto$mpg[train] | ||||
| auto$mpg[23] | ||||
| auto$mpg[228] | ||||
| auto$mpg[391] | ||||
| auto.test=auto[!train] | ||||
| auto.train=auto[train] | ||||
| auto.test | ||||
| summary(auto.test) | ||||
| train=(mpg<15) | ||||
| train | ||||
| train = (sample(x,size=length(mpg01)/2)) | ||||
| train | ||||
| head(auto) | ||||
| auto[,train[ | ||||
| auto[,train] | ||||
| train | ||||
| help(contains) | ||||
| auto[1,train] | ||||
| train | ||||
| auto[[,train]] | ||||
| auto[[1,train]] | ||||
| autoi | ||||
| head(auto) | ||||
| head(auto[sample(nrow(auto),397/2)]) | ||||
| head(auto[sample(nrow(auto),3)]) | ||||
| data = data.frame(auto) | ||||
| data | ||||
| head(data[sample(nrow(data),3)]) | ||||
| nrow(data) | ||||
| head(data[sample(ncol(data),3)]) | ||||
| head(data[sample(ncol(data),397/2)]) | ||||
| head(data[sample(ncol(data),3)]) | ||||
| head(data[sample(ncol(data),3)]) | ||||
| head(data[sample(ncol(data),3)]) | ||||
| head(data[sample(ncol(data),3)]) | ||||
| head(data[,sample(ncol(data),3)]) | ||||
| head(data[,sample(ncol(data),3)]) | ||||
| head(data[,sample(ncol(data),3)]) | ||||
| head(data[,sample(ncol(data),3)]) | ||||
| head(data[,sample(ncol(data),3)]) | ||||
| head(data[sample(ncol(data),3),]) | ||||
| head(data[sample(ncol(data),3),]) | ||||
| head(data[sample(ncol(data),3),]) | ||||
| head(data[sample(nrow(data),3),]) | ||||
| head(data[sample(nrow(data),397/2),]) | ||||
| head(data[sample(nrow(data),397/2),]) | ||||
| head(data[sample(nrow(data),397/2),]) | ||||
| head(data[sample(nrow(data),397/2),]) | ||||
| head(data[sample(nrow(data),397/2),]) | ||||
| head(auto[sample(nrow(auto),397/2),]) | ||||
| head(auto[sample(nrow(auto),397/2),]) | ||||
| head(auto[sample(nrow(auto),397/2),]) | ||||
| head(auto[sample(nrow(auto),397/2),]) | ||||
| head(auto[sample(nrow(auto),397/2),]) | ||||
| head(auto[sample(nrow(auto),397/2),]) | ||||
| head(auto[sample(nrow(auto),397/2),]) | ||||
| train = auto[sample(nrow(auto),397/2),] | ||||
| [sample(nrow(auto),397/2),] | ||||
| sample(nrow(auto),397/2) | ||||
| train sample(nrow(auto),397/2) | ||||
| train = sample(nrow(auto),397/2) | ||||
| autp[train,] | ||||
| auto[train,] | ||||
| train = sample(nrow(auto),397/2) | ||||
| head(auto[train,]) | ||||
| head(auto[!train,]) | ||||
| traindata = auto[train,] | ||||
| testdata = auto[!train,] | ||||
| testdata | ||||
| traindata | ||||
| length(traindata) | ||||
| length(traindata$mpg) | ||||
| 198*2 | ||||
| summary(testdata) | ||||
| testdata = auto[!train] | ||||
| testdata | ||||
| testdata = auto[!train,] | ||||
| train | ||||
| summary(train) | ||||
| names(train) | ||||
| head(traindata) | ||||
| 
 | ||||
| testdata = auto[!train,] | ||||
| testdata | ||||
| !train | ||||
| train | ||||
| ?sample | ||||
| sort(train) | ||||
| train_vals = train | ||||
| train = rep(false,397) | ||||
| train = rep(F,397) | ||||
| train | ||||
| help for | ||||
| ?for | ||||
| ?for | ||||
| help)for) | ||||
| help(for) | ||||
| help(for) | ||||
| help lapply() | ||||
| ?lapply | ||||
| sapply(train, | ||||
| ?sapply | ||||
| sapply(train, | ||||
| ?sapply | ||||
| train[train_vals]=T | ||||
| train | ||||
| traindata = auto[train,] | ||||
| traindata | ||||
| length(auto) | ||||
| length(traindata) | ||||
| length(traindata$mpg) | ||||
| testdata=auto[!train,] | ||||
| length(testdate$mpg) | ||||
| length(testdata$mpg) | ||||
| training_indices = sample(nrow(auto),397/2) | ||||
| train_bools = rep(F,length(auto$mpg)) | ||||
| train_bools[training_indices]=T | ||||
| head(train_bools) | ||||
| length(train_bools) | ||||
| train_data = auto[train_bools,] | ||||
| test_data = auto[!train_bools,] | ||||
| summary(train_data) | ||||
| summary(test_data) | ||||
| lda.fit | ||||
| library(MASS) | ||||
| lda.fit | ||||
| lda() | ||||
| detach(auto) | ||||
| mpg01 | ||||
| mpg | ||||
| attach(test_data) | ||||
| mpg01 | ||||
| names() | ||||
| names(test_data) | ||||
| ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) | ||||
| detach(test_data) | ||||
| ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) | ||||
| lda.fit | ||||
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) | ||||
| lda.fit | ||||
| summary(lda.fit) | ||||
| coefficients(lda.fit) | ||||
| plot(lda.fit) | ||||
| lda.pred=predict(lda.fit,test_data) | ||||
| lda.pred=predict(lda.fit, !training_bools) | ||||
| lda.pred=predict(lda.fit, !training_indices) | ||||
| test_data | ||||
| lda.pred=predict(lda.fit, test_data) | ||||
| lda.pred | ||||
| plot(lda.pred) | ||||
| names(lda.pred) | ||||
| lda.class=lda.pres$class | ||||
| lda.class=lda.pred$class | ||||
| table(lda.class,testdata) | ||||
| table(lda.class,test_data) | ||||
| length(lda.class) | ||||
| length(test_data) | ||||
| table(lda.class,test_data$mpg01) | ||||
| mean(lda.class==test_data$mpg01) | ||||
| sum(lda.pred$posterior[,1]>=.5) | ||||
| sum(lda.pred$posterior[,1]<.5) | ||||
| lda.pred$posterior[,1] | ||||
| sum(lda.pred$posterior<.5) | ||||
| lda.pred$posterior | ||||
| lda.pred$posterior<5 | ||||
| lda.pred$posterior<.5 | ||||
| sum(lda.pred$posterior<.5) | ||||
| sum(lda.pred$posterior<.5[,1]) | ||||
| sum(lda.pred$posterior<.5[1]) | ||||
| sum(lda.pred$posterior<.5[2]) | ||||
| lda.pred$posterior<.5[2] | ||||
| lda.pred$posterior<.5 | ||||
| lda.pred$posterior | ||||
| lda.pred$posterior[,1] | ||||
| lda.pred$posterior[1,] | ||||
| lda.pred$posterior[,2] | ||||
| lda.pred$posterior[,1] | ||||
| lda.pred$posterior[,1]>.5 | ||||
| sum(lda.pred$posterior[,1]>.5) | ||||
| sum.bool(lda.pred$posterior[,1]>.5) | ||||
| ?sum | ||||
| sum.bool(lda.pred$posterior[,1]>.5,na.rm=T) | ||||
| sum(lda.pred$posterior[,1]>.5,na.rm=T) | ||||
| sum(lda.pred$posterior[,1]>.5) | ||||
| sum(lda.pred$posterior[,1]>.5,na.rm=T) | ||||
| sum(lda.pred$posterior[,1]>=.5,na.rm=T) | ||||
| sum(lda.pred$posterior[,1]<.5,na.rm=T) | ||||
| mean(lda.pred$[,1]==test_data,na.rm=T) | ||||
| lda.pred | ||||
| lda.pred$class | ||||
| lda.pred$class==test_data$mpg01 | ||||
| mean(lda.pred$class==test_data$mpg01,na.rm=T) | ||||
| mean(lda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) | ||||
| lda.fit | ||||
| mean(lda.pred$class==test_data$mpg01,na.rm=T) | ||||
| lda.pred=predict(lda.fit, test_data) | ||||
| mean(lda.pred$class==test_data$mpg01,na.rm=T) | ||||
| mean(lda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| train_data == test_data | ||||
| train_data$mpg01 == test_data$mpg01 | ||||
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) | ||||
| lda.pred=predict(lda.fit, test_data) | ||||
| mean(lda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| lda.pred | ||||
| lda.pred$posterior[,1] | ||||
| summary(lda.fit) | ||||
| lda.fit | ||||
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) | ||||
| lda.fit | ||||
| mean(lda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| lda.pred=predict(lda.fit, test_data) | ||||
| mean(lda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| head(lda.pred) | ||||
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) | ||||
| lda.pred=predict(lda.fit, test_data) | ||||
| head(lda.pred) | ||||
| mean(lda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) | ||||
| qda.fit | ||||
| qda.class=predict(qda.fit,test_data)$class | ||||
| qda.class=predict(qda.fit,test_data,na.rm=T)$class | ||||
| qda.class=predict(qda.fit,test_data)$class | ||||
| qda.class | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| qda.pred=predict(qda.fit,test_data) | ||||
| qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,199) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| table(glm.pred,test_data$mpg01) | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| library(class) | ||||
| ?cbind | ||||
| ?knn | ||||
| knn.fit = knn(train_data,test_data,auto$mpg01[training_indices]) | ||||
| knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1) | ||||
| knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1) | ||||
| ?knn | ||||
| training_indices | ||||
| train_bools | ||||
| knn.fit = knn(train_data,test_data,auto$mpg01[train_bools],k=1) | ||||
| sdf = (mpg01<1) | ||||
| sdf = (auto$mpg01<1) | ||||
| sdf | ||||
| train_bools | ||||
| cbind(horsepower,displacement) | ||||
| cbind(train_data$horsepower,displacement) | ||||
| cbind(train_data$horsepower,train_data$displacement) | ||||
| cbind(auto$horsepower,auto$displacement)[train_bools] | ||||
| cbind(auto$horsepower,auto$displacement)[train_bools,] | ||||
| cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| train.mpg01 = auto[train_bools] | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| set.seed(56) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| ?cbind | ||||
| ?Knn | ||||
| ?knn | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| train.X = train.X[!is.na(train.X)] | ||||
| test.X = data.frame(test.X, | ||||
| train.mpg01 = train.mpg01[!is.na(train.mpg01)] | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| length(train.mpg01) | ||||
| length(test.X) | ||||
| text.X | ||||
| test.X | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| length(test.X) | ||||
| test.X | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| train.X | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| train.X | ||||
| test.X | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| ?knn | ||||
| length(train.X) | ||||
| length(train.X[1,]) | ||||
| length(train.X[,1]) | ||||
| ?knn | ||||
| plot(auto) | ||||
| train.X = cbind(auto$horsepower,auto$displacement)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement)[!train_bools,] | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| train.X | ||||
| test.X | ||||
| train.mpg01 | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| q() | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user