diff --git a/hw3/.RData b/hw3/.RData new file mode 100644 index 0000000..d058cb3 Binary files /dev/null and b/hw3/.RData differ diff --git a/hw3/.Rhistory b/hw3/.Rhistory new file mode 100644 index 0000000..c181128 --- /dev/null +++ b/hw3/.Rhistory @@ -0,0 +1,426 @@ +auto = read.table("auto.data",header=T,na.strings="?") +length(x=auto$mpg) +glm +glm.pred +help(rep) +glm.pred=rep(FALSE,397) +glm.pred +medium(auto$mpg) +median(auto$mpg) +glm.pred[auto$mpg>median(auto$mpg)]=T +glm.pred +contour(auto) +contour(glm.pred ~ auto$mpg) +contour(glm.pred,auto$mpg) +help(contour) +contour(auto$mpg,auto$horsepower,glm.pred) +glm.pred +length(glm.pred) +table(glm.pred,auto$mpg) +table(glm.pred,auto$mpg,auto$horsepower) +glm.pred=rep(0,397) +glm.pred[auto$mpg>median(auto$mpg)]=1 +glm.pred +auto$mpg01=rep(0,397) +auto$mpg01[auto$mpg>median(auto$mpg)]=1 +auto$mpg01 +auto$mpg01 +auto$mpg01 +plots(auto) +plot(auto) +boxplot(auto) +boxplot.matrix(auto) +help(boxplot) +boxplot(auto$mpg01,auto) +boxplot(auto$mpg,auto) +boxplot(auto$mpg) +boxplot(auto) +boxplot(mpg01 ~ auto) +boxplot(mpg01 ~) +boxplot(auto$mpg01 ~ auto) +attach(auto) +boxplot(mpg01) +boxplot(mpg01 ~ auto) +boxplot(mpg01 ~ auto,auto) +boxplot(mpg01 ~ auto,data = auto) +help(plot.table) +plot.table(auto) +help(plot.table) +plot(auto) +plot(auto,t="box") +help(plot.table) +help(plot.table,plot.frame=1) +help(plot.table) +help(plot.table,frame.plot=1) +help(plot.table) +help(plot.table,frame.plot=is.num) +help(plot.table) +plot(auto,t="box",frame.plot=1) +plot(auto,frame.plot=1) +plot(auto,frame.plot=1) +plot(auto,frame.plot=is.num) +plot(auto,frame.plot=0) +plot(auto,frame.plot="0") +plot(auto,frame.plot="1") +plot(auto,frame.plot=TRUE) +plot(auto,frame.plot=FALSE) +plot(auto,frame.plot=TRUE) +plot(auto,frame.plot=T) +plot(auto,frame.plot=1) +boxplot(mpg~mpg01,auto) +boxplot(mpg01 ~ mpg,auto) +boxplot(mpg01 ~ *,auto) +boxplot(mpg01 ~ ,auto) +boxplot(mpg01 ~ auto,auto) +boxplot(mpg01,auto) +boxplot(auto) +boxplot(auto,y=mpg01) +boxplot(auto,y=mpg) +boxplot(data = auto) +boxplot(auto) +help(for) +plot(auto,frame.plot=1) +plot(auto) +names(auto) +auto$name +help(sample) +x <- 1:12 +x +sample(x) +help(sample) +sample(x,replace=T) +sample(x,replace=T) +sample(x,replace=F) +c +x +sample(x,replace=T) +x +help(sample) +sample(x[x>9]) +sample(x[x>8]) +help(sample) +x <- 1:10 +sample(x[x>8]) +sample(x[x>]) +help(sample) +help(sample) +help(sample) +sample(auto,size=length(mpg01)/2) +x <- length(mpg01) +sample(x,size=length(mpg01)/2) +auto[sample(x,size=length(mpg01)/2)] +auto$mpg[sample(x,size=length(mpg01)/2)] +help(data.frame) +data.frame( +help(data.frame) +auto[sample(x,size=length(mpg01)/2)] +train = sample(x,size=length(mpg01)/2) +train = +auto[train] +auto$mpg[train] +auto$mpg[train,] +auto$mpg[train] +auto$mpg[23] +auto$mpg[228] +auto$mpg[391] +auto.test=auto[!train] +auto.train=auto[train] +auto.test +summary(auto.test) +train=(mpg<15) +train +train = (sample(x,size=length(mpg01)/2)) +train +head(auto) +auto[,train[ +auto[,train] +train +help(contains) +auto[1,train] +train +auto[[,train]] +auto[[1,train]] +autoi +head(auto) +head(auto[sample(nrow(auto),397/2)]) +head(auto[sample(nrow(auto),3)]) +data = data.frame(auto) +data +head(data[sample(nrow(data),3)]) +nrow(data) +head(data[sample(ncol(data),3)]) +head(data[sample(ncol(data),397/2)]) +head(data[sample(ncol(data),3)]) +head(data[sample(ncol(data),3)]) +head(data[sample(ncol(data),3)]) +head(data[sample(ncol(data),3)]) +head(data[,sample(ncol(data),3)]) +head(data[,sample(ncol(data),3)]) +head(data[,sample(ncol(data),3)]) +head(data[,sample(ncol(data),3)]) +head(data[,sample(ncol(data),3)]) +head(data[sample(ncol(data),3),]) +head(data[sample(ncol(data),3),]) +head(data[sample(ncol(data),3),]) +head(data[sample(nrow(data),3),]) +head(data[sample(nrow(data),397/2),]) +head(data[sample(nrow(data),397/2),]) +head(data[sample(nrow(data),397/2),]) +head(data[sample(nrow(data),397/2),]) +head(data[sample(nrow(data),397/2),]) +head(auto[sample(nrow(auto),397/2),]) +head(auto[sample(nrow(auto),397/2),]) +head(auto[sample(nrow(auto),397/2),]) +head(auto[sample(nrow(auto),397/2),]) +head(auto[sample(nrow(auto),397/2),]) +head(auto[sample(nrow(auto),397/2),]) +head(auto[sample(nrow(auto),397/2),]) +train = auto[sample(nrow(auto),397/2),] +[sample(nrow(auto),397/2),] +sample(nrow(auto),397/2) +train sample(nrow(auto),397/2) +train = sample(nrow(auto),397/2) +autp[train,] +auto[train,] +train = sample(nrow(auto),397/2) +head(auto[train,]) +head(auto[!train,]) +traindata = auto[train,] +testdata = auto[!train,] +testdata +traindata +length(traindata) +length(traindata$mpg) +198*2 +summary(testdata) +testdata = auto[!train] +testdata +testdata = auto[!train,] +train +summary(train) +names(train) +head(traindata) + +testdata = auto[!train,] +testdata +!train +train +?sample +sort(train) +train_vals = train +train = rep(false,397) +train = rep(F,397) +train +help for +?for +?for +help)for) +help(for) +help(for) +help lapply() +?lapply +sapply(train, +?sapply +sapply(train, +?sapply +train[train_vals]=T +train +traindata = auto[train,] +traindata +length(auto) +length(traindata) +length(traindata$mpg) +testdata=auto[!train,] +length(testdate$mpg) +length(testdata$mpg) +training_indices = sample(nrow(auto),397/2) +train_bools = rep(F,length(auto$mpg)) +train_bools[training_indices]=T +head(train_bools) +length(train_bools) +train_data = auto[train_bools,] +test_data = auto[!train_bools,] +summary(train_data) +summary(test_data) +lda.fit +library(MASS) +lda.fit +lda() +detach(auto) +mpg01 +mpg +attach(test_data) +mpg01 +names() +names(test_data) +ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) +detach(test_data) +ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) +lda.fit +lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) +lda.fit +summary(lda.fit) +coefficients(lda.fit) +plot(lda.fit) +lda.pred=predict(lda.fit,test_data) +lda.pred=predict(lda.fit, !training_bools) +lda.pred=predict(lda.fit, !training_indices) +test_data +lda.pred=predict(lda.fit, test_data) +lda.pred +plot(lda.pred) +names(lda.pred) +lda.class=lda.pres$class +lda.class=lda.pred$class +table(lda.class,testdata) +table(lda.class,test_data) +length(lda.class) +length(test_data) +table(lda.class,test_data$mpg01) +mean(lda.class==test_data$mpg01) +sum(lda.pred$posterior[,1]>=.5) +sum(lda.pred$posterior[,1]<.5) +lda.pred$posterior[,1] +sum(lda.pred$posterior<.5) +lda.pred$posterior +lda.pred$posterior<5 +lda.pred$posterior<.5 +sum(lda.pred$posterior<.5) +sum(lda.pred$posterior<.5[,1]) +sum(lda.pred$posterior<.5[1]) +sum(lda.pred$posterior<.5[2]) +lda.pred$posterior<.5[2] +lda.pred$posterior<.5 +lda.pred$posterior +lda.pred$posterior[,1] +lda.pred$posterior[1,] +lda.pred$posterior[,2] +lda.pred$posterior[,1] +lda.pred$posterior[,1]>.5 +sum(lda.pred$posterior[,1]>.5) +sum.bool(lda.pred$posterior[,1]>.5) +?sum +sum.bool(lda.pred$posterior[,1]>.5,na.rm=T) +sum(lda.pred$posterior[,1]>.5,na.rm=T) +sum(lda.pred$posterior[,1]>.5) +sum(lda.pred$posterior[,1]>.5,na.rm=T) +sum(lda.pred$posterior[,1]>=.5,na.rm=T) +sum(lda.pred$posterior[,1]<.5,na.rm=T) +mean(lda.pred$[,1]==test_data,na.rm=T) +lda.pred +lda.pred$class +lda.pred$class==test_data$mpg01 +mean(lda.pred$class==test_data$mpg01,na.rm=T) +mean(lda.pred$class!=test_data$mpg01,na.rm=T) +lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) +lda.fit +mean(lda.pred$class==test_data$mpg01,na.rm=T) +lda.pred=predict(lda.fit, test_data) +mean(lda.pred$class==test_data$mpg01,na.rm=T) +mean(lda.pred$class!=test_data$mpg01,na.rm=T) +train_data == test_data +train_data$mpg01 == test_data$mpg01 +lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) +lda.pred=predict(lda.fit, test_data) +mean(lda.pred$class!=test_data$mpg01,na.rm=T) +lda.pred +lda.pred$posterior[,1] +summary(lda.fit) +lda.fit +lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) +lda.fit +mean(lda.pred$class!=test_data$mpg01,na.rm=T) +lda.pred=predict(lda.fit, test_data) +mean(lda.pred$class!=test_data$mpg01,na.rm=T) +head(lda.pred) +lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) +lda.pred=predict(lda.fit, test_data) +head(lda.pred) +mean(lda.pred$class!=test_data$mpg01,na.rm=T) +qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) +qda.fit +qda.class=predict(qda.fit,test_data)$class +qda.class=predict(qda.fit,test_data,na.rm=T)$class +qda.class=predict(qda.fit,test_data)$class +qda.class +mean(qda.pred$class!=test_data$mpg01,na.rm=T) +qda.pred=predict(qda.fit,test_data) +qda.pred=predict(qda.fit,test_data,na.rm=T) +mean(qda.pred$class!=test_data$mpg01,na.rm=T) +glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial) +glm.probs=predict(glm.fit,test_data,type="response") +glm.pred=rep(0,199) +glm.pred[glm.probs>.5]=1 +table(glm.pred,test_data$mpg01) +mean(glm.pred!=test_data$mpg01) +library(class) +?cbind +?knn +knn.fit = knn(train_data,test_data,auto$mpg01[training_indices]) +knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1) +knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1) +?knn +training_indices +train_bools +knn.fit = knn(train_data,test_data,auto$mpg01[train_bools],k=1) +sdf = (mpg01<1) +sdf = (auto$mpg01<1) +sdf +train_bools +cbind(horsepower,displacement) +cbind(train_data$horsepower,displacement) +cbind(train_data$horsepower,train_data$displacement) +cbind(auto$horsepower,auto$displacement)[train_bools] +cbind(auto$horsepower,auto$displacement)[train_bools,] +cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] +train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] +train.mpg01 = auto[train_bools] +train.mpg01 = auto$mpg01[train_bools] +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] +train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] +train.mpg01 = auto$mpg01[train_bools] +set.seed(56) +knn.pred = knn(train.X,test.X,train.mpg01,k=1) +?cbind +?Knn +?knn +train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] +train.mpg01 = auto$mpg01[train_bools] +train.X = train.X[!is.na(train.X)] +test.X = data.frame(test.X, +train.mpg01 = train.mpg01[!is.na(train.mpg01)] +knn.pred = knn(train.X,test.X,train.mpg01,k=1) +length(train.mpg01) +length(test.X) +text.X +test.X +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] +length(test.X) +test.X +knn.pred = knn(train.X,test.X,train.mpg01,k=1) +train.X +train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +train.X +test.X +knn.pred = knn(train.X,test.X,train.mpg01,k=1) +?knn +length(train.X) +length(train.X[1,]) +length(train.X[,1]) +?knn +plot(auto) +train.X = cbind(auto$horsepower,auto$displacement)[train_bools,] +test.X = cbind(auto$horsepower,auto$displacement)[!train_bools,] +train.mpg01 = auto$mpg01[train_bools] +knn.pred = knn(train.X,test.X,train.mpg01,k=1) +train.X +test.X +train.mpg01 +knn.pred = knn(train.X,test.X,train.mpg01,k=1) +q()