mirror of
				https://asciireactor.com/otho/cs-5821.git
				synced 2025-10-31 17:48:04 +00:00 
			
		
		
		
	fixed errors
This commit is contained in:
		
							parent
							
								
									561b57c2c9
								
							
						
					
					
						commit
						970e6e36d5
					
				
							
								
								
									
										
											BIN
										
									
								
								hw3/.RData
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								hw3/.RData
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -77,3 +77,81 @@ length(test_data) | ||||
| ncol(test_data) | ||||
| nrow(test_data) | ||||
| q() | ||||
| qda.fit | ||||
| fit.qda | ||||
| qda.fit | ||||
| auto | ||||
| qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) | ||||
| import(MASS) | ||||
| qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) | ||||
| import(class) | ||||
| library(MASS) | ||||
| qda.fit = qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) | ||||
| qda.fit | ||||
| > mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) | ||||
| qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| qda.fit=qda(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data) | ||||
| qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| qda.fit | ||||
| qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,199) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,length(test_data) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,length(test_data)) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,length(test_data)) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| glm.pred | ||||
| glm.pred=rep(0,length(test_data)) | ||||
| glm.pred | ||||
| test_data | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,nrow(test_data)) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| set.seed(1) | ||||
| auto <- na.omit(auto) | ||||
| train_bools <- (auto$year %% 2 == 0) | ||||
| train_data = auto[train_bools,] | ||||
| test_data = auto[!train_bools,] | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[!train_bools,] | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=2) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=3) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=4) | ||||
| mean(knn.pred != test_data$mpg0) | ||||
| import(class) | ||||
| library(class) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=2) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=3) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=4) | ||||
| mean(knn.pred != test_data$mpg0) | ||||
| q() | ||||
|  | ||||
							
								
								
									
										31
									
								
								hw3/answers
									
									
									
									
									
								
							
							
						
						
									
										31
									
								
								hw3/answers
									
									
									
									
									
								
							| @ -196,7 +196,7 @@ Part B: Choose one of Questions 10 or 11 | ||||
| 
 | ||||
|         > qda.fit | ||||
|         Call: | ||||
|         lda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) | ||||
|         qda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) | ||||
|          | ||||
|         Prior probabilities of groups: | ||||
|                 0         1  | ||||
| @ -206,17 +206,12 @@ Part B: Choose one of Questions 10 or 11 | ||||
|           horsepower   weight cylinders displacement | ||||
|         0  131.96939 3579.827  6.755102     268.4082 | ||||
|         1   77.96429 2313.598  4.071429     111.7188 | ||||
|          | ||||
|         Coefficients of linear discriminants: | ||||
|                                LD1 | ||||
|         horsepower    0.0060634365 | ||||
|         weight       -0.0011442212 | ||||
|         cylinders    -0.6390942259 | ||||
|         displacement  0.0004517291 | ||||
| 
 | ||||
|         > qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| 
 | ||||
|     ***Test Data Error Rate: | ||||
|         > mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
|         [1] 0.1428571 | ||||
|         [1] 0.1483516 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| @ -227,12 +222,12 @@ Part B: Choose one of Questions 10 or 11 | ||||
| 
 | ||||
|         > glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
|         > glm.probs=predict(glm.fit,test_data,type="response") | ||||
|         > glm.pred=rep(0,199) | ||||
|         > glm.pred=rep(0,nrow(test_data)) | ||||
|         > glm.pred[glm.probs>.5]=1 | ||||
| 
 | ||||
|      ***Test Data Error Rate: | ||||
|         > mean(glm.pred!=test_data$mpg01) | ||||
|         [1] 0.1407035 | ||||
|         [1] 0.1373626 | ||||
| 
 | ||||
| 
 | ||||
| ────────────────────────────────────────────────────────────────────────── | ||||
| @ -249,24 +244,30 @@ Part B: Choose one of Questions 10 or 11 | ||||
|         > train_bools <- (auto$year %% 2 == 0) | ||||
|         > train_data = auto[train_bools,] | ||||
|         > test_data = auto[!train_bools,] | ||||
| 
 | ||||
|         > train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
|         > test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
|          | ||||
|         > train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[train_bools,] | ||||
|         > test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[!train_bools,] | ||||
|         > train.mpg01 = auto$mpg01[train_bools] | ||||
| 
 | ||||
| 
 | ||||
|      ***Test Data Error Rates: | ||||
|      k = 1 | ||||
|         > knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
|         > mean(knn.pred != test_data$mpg01) | ||||
|         [1] 0.1483516 | ||||
|      k = 2 | ||||
|         > knn.pred = knn(train.X,test.X,train.mpg01,k=2) | ||||
|         > mean(knn.pred != test_data$mpg01) | ||||
|         [1] 0.1593407 | ||||
|      k = 3 | ||||
|         > knn.pred = knn(train.X,test.X,train.mpg01,k=3) | ||||
|         > mean(knn.pred != test_data$mpg01) | ||||
|         [1] 0.1648352 | ||||
|      k = 4 | ||||
|         > knn.pred = knn(train.X,test.X,train.mpg01,k=4) | ||||
|         > mean(knn.pred != test_data$mpg0) | ||||
|         [1] 0.1813187 | ||||
|         [1] 0.1923077 | ||||
| 
 | ||||
| 
 | ||||
|         k = 1 looks like the best, since the error rate increases with k. | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										20
									
								
								hw3/commands
									
									
									
									
									
								
							
							
						
						
									
										20
									
								
								hw3/commands
									
									
									
									
									
								
							| @ -22,13 +22,13 @@ lda.fit=lda(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_da | ||||
| lda.pred=predict(lda.fit, test_data) | ||||
| mean(lda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| 
 | ||||
| qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) | ||||
| qda.fit=qda(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data) | ||||
| qda.pred=predict(qda.fit,test_data,na.rm=T) | ||||
| mean(qda.pred$class!=test_data$mpg01,na.rm=T) | ||||
| 
 | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial) | ||||
| glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) | ||||
| glm.probs=predict(glm.fit,test_data,type="response") | ||||
| glm.pred=rep(0,199) | ||||
| glm.pred=rep(0,nrow(test_data)) | ||||
| glm.pred[glm.probs>.5]=1 | ||||
| mean(glm.pred!=test_data$mpg01) | ||||
| 
 | ||||
| @ -39,8 +39,18 @@ train_data = auto[train_bools,] | ||||
| test_data = auto[!train_bools,] | ||||
| 
 | ||||
| 
 | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] | ||||
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[train_bools,] | ||||
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$cylinders)[!train_bools,] | ||||
| train.mpg01 = auto$mpg01[train_bools] | ||||
| 
 | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=1) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| 
 | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=2) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| 
 | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=3) | ||||
| mean(knn.pred != test_data$mpg01) | ||||
| 
 | ||||
| knn.pred = knn(train.X,test.X,train.mpg01,k=4) | ||||
| mean(knn.pred != test_data$mpg0) | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user