mirror of
https://asciireactor.com/otho/phy-521.git
synced 2024-11-21 21:45:06 +00:00
388 lines
50 KiB
Plaintext
388 lines
50 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# EPR Paradox Example\n",
|
|
"\n",
|
|
"# A neutral pi meson (pi0) decays into an electron/positron (e-/e+) \n",
|
|
"# pair.\n",
|
|
"\n",
|
|
"# pi0 --> e+ + e- (electron-positron pair)\n",
|
|
"# pi0 has angular momentum l = s = 0\n",
|
|
"\n",
|
|
"# Align electron and positron detectors in opposite directions.\n",
|
|
"\n",
|
|
"# | pi0 |\n",
|
|
"# |e- <------ ------> e+|\n",
|
|
"\n",
|
|
"# Where hbar = 1, the measurement of the spin in some direction is \n",
|
|
"# +/-1 with spin state [1 0] (up) or [0 1] (down).\n",
|
|
"\n",
|
|
"# The Pauli exclusion principle with conserved angular momentum 0\n",
|
|
"# dictates this system must be in the singlet state \n",
|
|
"# chi = [1/sqrt(2) (|up+>|down-> - |down+>|up->)].\n",
|
|
"\n",
|
|
"# In this state, if the positron is measured to have spin [1 0], the \n",
|
|
"# electron must have spin [0 1], or vice versa. There is an equal \n",
|
|
"# probability to find either state during the first measurement.\n",
|
|
"\n",
|
|
"# This view is consistent with the realist view. The realist view could \n",
|
|
"# hold that the electron and position had those angular momenta \n",
|
|
"# from creation.\n",
|
|
"\n",
|
|
"# EPR assumes influences cannot propagate faster than the speed of \n",
|
|
"# light. \"Wave function collapse\" is apparently instantaneous, however.\n",
|
|
"\n",
|
|
"\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import matplotlib.patches as mpatches\n",
|
|
"%matplotlib inline "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEXCAYAAACu1P9TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAHGBJREFUeJzt3XucHGWd7/HP5LIh2RATWBeDhsUDIQT0EFZcRBAGEAmrBOSAEVgPCR4xB9AX3na5ygQXFFnY5SasslnYFT3gbSG6XAQZiCQkrlyOEXI5CiYkXGMCSQgJSeb88atmairVM92dmXSG5/N+vfrV0089Vf30TPW3qp56qgYkSZIkSZIkSZIkSZIkSZIkqSatwGbg4ia3o17PAE83uxEFbcTv8rAmt0MNGNDsBqhmrcQX7YFu6uye1dneQmJ70bGV808hfr+nbX1TalZvm08C7gZeBDYALwO/Bb4L/M9eak/loX5mULMboLrV8kXzy9i3ttff77eB/wW8BvyM2PC3AOOBjwGHAv+2le9xHfB9YOlWLkdNYOBL9WtpdgNKHEKE/VLgIGB5YfogeqcbZkX2UD9kl04a2ujsdz0RmAesJb643wd2rTLfTsClwPys/irgceDrwLBC3bHE3uMyYH32fAuwZw/tOQWYC6yhsyuqp+lk739e1p41wGpgNvDJKp+lzPuAq4EniN/FOmAR8A/AyELddmBG9vO/Zu2rPHbL1RsEnAk8ArxK/N4eBc6i+obibKLbZR3wLHAt8LY6PgfAB7PnH7Fl2ANsBO4vlLXSeW7jIOA+4m/8KtEt9L6S5bRl8xxaKK90N+5MHGk8B7xOrDtTqrT5NOJv9hLx2Zdk7/uJKvW1ldzDT8uZwCTgDuLL+QFgMrAfMIHo8614d1ZnN+C/gG8ROwjjgHOAG4gvKMD7ibAYni37SaIb4W+A44APZ8so+hJwFHAnEUbFkKs2fSTwi6zNvwb+JWvbROB7wL7ARTX8Pj4DHE+E+b3ZMg4AvggcAxxIbEwgQn5l9nn+g9jQVLySPQ8GZgIfARYQ/eavA0cQIX4gW/ajXw18jgjpfyaC+bis7mBi41mLl7PnvWqsn3cgsfH8OdFlMxY4gQj1jwC/rHE5I4GHiTbfDgwhwnsGsUHIdyddBpwL/B74P8TvcFdiXToxm19KVivxpflFN3V2z+r8vlDelpWvIsIw79Zs2kmF8tlZ+d+VvM9OxJcZYq/1KWATcHKh3ieyZTxF173bSntWExubop6m35xN/3KhfAhwV9aW/HytWf2vFurvRvle9+lZ/b8tlE/Jyqud/Ky0++rCcgcAN2XTJuXKP5iVLaLrEcUQOn//xb9lNbsSG6TNxEb3ZOLoqrvup1Y6j1LOLEyblGtb2d+ubA9/M7F3n68/HniDOILJW0HsMOxQ0q6du2mzlIRWtj7wL+lmud/Mlb0vK/t1De06OKtbbS/woWz6h0rac2WVebqbvjOxFzy3yrz7ZfNenitrpTzwq2kh9jjvK5RPoXrgDyBCbBnlXaUjiQ3Rbbmy71B91M9h1Bf4EJ9zMV27m14lNoKnlrSrNauzsMryHmDLcG8rKYPODfTwkuU8SHz2fDfgy8DvgD+p+mnU6+zSSUtZt8qz2fOoXNkHsud7aljmX2bP1TZEDxAnFCcAswrT5vWw7LLp76czuNpKpg/Onsf3sOxK3c8S/f77ACPoGorvrGEZFXsRv8PFVN+wvF5o118SI34eLKn7MBGi9WjP2nEwscGYkP18dPY4jRits6EwX/HvUvFgbjkP1fD+i+nsAstbSmxERxEjiCCOLD9HdP/dnr3XI3R2j6kPGPj9R+XL392J9sq0akGxqqRsY/Y8MFdW6V5YVkO7Kv3qz1WZXikvngQFeL6HZZdNrxzuvz97lOkA/rSHZUPsbR9P7Gn+JHu/9UQ4nUNnt1UtKu0aS/XAL7ar8rt7oaTuRjr75evRQRxt5Y+4jiJOoH8Y+N9El1Ne2ftD5++/1hPIZesXlK9jXyCOXqYSffnnZvX+kzh387sa31N1cJRO/1HZ8+muf/PPsudqX7xaVeZ/Vw11K+16R5Xpowv18noaz142vbKcq4j1t+wxEDiyh2UfQIT9z4kT0Z8GLiC6vS6hvrDPt+vHPbRrj5J5yn53g+j8e26tnwMXZj8fXjJ9lyrzVdrVF3vdlXMdE7L3/x/ERncSMVLHrp4+YOD3HwuIQ/G9iJOmZQ7Knp/Yyveakz0fTc9jzh/NnsuCJF/+aJXp9ZpLeR9yvSrDRe9kyyOiAyk/mbgpex5YMu0pYkN5ELUfOf+a+P2WjY8/hN79fla6Wsr+nh+qUt6aPT/Wi+0o8xIR9pOJLsA92HJwgXqBgd9/rCfGzA8GriiZ/i7gK8Re8c1b+V6PEqNEJlA+SmdnOveAHyZO+h1C7KXlnZiVL6T2oX09eYno/z2A2GstW4f3IE5gd6cypr+4ofpz4Poq81QuOPqLkmmbiKGXo4FrKN9gjKZrH/7N2fMFdD2HsgNxrUM9JhJDKcs2NsOJLioo74sfy5ajdI4jNqqLqd7H36g/Ic4tFA0mdmY66OzrVy+yD79/+RLRbz2VzgtlXiUC6Diif/hyeucL+jfEScDLiCB/kNgLHEv0CY+jcxz+aUS3wW3EkMCF2fTjs/b1xj1c8s7O2nEJ8Clio/MCMTRxPLEx+CRx87FqfpXNd0L2/DDRtTCROJpazpZ7vbOJIDqH2OhV+r6vIT7n14hRQtOAY4m91WXERmQsMQzzfOJooLK8a4mTl/OJi6beIP6WK4jzH7Ve1TsO+EdiaOYs4P8RfeLvAj5K9MM/QoyzL7qbGBF1DPB/iaOfE4iLoU6v8f3rMSzXxkeBPxAbuaOAvelch6Tk/Slxkcw8om91AxFOdxBhVeZiYg+0rBtkd6JLY0bJtJ2AbxABuA74I/EF/RowtFB3L+LCmuVZm5Zlr8fW2Z5apkPsDZ5FBPUqYgTMM8SG5/N07fZqpXxY5ihib/7p7PMtBv4++2xPUz4k8mgiqFdny9xE1yttITaW9xGhvZ4YpfIQcWKybOTPWcRoldfpvNJ2RDdtKLMzsSPwPWLM+x+Jv8MLxEVr09hyB6+Vzt/LB4jf3SvZo9qVttX+Nt0NGf5Xuv6eBhFHo/9JhP26rJ2zgTNK2ilJ2kqt1Hd9gvq5WvvwBxF7J4uJvZClxCiJovOzaa8RXQBlV0nuQ+xxrCX2AqfX0Q5JUh/7LhHOnyHO6J9KHPrmnUcE/ZnEvUN+Rpxgyw/5GkUc8t9LDJv7LDF64Gt92HZJ5VpxD18FE4m+wL27qbMD0e93Ya5sGPFPGPJhfh7Rr5m//PorxN7+jr3RWEk1a8XAV8HtxL04unMEseIU79T3L3S9nP8h4qRS3m7ZvB/bijZKknpQS9/5XxF999cRe/FrieFjo3N19ibOwi8uzLuArkcG47KyvCVEV9C4mlstSapbLYE/mrhL4H8nroSbSgzX+kmuziiiL754KfxKomtnUK5e2WX/K+l64YkkqZfVMt61cuHHcUQwQ1wQ8iDRB9je662SJPW6WgL/j8Sd61bmyh4mTuTuSwT+SuJEbAtd9/Irt0Ot3C1vJeV33htVWD777bdfxxNPbO0tYSQpOU8Qt0XZQi1dOk9VqZcP9wXEDaWK/790bzovI6/UK96nfAzR7dOlb/+JJ56go6MjycfFF1/c9Db05/b5SPtv3x/a2JcPyq9/gipBXvRT4L10vS3vocSl7ZX/6zmbuJdI/p8PDyPuJ5If4XMXcWl6fljmZDov1JIk9ZFaAv/bxNj5mcTQyVOAfyfuuzE7q/M6cc+V84kLr44EfpBNuza3rBuJe4v8OKtzBnFvjqso/085kqReUksf/mpinP01xH+X3wD8B/Efa/K+QWxAziOOBn5F3P3upVydVUTQX0dsQFYSYd/W6Ad4K2ptbW12E7q1vbdPfac//O37QxubpdZbrzZDR9YfJUmqUUtLC1TJdm9aJkmJMPAlKREGviQlwsCXpEQY+JKUCANfkhJh4EtSIgx8SUqEgS9JiTDwJSkRBr4kJcLAl6REGPiSlAgDX5ISYeBLUiIMfElKhIEvSYkw8CUpEQa+JCXCwJekRBj4kpQIA1/SW8KAAQOYOnVqs5uxXTPwEzN37lxOPPFE3vGOdzBkyBB22203pk2bxnPPPdfspilxvbFutrS09GEL+79BzW6Atp0ZM2ZwxhlnMHToUCZNmsSYMWNYtGgRN910EzNnzuSRRx5hzJgxzW6mEuS6qQ71noULF3YMHjy4Y+zYsR3Lly/vMu3+++/vGDhwYMfHP/7xJrVOKeutdbOlpaVj6tSpfdXMfgPoqBaqdukk4oYbbmDjxo1cffXVjB49usu0I444gmOPPZaZM2eydu3aJrVQqerNdTPyTtXYpZOIOXPmANDe3s7cuXO3mP7iiy+yadMmFi5cyJIlS3j88ce7TN9///057rjjtklblZZa181Fixax//7709bWxiWXXFK6rFtuuYVbbrlli/LNmzf3bqP7KQM/EStWrADgiiuuqFqnpaWFNWvWcMcdd3T50rS0tHDaaacZ+OoT9aybAIcffjgDBnTtnOjo6GD69OlMmDCB448/vu8a289tz6e0Ozw86z0HHHAAjz32GK+88grDhw9vdnOkN/XWujlgwACmTJnCjBkzerF1/U82Uqk02+3DT8RBBx1ER0cHDz30ULObInXhurntGPiJOPvssxk8eDBf+MIXWLx48RbTN2zYwKxZs5rQMqXOdXPbsQ8/EePGjWPGjBmcfvrp7LvvvkycOJGxY8fyxhtvsGTJEmbNmsUuu+zCk08+2eymKjGum9uOffiJmT9/PldeeSUPPPAAzz//PMOHD2fXXXfl4IMPZvLkybS2tja7iUrU1q6b9uGH7vrwDXxJegvxpK0kycCXpFQY+JKUCANfkhJh4EtSIgx8SUqEgS9JiTDwJSkRBr4kJaKWwJ8CbC55nJGr80zJ9OUly9oHuB9YCywDptfYBknSVqrn5mmHA+tyr5/O/dwB3ApcmyvbUJh/FHAfMB+YBOwJXEkE/kV1tEOS1IB6Av9XwGvdTH8OmNfN9GnAEOAEYA2xpz8CaAO+Cayuoy2SpDrV053S043Wepp+DHAPEfYVtwFDgcPqaIckqQH1BP7vgDeABXTtv6/4NLAeWAX8ANitMH1cNm/eEuKoYVwd7ZAkNaCWLp3lwIVEd81A4GTgRmAY8E9ZnTuAOcCzxInZi4FZwHuBV7M6o4iNQdHKbJokqQ/VEvj3Zo+Ke4AdgAvoDPxzctMfBmYDjxMjfK5ptHFtbW1v/tza2uo/55Ckgvb2dtrb22uq2+g/QDmJ6H9/N/CHKnXmEyd6p2avXwCuA75WqLeGOCK4slDuP0CRpDr1xT9AaSSJFwDjC2VjiK6hYt++JKmXNRr4JwIvU33v/j3Eidhf58ruAo4GhufKJhMnbR9ssB2SpBrV0qXzQ+KE7G+JPv/JwKnA54DrgY8CpwB3Et0244mTvOuACXQOwxwJPEl09VwO7EF04/wj8NWS97VLR5Lq1F2XTi0nbRcCnyG6X1qI4P8UcWUtxNDKXYirbEcCK4i9+fPpOuZ+FXAk0Y8/kxidcxVx4ZUkqY81etJ2W3APX5Lq1BcnbSVJ/YyBL0mJMPAlKREGviQlwsCXpEQY+JKUCANfkhJh4EtSIgx8SUqEgS9JiTDwJSkRtdw8TVIiOjo6WLp0KZs2bap73re//e0MHz6854pqGgNf0pvmzZvHwR86mKGjhtY138b1Gzn0kEO556f39FHL1BsMfElvWr9+PcPfPZxXTnmlvhkXwernVvdNo9Rr7MOXpEQY+JKUCANfkhJh4EtSIgx8SUqEgS9JiTDwJSkRBr4kJcLAl6REGPiSlAgDX5ISYeBLUiIMfElKhIEvSYkw8CUpEQa+JCXCwJekRBj4kpQIA1+SEmHgS1IiDHxJSoSBL0mJMPAlKREGviQlwsCXpEQY+JKUCANfkhJh4EtSImoJ/CnA5pLHGYV65wNLgdeAB4H9Spa1D3A/sBZYBkyvsQ2SpK00qI66hwPrcq+fzv18HnAh8GVgAfAl4D7gPcALWZ1RWdl8YBKwJ3AlEfgXNdB2SVId6gn8XxF770U7AOcClwHfysoeAZ4BzqYzzKcBQ4ATgDXEnv4IoA34JrC6rpZrmxgxYidWr15Z93w77jiKV1/9Yx+0SFKj6ulOaalS/kFgR+D2XNlrwEzgmFzZMcA9RNhX3AYMBQ6rox3ahiLsO+p+NLKRkNS36gn83wFvEF02+f77vYFNwOJC/QXZtIpxWVneEmLjMK6OdkiSGlBLl85yon9+HjAQOBm4ERgG/BPRN7+G2LXLW5nVGQRszOqtKln+ymyaJKkP1RL492aPinuIfvsLgKv7olGSpN5Xz0nbvB8BnwD+gthDH0708ef38kcR3TUbs9crgbeVLGtUNm0LbW1tb/7c2tpKa2trg82VpLem9vZ22tvba6rbaOB35J4XEF09e9K1H39v4Knc6wXA+MJyxhDdPsW+faBr4EuStlTcGZ4+fXrVuo1e9HQi8DLwB2A28Cqxx18xDDgWuCtXdhdwNHE0UDGZzgu1JEl9qJY9/B8Cc4DfZvUnE+H+uWz668A3iPH2K4GFwBezadfmlnMj8Hngx8DlwB7AxcBVdB2qKUnqA7UE/kLgM0T3SwsR/J8Cbs3V+QZxtHAesDNxkdZRwEu5OquAI4HriDH6K4mwb9uaDyBJqk0tgX9B9ujJZdmjO08RoZ+0G264iVtu+WHd8w0a1MJ3vnMV48cXT4VIUs8aPWmrrXD33e3Mnfte6t32DRvWxqJFiwx8SQ0x8JtmP2BiXXMMGnRD3zRFUhK8NbEkJcLAl6REGPiSlAgDX5ISYeBLUiIMfElKhIEvSYkw8CUpEQa+JCXCwJekRBj4kpQIA1+SEmHgS1IiDHxJSoSBL0mJMPAlKREGviQlwsCXpEQY+JKUCANfkhJh4EtSIgx8SUqEgS9JiTDwJSkRBr4kJcLAl6REGPiSlAgDX5ISYeBLUiIMfEn90oiRI2hpaan7MWLkiGY3vWkGNbsBktSI1a+shrYG5mtb3ett6S/cw5ekRBj4kpQIA1+SEmHgS1IiDHxJSoSBL0mJMPAlKREGviQlwsCXpEQY+JKUiHoD/53AGmAzMCxX/kxWln8sL5l/H+B+YC2wDJjeQBskSQ2o9146VwCrgaGF8g7gVuDaXNmGQp1RwH3AfGASsCdwJRH4F9XZDklSneoJ/EOBo4HLiOAveg6Y183804AhwAnEUcL9wAji9kffJDYkkqQ+Umt3ykBi7306sKJKnZYelnEMcA8R9hW3EUcLh9XYDklSg2oN/GnAYOD6bup8GlgPrAJ+AOxWmD4OWFAoWwK8lk2TJPWhWrp0dgYuAU4FNlWpcwcwB3iWODF7MTALeC/walZnFLExKFqZTZMk9aFaAv9SIszv7qbOObmfHwZmA48DU4BrGm2cJKn39BT4+wJTiRO2I7OyynDMkcTonHUl8/0WWAjsnytbCbytpO6obNoW2tra3vy5tbWV1tbWHporSWlpb2+nvb29pro9Bf5You9+Tsm0Z4GbgDNqbNcCYHyhbAyxASn27QNdA1+StKXizvD06dOr1u0p8GcBrYWyY4C/y55/X2W+9xAnYm/Mld0FfAUYTudIncnESdsHe2iHJGkr9RT4K4CHCmX/LXueRYT1R4FTgDuBF4i9+AuBPwA35+a7Efg88GPgcmAP4uTuVXQdqilJ6gP1Xmlb0ZH7eQmwCzFOfySxkbgLOJ+uQb4KOBK4DphJ9NtfRUP/d16SVK9GAv9muu65/wb4cI3zPkWEviRpG/PGZZKUCANfkhJh4EtSIgx8SUqEgS9JiTDwJSkRBr4kJcLAl6REGPiSlAgDX5ISYeBLUiIMfElKhIEvSYkw8CUpEQa+JCXCwJekRBj4kpQIA1+SEmHgS1IiDHxJSoSBL0mJMPAlKREGviQlwsCXpEQY+JKUCANfkhJh4EtSIgx8SUqEgS9JiTDwJSkRBr4kJcLAl6REGPiSlAgDX5ISYeBLUiIMfElKhIEvSYkw8CUpEQa+JCXCwJekRBj4kpQIA1+SEmHgS1Ii6g38dwJrgM3AsMK084GlwGvAg8B+JfPvA9wPrAWWAdMbaIMkqQH1hu0VwGqgo1B+HnAh8HXgY8RG4T5gl1ydUVnZJmAScAnwJSL0JUl9rJ7APxQ4GvgHoCVXvgNwLnAZ8C3gF8BJxEbh7Fy9acAQ4ARiL/+fibD/IrBjY82XJNWq1sAfCFxLBPSKwrQPEoF9e67sNWAmcEyu7BjgHmLvv+I2YChwWO1NTkF7sxvQg/ZmN0DN8nSzG1CD/tDGJqk18KcBg4HrS6btTXTTLC6UL8imVYzLyvKWEBuHcTW2IxHtzW5AD9qb3QA1yzPNbkANnml2A7Zfg2qoszPR334qEexFo4i99mK//krixO4gYGNWb1XJ/CuzaZKkPlTLHv6lwBzg7j5uiySpifYF1gMHAiOzx5nEsMxdif73M4E36HoiF+ArdO2vfwG4qOQ91hCjdYoeJ44afPjw4cNH7Y/HqaKnLp2xRN/9nJJpzwI3Ad8nTuruSdd+/L2Bp3KvFwDjC8sYQ3T7FPv2ASb00DZJUi/amRiOmX98ndjDP5rYIAwh+uYvyM03DHiR6PuvOJcY4TM8V/ZlYg8/XyZJ2k5MYcsrbc8lrp49EzgS+BkR+G/P1RkJLAfuzeqcQVzEld8oSJK2I1OI0TqN3FphPHHR1Wt03lqh2Pf/VvMeYgN5aLMbIhW4bkq9zC+Vtleum4nxxmWSlAgDv/edSXRtrQHuBEYXpg8DrgGeB9YB84CjctOnZvMOzJUtB17OvR5AnCj/dPa6DXiJGNn0CHE+5VHgkAY/Qzvwg0JZK7E3uA+we/bzycC/A68Sw26/2uD7adtw3ZR60XHEynY98UW5lPiC5Q+bbyVWwrOIkU4/AjYAB2fT98zq/1X2eixxncPrxAoNsH9WZ6/sdRvxRXoCOA2YSAylfZG4VqJeD9D13khQ/qV6Frgh+6x/T5zbObOB91Pfc9103VQvm0eMUMr7Np1fqvHEivep3PQW4Dd0vZJ5GZ0Xo50O/BcwG/hsVvZ5Yi+soi17j9Zc2X5Z2Uca+Bzt1PalKl59/W3ii6btj+um66ZdOr1oELF3c0eh/Ce5n99PfInyh6QdwA/peog7C/hQ9vOhwEPZI1/2y8L7bKDrXc0qF729q9YP0ICflLzetY/fU/Vz3XTdBAz83vRnRN/mi4Xy/OvRRB/o64U6LxD9p4Oz17+k80v2IeILlf+iHZK9zltdeL0he96htuY3pNpnLfYNq7lcN103gdrulqnavEwcEv95oTz/+jniquId6PrF2oW4NuGN7PUsYCfikHf37PVm4l9MHpUts/il6k3riCuo88ruaFrtsz7X6y3S1nDddN0E3MPvTRuBx4DjC+Un5H6eRxwmn5QrawFOpOuX5DfESIfzicPfFcRtpOcT/0pydfZefeVZuv4vAyjvbz2h5PVy7Cvd3rhuum6qDxxP7O18i1gJLyX+yUt+JMR3gVeIEQMTiZEQ64n/HJY3M7esimspPyHVRgx9K9pMYyMT/jqb9yrgw9nn+D1bnhhbCtxIfNbKSIizGng/9T3XTddN9YGziJVtLfBT4jB3E51fqqF0jnV+nS3HOlf8bTbfJ3Nln8jKLizUvZgt+yyh8S8VxP2RlhDD9P4NODZ77+JY5+/ROdb54gbfS9uG66akuu1OfKn+usntkIp2x3WzKvvwJSkRBr4a1dHsBkhVuG5KkiRJkiRJkiRJkiRJkiSpL/1/3StWYRo1uZsAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f22020bd208>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# If information about the measurement of the wave function propagated\n",
|
|
"# at a finite speed, the particles could conceivably be measured such\n",
|
|
"# that both are equally likely to hold either spin up or spin down.\n",
|
|
"\n",
|
|
"# What would happen if the measurements were uncorrelated?\n",
|
|
"\n",
|
|
"plt.hist(np.random.randint(0,2,1000),bins=4)\n",
|
|
"plt.hist(np.random.randint(3,5,1000),bins=4)\n",
|
|
"elepatch = mpatches.Patch(color='blue', label='e-')\n",
|
|
"pospatch = mpatches.Patch(color='orange', label='e+')\n",
|
|
"#plt.legend(handles=[elepatch,pospatch])\n",
|
|
"plt.text(0.5,565,\"e-\",size=20)\n",
|
|
"plt.text(3.5,565,\"e+\",size=20)\n",
|
|
"\n",
|
|
"plt.suptitle(\"Uncorrelated Spins\",fontsize=20)\n",
|
|
"plt.ylim([400,600])\n",
|
|
"plt.xlim([-1,5])\n",
|
|
"plt.xticks([0.125,0.85,3.125,3.85],[\"down\",\"up\",\"down\",\"up\"])\n",
|
|
"plt.tick_params(axis='both',labelsize=15)\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f22020419e8>"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEXCAYAAACu1P9TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAHv9JREFUeJzt3Xl8JVWZ8PFf7AaaHugFUGS1EWRXcHQcYV4hiIq8bA4qzeISdVheHJdXxQFkCa4sgqjoICjgNsMmLoDsEEABaVGQrbEHCA00sqaBXqBpyPzxnGvqVuom994kvZ3f9/PJJ7mnTlWdW7l56tRzTlVAkiRJkiRJkiRJkiRJkiRJkprWCzy4tBsxCnoZ+fuYBrwCnD3SxgyjK+3no2O8HzXpVUu7ASuwzYHvAncBzwIvAo8ClwAfB1Zeek1bIfUQwaWR/vS1LPga0dYTmqh7Rqr7mfR6NN/HSLfTSbTt2CG2vywdd2lMHAO8TPwx/A44FfgKcCZwXyqfsdRat2LqIY55Ixulr2XBNKKtc4DxQ9T7B+A5YAEwJZWNxvuYRnwGzxrhdjrTdo5psHwSsGn6Lq2QjiT+CHqBf2pQZxfg6iXVoEz0MHTAX9ZcQXxO/nWIOp9IdX46yvuexugG/EY9fGmFNg1YBLwAbDlM3aqUzj7ADUQKaAHwF+DwBnV7iVzuROAkYHba7yzgiw32uSdwDfBYqvsoESj/X0XdNYBvAPemtswlTlLvrqjbxUCu9r1pm8+msnWJQPynBm0CuCzVLR6zLuAXwANp/88SV0sHlNadltat+rquUK+X6tz3KsQxvhOYn/ZzA/DBirq1fZ2dfj4XeApYSFyx7TbEeyx7f9rWb4eoc0uq845CWS+j9z7KAX9T4Hjgj8CTxGekF/gBsF6p7jk0Pu47pDpdNM7hv4X4/T5R2M/3gNdW1K3t63XAwek9LgT+ltpWdQXxJuC/03ZfSPu5DfgWQ19VSU07jvhg/ryNdb+e1n2c+OCfQHywa4FrpVL9B4FHiCB4P/CfxJjBI1RfZh+Uyh8FTge+SuSH/5C+il6Xtv8KEbxPJv6wHiWC97+V6neluhcDLwG/Jk4W/5WWX56Wb13xvtcBFgO3lsoXpLKziJz3D4CH03a+XKg3mehh1tp7TOHrI4V6vcTJo2hlBnL/dxPH/DQikLyS9ls0LZVfS/yebiKOzTlEAFpM9HqbMT5tYzGwQcXyrdO+7i2Vj+b7KAf8w4E+IhCfCpxInJBq6ad1C3X3Ik58teNRPO4bpjpdaXnx9wCwOzGm9QLws9S+2hXPI6l9ReekZecTHY+fEJ2c21L5NaX6byJ+H/OIz+DXiL+Ny9M+JyKNgmuID+DHW1xvOwbSQK8plI8DfpOWHVFapzeVX0L07mpeTfzR9lHfk7mN+CNYq2L/a5Re9xCBaJ9S+WTgz0QwLrazK7VlMfCeiu3vm5afVLHssLTsk6Xyqjz1SsRVxiLqg0+tzUOldHoZHCiPYOAYFicwvJqBE8h2hfJpDPRijy5t6z2p/NIh2lB2PI1TIt9Oyz5XKu9l9N5HOeCvy+COBcRV3WLg+6XyTobO4XcxOOCvBjxNdAz+pVT/i6n+FaXycxj4+1i/UD4OuD4tK6ZPT05le1S0aTLQ0aC9UkvuIT5oVUFvKGem9co9Z4A3EH9s95fKe4kA9/qKdX7M4BTJbUSPZ0pF/aJt0rrnNVi+V1peTAN1pbJfNFhnAnECmsPgmWF3Eb2u8kmnkb3Tvj5cKu+h9YA/izi2m1bU/3jaz48KZdNS2QNUB42HiNRBszYm2txb2t4qRFBcyODj0svovY9Wcvh/YfBnsJPWA/4BqexnFfXHMXCCKl71nEPjjlRtH4cWymoBvyr9mDWnZS4b/pGYunZtxbJZRCplGrB6admzDP7jh0h9AEwtlP2MuJS9BzgFeB/RAyyr9QSnAN0VX7WT2RYV65bTMjUvEJfjryUGrGveQpyULgGeKa2zIZHamknkpGs96wvT8nIPv1WrEwF3DvDXiuW138W2Fctup3qq4cPUH/Ph3E+k6zak/ri8P23nVww+LmUjeR9VPkRcRT1J9MJrx31rRn7MIT7rxXYVvUyMOwC8uWL5HyvKHknfi8f93LStXxGdn48Qxyh7Dl6MrseI+ffrD1exZHJh/UbbXZ8Iws8Xyuc2qL84fR9XKPsWMcB4KPBp4LNE0LqeSKvcluqtmb6/m8Y9pH5iymDZ3xrUh+ilHUgM4F2WymqDeT8u1X09cfKYQgSAy4mT28tEquej1Kex2jHcMa+9l6oroqGOe6udqDOBdxJXd5enstqV3hlNrD+S91H2LWK+/xzid/QocZUB8DEGcvMj0cxnvVivqOq4V33WZxAD3V8CPsDA1eB9xDjbuc02dkVjwB9dNwI7ATvT2uXys+n7OlT32Ncp1WvXT9PXZGB7Ykrgx4mc6ebECaG2j08TA3+tGOoGm5uJq5U9iVkVC4H9iJ5keabK54hURhcxQFe0H6Nz52btfVbNCoHRO+bDuYhI3+xBjItMIlIls6ifZdTIaL2P1xC/8zuJz8b80vLy7Kh2LanjfgtxTFcC3krMHvsUMYj7JIMHerNgSmd0nU1cBr+f6pRHUXGq5Z+IHG5nRb1NiN79g8RNOKPhWaIHdxDR816Dgal/N6fvOwxebcR+TOTz9yWmMK5J/AGWc++bECePqjGBHRtsu7aNZgfknidSKuun/ZXtlL4PNZ10NLxE/A5WIk5kn0jlP2xy/dF6H68njt2VDA7261M9VlQ75uMqljVSa8dOFcvGE5/DfkbvuL9EfKaPJU5oEJ2OLBnwR9dDRJ57ZWK2xlsa1NuVgct3GLgaOIr6WTTjgG8Sf4jFQbd2VP2BAaydvi9I328jrlT2Ji7jq7yR6vz/cH7CwCBebSDvnIp6DxLvudzmXage2IboJXcQU0qbdVZa5yTq/xbWImbh9DPym5OacWb6Xkt5LaL6uDQyGu+jNrf/HaVtrJbaVxXUn07fWznmtXGJ/YB/Li37LDFWdTUDufl2bE90LMpqVxULKpZlwZTO6PsGcVyPJXKJNzEwQ2Ztoue8CfWPVriZmPP8RWLWyoXEh3JXYCsiAFdNaWzFL4ne4C3EiamD+ON+KzEYVrzzd39iUO1HRK/oViJ/uj4xx3kr4O3EpXErHiHSFDsTude/AHdU1Ps+cbK5gDgWjxGDhrsQg7/TK9a5msjXXkRcvSwkZrRUzQap+SZxjPdK7biMGNj+IBEsTyR+f61oZ8rfX4mxitpV1YW0dmxH4308TuS29yUGpa8iUn/vJj6LtzN44Hcmkeffl+hJzyZOLj9JP1eZT6QRLyDGjy4gBrvfkvb1GHFz1Uh8kegs3Eh8BuYRn9n3EiebZsZGpJZsDnyHyIkWH552KRHMquY7Tyc+pM8RAetOYo511Z22D1Kd74c42bxMfVrmYCIY3k/80T1NnIi+QPUA7Gpp338kThQL0roXE73s4s0rH037K99gU6U2Le9l4P8PUW87Is/6DHE8biAuxXekeirgq4gbbO4nesi1G4JqGh2vVYj3eScDd/TeQPVJZRpDT2e8jvYf77A/A8flXUPUG8v3sSpxQ94s4vP3EHHD0ho0fm9vJU62c9Py4ueui8afi7cSn8cniL+NXhrfaXt22k7VoHEngz8P707v7e7UrnnEDWynUn2TmyRJeRpP3HY9i5hT/TAxl7vsyLRsAXG5tk1FnS2Jntt8osd7HI4lSNIy42dEcD6QyPseQFz6FR1BBPpDiXnFlxJ5yLULdaYSc3yvJPK4BxOXW18Zw7ZLkpr0XiInuvkQdSYQOcOjCmUTifxcMZgfQeSOVyuUHUb09st3kUqSlrDzGbgzspF3EgMn5Wd5/Ij626FvYOAJijUbpnV3H0EbJUnDaCZ3/jYid38a0YufT9wQs06hzubEKPqs0rozqb8y2CyVFc0mUkGbNd1qSVLLmgn46xDTq95ETPH6GDFn9peFOlOJXHz51vo+IrUzvlCv6nkYfbT20ClJUouaufGqdiPJXkRghrg54npiDmzPqLdKkjTqmgn4zxA3s/QVyn5PDORuRQT8PmIgtoP6Xv5UIl1Te6JdH9VPwZta2j7bbLNN/x13VN2EKUkawh00eBx2MwH/XqqfS1EM7jOJZ21sQn0ef3Pq/0XbTAY/VGwDIu1Tl9u/44476O8f6uGLWhF1d3fT3d29tJuxXPMY5q2jo6Pq/ieguRz+JcTDstYslO1APBrg9vT6JuL29+K/xJtIPJ60OMPnMuJ5KMVpmdMZuFFLkjRGmgn4ZxBz5y8mpk7uTzxT/SoGHsj0AvH/OY8kbrzamXgoEsSzOGpOJ56bcVGqcxDx3JdTiEFfSdIYaSal8zwxz/47xNP0FhGPOC0/+Op44gRyBHE1MIN4iFHxqX9ziUB/GnEC6SOCfXe7b0Arls7OzqXdhOWex1CNLMv/vb3fHL4ktaajowMaxHYfWiZJmTDgS1ImDPiSlAkDviRlwoAvSZkw4EtSJgz4kpQJA74kZcKAL0mZMOBLUiYM+JKUCQO+JGXCgC9JmTDgS1ImDPiSlAkDviRlwoAvSZkw4EtSJgz4kpQJA74kZcKAL0mZMOBLUiYM+JKUCQO+JGXCgC9JmTDgS1ImDPiSlAkDviRlwoAvSZkw4EtSJgz4kpQJA74kZcKAL0mZMOBLUiYM+JKUCQO+JGXCgC9JmTDgS1ImDPiSlAkDviRlwoAvSZkw4EtSJgz4kpSJZgJ+F/BKxddBhTq9FcvnVGxrS+AaYD7wKHBck22QJI3Q+Bbq7gQsLLx+sPBzP/Bz4LuFskWl9acCVwN3AXsCmwAnEwH/6BbaIUlqQysBfwawYIjljwG3DrH8EGAVYG9gHtHTnwR0AycCz7fQFklSi1pJp3SMcPmuwBVEsK85D1gV2LGFdkiS2tBKwL8feAmYSX3+vuYTwIvAXOACYMPS8s3SukWziauGzVpohySpDc2kdOYARxHpmnHAfsDpwETg1FTn18DNwCPEwOyxwI3AG4HnUp2pxMmgrC8tkySNoWYC/pXpq+YKYALwJQYC/mcLy38P3ATcTszw+U67jevu7v77z52dnXR2dra7KUlaIfX09NDT09NU3eHy7o18kMi/bwQ81KDOXcRA78fS68eB04CvlOrNI64ITi6V9/f397fZPEnKU0dHBzSI7e3OgW8nEs8EtiiVbUCkhsq5fUnSKGs34H8AeIrGvfutiYHY2wpllwG7AKsVyqYTg7bXt9kOSVKTmknpXEgMyN5N5PynAwcAnwK+B+wG7A/8hkjbbEEM8i4EtmVgGuYU4B4i1XMCsDGRxvkWcEzFfk3pSFKLhkrpNDNoex9wIJF+6SAC/4eJO2shplauTdxlOwV4mujNH0n9nPu5wM5EHv9iYnbOKcSNV5KkMdbuoO2SYA9fklo0FoO2kqTljAFfkjJhwJekTBjwJSkTBnxJyoQBX5IyYcCXpEwY8CUpEwZ8ScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX5IyYcCXpEwY8CUpEwZ8ScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX5IyYcCXpEwY8CUpEwZ8ScrE+KXdAK14Ojt3Y8aMW5bY/lZffTV6e+9jwoQJS2yf0vLIgK9RN2vWAyxYcAmw6RLZ30svTePFF1804EvDMOBrjEwB1lwie+roMDMpNcO/FEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX5Iy0UzA7wJeqfg6qFTvSOBhYAFwPbBNxba2BK4B5gOPAsc12QZJ0gi1Mg9/J2Bh4fWDhZ+PAI4CvgDMBD4PXA1sDTye6kxNZXcBewKbACcTAf/oNtouSWpBKwF/BtF7L5sAHA58Hfh+KrsF6AX+nYFgfgiwCrA3MI/o6U8CuoETgedbarkkqSWtpFM6GpRvD6wOnF8oWwBcDOxaKNsVuIII9jXnAasCO7bQDklSG1oJ+PcDLxEpm2L+fnPgZWBWqf7MtKxms1RWNJs4OWzWQjskSW1oJqUzh8jP3wqMA/YDTgcmAqcSufl5QH9pvb5UZzywONWbW7H9vrRMkjSGmgn4V6avmiuIvP2XgG+PRaMkSaOv3adl/gLYB3gd0UNfjcjxF3v5U4l0zeL0ug+YXLGtqWnZIN3d3X//ubOzk87OzjabK0krpp6eHnp6epqq22ggdjgfIAZpNwI2JqZbbkZ9Hv9HwJuAf0qvryfm3u9fqLMB8BCwB3BpaR/9/f3lLJGWB+uttwVz5lwEbLFE9rfyypN54onZTJ5c1Z+Q8tLR0QENYnu7Nz19AHiKCNY3Ac8RPf6aiUQQv6xQdhmwC3E1UDOdgRu1JEljqJmUzoXAzcDdqf50Irh/Ki1/ATiemG/fB9wHfC4t+25hO6cDnwYuAk4grgyOBU6hfqqmJGkMNBPw7wMOJNIvHUTg/zDw80Kd44mrhSOIf3M0A3g38GShzlxgZ+A0Yo5+HxHsu0fyBiRJzWk3h78kmMNfTpnDl5aescjhS5KWMwZ8ScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX1rGTZq0Bh0dHUvsa9KkNZb2W9YYafcfoEhaQp5/vo/B/0F0LPe3LD9iSyNhD1+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX5IyYcCXpEwY8CUpEwZ8ScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX5IyYcCXpEwY8CUpEwZ8ScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTrQb89YB5wCvAxEJ5byorfs2pWH9L4BpgPvAocFwbbZAktWF8i/VPAp4HVi2V9wM/B75bKFtUqjMVuBq4C9gT2AQ4mQj4R7fYDklSi1oJ+DsAuwBfJwJ/2WPArUOsfwiwCrA3cZVwDTAJ6AZOJE4kkqQx0mw6ZRzRez8OeLpBnY5htrErcAUR7GvOI64WdmyyHZKkNjUb8A8BVgK+N0SdTwAvAnOBC4ANS8s3A2aWymYDC9IySdIYaialsybwZeAA4OUGdX4N3Aw8QgzMHgvcCLwReC7VmUqcDMr60jJJ0hhqJuB/jQjmlw9R57OFn38P3ATcDnQB32m3cZKk0TNcwN8K+BgxYDslldWmY04hZucsrFjvbuA+4M2Fsj5gckXdqWnZIN3d3X//ubOzk87OzmGaK0l56enpoaenp6m6ww20vg+4aIjlPwQOarDsLmAGccIAuJ6Ye79/oc4GwEPAHsClpfX7+/v7h2melkXrrbcFc+ZcBGyxRPa38sqTeeKJ2UyeXNWfWP51dHQQfasltkf821t+xeelOrYP18O/Eegsle0K/Ef6/kCD9bYmBmJPL5RdBhwGrMbATJ3pxKDt9cO0Q5I0QsMF/KeBG0plr0/fbySC9W5Er/03wONEt+4ooud+TmG904FPE1cMJwAbE4O7p1A/VVOSNAZavdO2pni9NxtYm5inP4U4SVwGHEl9IJ8L7AycBlxM5O1PIW68kiSNsXYC/jnU99zvBN7V5Lr3EkFfkrSE+eAyScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX5IyYcCXpEwY8CUpEwZ8ScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX5IyYcCXpEwY8CUpEwZ8ScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTBjwJSkTBnxJyoQBX5IyYcCXpEwY8CUpEwZ8ScqEAV+SMmHAl6RMGPAlKRMGfEnKhAFfkjJhwJekTLQa8NcD5gGvABNLy44EHgYWANcD21SsvyVwDTAfeBQ4ro02SJLa0GqwPQl4HugvlR8BHAV8A9idOClcDaxdqDM1lb0M7Al8Gfg8EfQlSWOslYC/A7AL8E2go1A+ATgc+DrwfeBa4IPESeHfC/UOAVYB9iZ6+T8ggv3ngNXba74kqVnNBvxxwHeJAP10adn2RMA+v1C2ALgY2LVQtitwBdH7rzkPWBXYsfkma8XWs7QbsALoWdoN0DKq2YB/CLAS8L2KZZsTaZpZpfKZaVnNZqmsaDZxctisyXZohdeztBuwAuhZ2g3QMmp8E3XWJPLtBxCBvWwq0Wsv5/X7iIHd8cDiVG9uxfp9aZkkaQw108P/GnAzcPkYt0WSNIaG6+FvBXyMGLCdkspq0zGnEL36PmA1YiC32MufSqRrFqfXfcDkin1MTcvK7ujo6Kia2qnlwpYjWLe1iVuLFsGUKVOGr7hc6xi+Sp2RTX7r6Gh1f1qG3NFowXAB/w1E7v7mimWPAD8E/psY1N2E+jz+5sC9hdczgS1K29iAOIGUc/sA2w7TNknSKFqT6N0Xv75B3Hi1C3FCWIXIzX+psN5E4Aki919zODHDZ7VC2ReI/H+xTJK0jOhi8J22hxN3zx4K7AxcSgT8VxfqTAHmAFemOgcRN3EVTwqSpGVIFzFbp51HK2xB3HS1gIFHK5gsXP70ABe0uE4n0VFoNbl/ELBXRXkvcGKL21oWPAUcW3jdQ+vHUpKWmM2BjVtcp5P2Av4fgbMqyrcB1m9xW8uCJ4FjCq+vo/6mRWnMNDMPXyqrGmQfS1VXgQ1nIixnxvIKd1Vg4RhuX8sZn1Spsi7gRQZPod2K6KHvTHUa4p3AH4gA8zfirux/GGZfnwdmEIP+fwN+Q/2VQw/wj8BH075fAT6SlvUSD/Mr2ge4E3iBuIv7q8QMsuJ7ewXYGriKmDBwL/Cvw7SzynapvXPSdv4M7F+qswNxYlpIXKlsX7GdfiLo7w/8D/As8FviybRFE4gU1sPE+7ud+keXQByTbwJHE7Ponk3lryLG2f4nrXsfA8expof4nQ7XjlVTOx5K23qAeI5W0b8Bd6flvcBhFe9b0jJgMvGH2lUq/zIR3F5FBIdiGmIrYBEDz086mLi34rJCnU4Gp3S+lfbTSTxl9VLgcWBSWr4FcE/a7tvS15pp2YPU5/Dfk7Z/dvr5sPQ+/rNQpyvV+QvwSeBdRNB+kcGBbTj7EkH0/6b2H5W2s29avi4xkeGaVOdAIjjOpz6l00OcnH4H7AFMJ05+l5b2dwlxbA5O7T4TeIn6sbIHGZgYsTvwvlT+PWKCxBeIE/PxxP0xuxXWva6JdnSkbT+XtrUT8GHiQYg1hxGfha8QnYP/IH4Pn0TSMulX1AdriF7hd9LPPdQH/HPT8mJ64oNEcH17et3J0Dn8VxG9x+eIIFIzg+ocfjng30IE16LDiMC2bnrdldrQVaizBhE4D27QrmZ0EOnRHxTacCKRr59QqLd/2n854JdvSvxMqrdKer1zev1/Svu9nvrfQy8xGWLlQtkmxCSLD5XW/TFwa4vt2CW93p1qk4irnaNL5ccBj+EEjaXOlI6qnEcEmTXS622Jey7Oa1D/bcAvqb/T+iIi2P7LEPt5O5FaeSrVnU/ck/GGFts7Dngzg9NM5xOf8e1K5VcWfn6GmELcag9/KnECfIjo0S4ievG1tr+NeG8vFNb5VYNtzWAg/QIDNyzW2vQuord9M3FiqX1dC7y1sF4/ccJZVCirnSx+XbHuttQH4eHa8U7iXppLGryP7YjZexeW9nUd8b8xlsdB9hWKg7aqcjHR630/kTqYTuSOf9+g/muJdEPRy0RwWGNwdQA2JALvLcTUyzlpn5dS3ytuxlrEHeHlNtRel9tQfojfojb2eQ7wz0Sq6x7iyuRQ4p/7QByT20vrLKD+8eBDtYdCm9ZK23upYt3FpdflY7AWcUJ8lsH6gXWIY99MO9YkTjyNrJW+391gXxsQnyMtJQZ8VZlHBN7pRMDfh6Hnij9G/X83gwgyaxI96CrvJVI4ezEwk2Q8jU8QQ3mKCIavKZXX2tSoDe2aQOS/DwXOKJQXB4irjslE2rur/BkiVVN1P0JZ+am1zxAnhe2Jnn7Zky2042niBNFI7TjvxuATD8BfW9iXxoABX42cS6Rw9gA2Sq9rykHlD8RMlyMZCCp7E5+v3zXY/qqpbvGR2/sw+DO5KNUdysvAbWn94gDiPmkfVc+CGolViFRRMXWyOtG7r72fGcDHqZ8aWTUbqHwsq1xN/Ge4+cRYSSuuJU5EU9J2Gmm2HYcRAb08qAxxnBcSKaDyGJCWAQZ8NfJbIgXxA2J2yR8Lyzqoz/1+lZiW+CvgdCJXewLxSO0/NNj+NUQgOpsYlN2KmKY5t7TtmcRg4XuIHuQD6Xt5APBY4j+qnUWcqN5IpFvOYCBl0Uirg4nPEgH9GCKV00/M2JnLwAyjU4mZKZcQs5HWTXXK8+LLx7LKVcR7u4o4rvek/WxLnHyOHOJ93Ef8Ts4lBpJvI65QtiLGGw5sox3/RRzbPxM9/ncQ/yRpLtANfBt4HXAjcWLclBi033uY7Utain5K9Fi/Viqvujv0nUQ+fiFxOX8a9Y/f6EzbKs7S+RAx53sBcBMx0FmefbMREWjmUj8Pv1wPokf/F2J65GxiamBxYkIX1Y8FqdrWcDYmerzziNkxXyBOOk8U6uxIzMN/AfgTkVZp5k7bTgYfq5WJYDqLeH+PESfl4lz8od7HZ4C7UlueSPstztxpth0TiPsfavcDPEAc56IDiA7CAuLkfDPw2QbtkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqQx9r+4IPaoHSoqGQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f2202041dd8>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f22020419e8>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# How many violations of angular momentum would be measured?\n",
|
|
"\n",
|
|
"# From running several simulations, it's evident a violation in the \n",
|
|
"# conservation of angular momentum would be measured half of the time.\n",
|
|
"# We can conclude that the information that the entangled particles are in\n",
|
|
"# orthogonal spin states is instantaneously agreed once a measurement\n",
|
|
"# is made.\n",
|
|
"\n",
|
|
"violations = 0\n",
|
|
"\n",
|
|
"for trial in range(0,1000):\n",
|
|
" elespin = np.random.randint(0,2)\n",
|
|
" posspin = np.random.randint(0,2)\n",
|
|
" if elespin == 0:\n",
|
|
" elespin = np.matrix('0 1')\n",
|
|
" else:\n",
|
|
" elespin = np.matrix('1 0')\n",
|
|
" if posspin == 0:\n",
|
|
" posspin = np.matrix('0 1')\n",
|
|
" else:\n",
|
|
" posspin = np.matrix('1 0')\n",
|
|
" \n",
|
|
" elespin.transpose()\n",
|
|
" posspin.transpose()\n",
|
|
" chi_squared = elespin*np.matrix('1; 0')*posspin*np.matrix('0; 1') - posspin*np.matrix('1; 0')*elespin*np.matrix('0; 1')\n",
|
|
" \n",
|
|
" if chi_squared == 0:\n",
|
|
" violations = violations + 1\n",
|
|
"\n",
|
|
"zeroes = np.zeros(violations,dtype=int)\n",
|
|
"ones = np.full((1000-violations),1,dtype=int)\n",
|
|
"result = np.concatenate((ones,zeroes))\n",
|
|
"\n",
|
|
"plt.ylim([400,600])\n",
|
|
"plt.xlim([-1,2])\n",
|
|
"plt.xticks([0.125,0.85],[\"violation\",\"adherence\"])\n",
|
|
"plt.tick_params(axis='both',labelsize=15)\n",
|
|
"plt.suptitle(\"Conservation Violations\",fontsize=20)\n",
|
|
"plt.hist([result],bins=4)\n",
|
|
"plt.figure()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f22020737f0>"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAGx1JREFUeJzt3XucXVV99/HPkHCLXAOIRYEgKCAIqGgNChxALBQordJIQSVeqdoKVbEFwYzPQy0V+1BFreCjRJ9iFajcpQKag9xELiKKEFEycgl3EkJIAEnm+eO3DrNnzz4z+8ycmclKPu/Xa15zzt7r7L3Onn2+e+211klAkiRJkiRJkiRJkiRJkiRJE2QlMK+D8o30mjkdvKY3vWafDl6jajOIY3lOafnctHybCa7PWPQBC8a4jRlUH49um532c8w472eNttZkV2CSrUw/w+mj/Qe9fxT7HM1rViWzmZgAGC/l499fsWwG4/8e/znt419rlD07lT0uPa+q82iNdTsNhm+g9NPd+qrCmh7kUO8EqyqzE/DeLtclJ6vLB/NEYGdgYWFZf+n3ePhG2v57gKnDlHsJcCTwLPDttGx/4IBxrNtotDtWFxLH96IJrMsaxyAfvd8CD0x2JTRmDxN/yxcKy3pKv8dDH3A18DLgsGHKHQlsAPw3sDgtW8DYu1a6rd2xWkIc3yUTWJc1jkE+eu36yLcEvgk8AiwDfsHILfc3AP8DPA08BVwFvHmE1+xE9O/eDzxHBNK5wKsrys5N9d0WOBb4FbA8veYsYKMR9jUWrwK+AzyY6vkg0bLcoU35KcDfAtcTx2IZcA/Rgi2+Zivgs6ncw4Vtn0u0AOuay+Cus17g3vT4GAa631r9vH+WHn+rzfbWBR4HHgPWHmHfZ6ffHxqmTGvd2YVlfVQH+brAPxF/32eI4/dT4K9HqEfRq4HTgFuI9/Bs2t9ZwMtLZecCP0mP5zD4WLXGdWbTvo/8DcQF6tHCfr5KXNzK5tL5Obwb8F9pu8+m/dwKnMHwd0HZWa3ezCQo305uDtwAbAdcC1xHBM7XiXCushfRMpsK/AD4HfA6oMnAh6TsoFR2CnBpes3WwDuAQ4D9iAtI2enA24FLiAvH/kRQ7MD43Kq/kXhvGwAXA78hQvbdwOHA24jAaFkHuCwtvw/4T6Iltx3wl8Qx/V0quw/wj8Qxug1YSoTQEcBfAG8B7qhZz+LfcR6wMdEffTuDuwR+kbb5e2AWcDxDW5rvBKYDXwT+OMJ+LybC8u3E3+/+0vpdgTcB84n33q7OEMfuR8RxuQv4CtEtcwTwfWAP4DMj1AfiHDqWOK7XAc+nenyQuHPYk4FuqAtTPY4hztdmYTt9I9T3UCLE+4ELgD+kbX+EODfeWrENqH8O7wbcBKxIZRcQYf+qtI/PMPguTBlrtR7mEC2xqp/FxMlQHuxcydCgbQ1K/Vtp+RuID8RKohXZ0gPcnbZfvr3+eCq/gsGzVjYFFhGti51Kr9mFaNXfWlo+N22rD3hFYfkU4Jq07o3UM5vhW6QtPUSgrAD+prRuVtrGXQy+Jf98Wn4RQ1uzaxMXypYtiKAq2404Bj8sLZ/Rpt5zGTqYvW2bsi2fTOs/VrGuSbzndnccZafRfrDwS2ndJ0rL+xi4a2g5MZW9jMF32lsQIbYSmFlYPoPq97gV1XcSBxLB97XS8gZDz+ui2Wl98a50A+AJ4kL3llL5T6fyPyotn0tn5/C/pWVV3VYbM77dZppgK2v+1AnytYnb2cXAhhX7OoehJ/xbaN9FsxbRpVCefnhcWvaRNu/pjLS+2L0wNy17f0X52WndR9tsr135kYK89d6ua7P+p2n93un5FOLYLaX61roTlxC33VMKy2ZQP8jblW3ZlOjyKbf4d0yvu7qDum5PnF99DA6XdYmwW0608Iv6GBrk9xBBW9W19v5Ur28Wls2g3t+xqHU3UtSg8yA/Oi37z4ryUxi48GxdWD6Xzs7hVpAf2KZeqxX7yOPWbq1hfu6ruZ2dgPWJ2/GnK9ZfU7Hs9cOsW0n0/5a1WlV7UH0H0fogV/UT31KxrDVgu2nFurFovbd23UOti9ce6fdOxK3vHUS/Zx2HEF1LDzFwx7OSuG1fh8Et+G5aRHRX7MrgVu6H0++vd7Ct3xPHYhui/73lncTf5CLgyRG2sSFxQVhIDCyWtf4Ge1Ssq/Ju4mL0GNFqbh3XXYkW+1gNd26sIC7yEF2MZXXP4e+lbV1EjMm8lzhGqyX7yLtn4/T7kTbrq8JpNK/ZLP0eboCsn+puh8UVy1r9hFMq1o1F67091GZ9a/kmpd8P1tz+ccTdx5PE+MN9RCu5H/grYHeiVTte/oPoGz4WuDHt6xjib3lhh9v6BtHX+0Gi35f0GAYPcrYz0rFunUebtFlfdAZxbBcCVxB/j+Vp3fvozhen6p4bG1esq3sO30zc7X2GGCd4T1o+H/gcEfSrDYO8e55Kv7dss76qu2Asr9kN+HW9qk2KVj3bdZP8Salc6wNanhlRZSpx9/EQ0borXwjL/a7j4efEIGtr0PPPiS6Q04iWYCd+QHSjHAa8lLgzaRDdJXW+PdzpsW7npcTYzK+IQfhnSuuPrlGXOrpV35H8jDimaxMDqQcBfw98l7jb+PEYt7/KsGule+4iWi57UD0VqlGx7NZh1k0hRu7Lbky/96lYtyq5Lf3er836/Url7iY+uLsz8EFuZ3OitXYDQ0N8AyLcx/JlnlYQj3SX8jVgPeK2/cNE90OdFnTZH4k+4LWJVv0H0vL/W/P1TxNdNK+gepC1fKzbeSXRT38lQ0P8FWl9Wd1jVTTcuTGVaEn3M3J96/oj8bmZQ1yoIGY2rTYM8u55gRi82YhoLRbtSXVr5gbiVm8fhp5Yf0d8cMqBdA7Rep1D9UyTtai+MEy064n39laiv7foiLR8PgODoSuIOcTrE33M65ReU+zzfpToRtmTwV1IaxMzPTZjbBal39uOUO6/iL/Fp4m/4VVUT5mr4xvp94eIMH+eCPe6vkWE8OkM/lxvDpxCnEcjDWy25qbvXdrGBql+VWH9RPo90rEqavX7/w3wp6V1xxMDsVczti/c7UVcZMtadwHLxrDtVY5dK/XUnap0EjGX9XgiZK4nWpezgMupbgV8gAiA/yZusX9PtOr3J/pLDyqVf5IIwguJW8cfE/Oz+4lR/pnEoM+0mnUerb1pHzS3AmcSgXQVMTB4MRHcOxJzwpcw9ItSnyM+2IcRg3aXE63NrYnZB58ivly0EvgyA19+uYQI+v2IfuB5tL8TqGMpcWz3Ji7O9xAXmovT/lqWEwNprX8D5awx7PO3xCBf607rAuL2v64vAgcTc7B/SfRvTyO+DLQ58AWi4TCcR4i+4yOJQfuriDufA4ngu52hA6Z3E/3oRxIt3/uIc/E7tJ8o8Awx++R8YqD/fGIO/RvSvh4ixh7G4tPEOXAtcXFdSkzPPYj4DI3mzkmrqNbUwuEsoP48chj4Zmer1XgbEVj70n6a1uuJD96S9HMlEWhzGDqPvGVbIix/SwTKYiLQv83QC8Y5bd4DjDx9rKz1bccVtJ+q+YNC+VcTH+qFRCvzwfT8VW22P4WYn30TEeJLiQvA1xl8az8F+AfgTuI4LyTe+9Zt3u8MqqfbtTs22xMXiMfT+hVUf0P3tWm7DzD2O9yjGDiGbxum3AKGTj+EGHA9kbjYLGPgm53vqig7g+rjsT5wKnHxWk58UedMov9/HtWflz2JFnTrOxfFc3Y27Y/dnsS58ijxzdw+2n+zs9Nz+MD03u5kYFrrXcC/M3haoyS9OEf7c5NdEUlS56YSrd/n6M78aknSBHkrMT/5KqI1/qXJrY4kqVOtf+nvMaLvfjy/eCRJkiRJkiRJkqQ2JvwfV9933337r7mm6l9tlSQN4xra/PMbk/G/ZPT3968u/wG76urt7aW3t3eyq5E1j+GaraenB9pktv9oliRlziCXpMwZ5JoQjUZjsquQPY+h2rGPXJIyYB+5JK3GDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLk2SjjabT09MzYT8bbTR9st+yxon/Q5A0SeJ/fJnIz0IPfvby5f8QJEmrMYNckjJXJ8hnAZcDC4GngVuAI0tl+oCVpZ+FXaulJKmtqTXKHA/cC3wceBw4BPgusDnwlVSmHzgXOLPwuue7V01JUjt1BjunA0+Wlp0LzARemZ4vAM4HPl1jew52SjjYqc6MdbCzHOIAtwNblffTWbUkSd0w2sHOmcD80rIPAM8Bi4nW+TZjqJckqaY6feRlBwCHA+8rLLsYuBF4AHgNMAe4FngtsGSMdZQkDaPT7pAZwE3AdcA7hym3C9H98kngy6V19pFL2EeuzgzXR95Ji3w6cAUxsHn0CGXvJLpeXle1sre398XHjUaDRqPRQTUkafXXbDZpNpu1ytZtkU8Drga2IPrHH6/xml8DNzO4CwZskUuALXJ1ZqyzVqYSg5fbAwdRL8R3BXYEbq1XRUnSaNVpkZ8NfBA4jmhhF90GHAgcBVwCPALsDJwMLAf2AJaWXmOLXMIWuTozXIu8TpAvIKYSlsv2A9sBGwNnALsBmwBPEH3pJwEPV2zPIJcwyNWZsQZ5txnkEga5OuM/YytJqzGDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5kYK8lnA5cBC4GngFuDIinInAfcDy4BrgN27WEdJ0jBGCvLjgUXAx4HDgHnAd4G/K5Q5ETgZ+BfgUGApcDWwZbcrK0kaqmeE9dOBJ0vLzgVmAq8E1gMeAU4HTk3rpwF9wFnAKRXb7O/v7x9ldaXVR09PDzCRn4Ue/OzlK86X6sweqUVeDnGA24Gt0uO9gA2B8wrrlwGXAgd3VEtJ0qiMZrBzJjA/Pd4JWAHcUypzd1onSRpnUzssfwBwOPC+9HxTok+8fL+2iOhimQq8MJYKSpKG10mLfAYx0HkR8J1xqY0kqWN1W+TTgSuABcDRheWLgA2IDvhiq3xToq+8sjXe29v74uNGo0Gj0ahbX0laIzSbTZrNZq2yI81agegiuRrYgugff7ywbv+0bkcG95N/E9gNeGPF9py1IuGsFXVmLLNWpgLnA9sDBzE4xAFuAJYQXxxqmUbMOb9iFHWVJHVopK6VrxHTCI8jWuRbFNbdBjwLnEbMF19EzGb5RFp/ZldrKkmqNFLXygJgm4py/cB2wH3p+UnAR4DNgJuJb4L+ss027VqRsGtFnRmua6VOH3m3GeQSBrk6M5Y+cknSKs4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUuTpBvgNwFnAHsAKYV1GmD1hZ+lnYnSpKkoYztUaZ1wAHAzem8v0VZfqBc4EzC8ueH3PtJEkjqhPklwKXpMcXANPblHsI+Hk3KiVJqq9O10pVC7xKz1gqIkkanW4Odn4AeA5YDJwPbNPFbUuS2qjTtVLHxUQf+gNEn/oc4FrgtcCSLu1DklShW0F+fOHx9cANwO3AbODLXdqHJKlCt4K87E5gPvC6qpW9vb0vPm40GjQajXGqhiTlqdls0mw2a5XtdICyNWtl/xplfw3cDLyvtLy/v7/u+Km0+urp6aH+XIKu7BE/e/mK86U6s8frm527AjsCt47T9iVJSZ2ulfWBQ9LjlwMbAkek55cTrfOjiLnmjwA7AycDfwDmdrGukqQKdbpWZgD3pset+7LWPeF2wMbAGcBuwCbAE8AVwEnAwxXbs2tFwq4VdWa4rpXJ+BKPQS5hkKszk9FHLkmaIAa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TM1QnyHYCzgDuAFcC8NuVOAu4HlgHXALt3o4KSpOHVCfLXAAcDdwHzgf6KMicCJwP/AhwKLAWuBrbsTjUlSe301CzTCu8LgOnA/oX16wGPAKcDp6Zl04A+oiV/Sml7/f39VdcCac3S01P8aE3IHvGzl684X6ozu06LfKS//F7AhsB5hWXLgEuJlrwkaRx1Y7BzJ6Lv/J7S8rvTOknSOJrahW1sSvSJl1vui4gulqnAC13YjybZypUrWbFixYTtr6enh6lTu3GKSqu3SfmU9Pb2vvi40WjQaDQmoxrq0H77HcK1115JT8/EzFpda60eFi58kC222GJC9ietSprNJs1ms1bZOoOdRVWDnR8FvgSsw+BW+QnAHGCD0jYc7MzUzjvP5O67/w8wc0L295KXbMudd/6UbbfddkL2N9Ec7FQnxjrYOZK7gSnEfPOinYgpi5KkcdSNIL8BWALMKiybBhwGXNGF7UuShlGnj3x94JD0+OXEVMMj0vPLgeXAacR88UXEl4Y+kdaf2bWaSpIq1QnyLRmYI97qYDsvPd4OuI8I8rWIb3huBtwMHAg81s3KSpKGqhPkfdTrgvl8+pEkTSD/9UNJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4g1wRpTnYFVgPNya6AVlEGuSZIc7IrsBpoTnYFtIoyyCUpcwa5JGWu8n9kHmdNYN9J2K8k5ewaoDHZlZAkSZIkSZJWY03g/A5f0wBWAq/p8HUfBg6vWN4HfKHDba0KHgfmFJ436fxYSqMydbIroFXK3wJ/nKB9fRi4A7i4tPxw4IkJqkM39aefds+lcWOQq+juCd5f1aypX05wHcbLeM4IWx9YPo7bV2acR77mmA08B2xcWr4L0TVyANXdAfsDNxHB8TDwVeAlI+zrk8DNwOL0mkuA7Qvrm8DrgWPSvlcC703r+oDTS9ubBfwKeBa4DzgVmFJ6byuBXYGrgKXAXcBfjVDPKjNTfRem7fwCOKpUZh/igrMcuAXYq2I7/USYHwX8DngK+CHw8lK59YiupPuJ93c7cHCpTB/wReAU4IG0LYjP7z+l7T8LzGfgOLY0ib/pSPVYP9XjD2lb9wKfL5X5IHBnWt8HnFDxviWNo42JD+Ds0vL/RYTWWsSH/rzCul2A54FLiXA5FlgEXFEo02BoH/kZaT8N4FDgcuARYKO0fmfgN2m7b0o/m6V1CxjcR/72tP1z0uMT0vv4j0KZ2anMHcDHgLcRYfwcQwNrJEcS4fjnqf4np+0cmdZvBTwD/DiV+RARes8Any1sp0lcdK4DDgPeRVzULi/t7zLi2Byb6v0Nontr90KZBcTf6ErieP5lWv5V4GngU8QF9zTgBeCQwmvn1ahHT9r2krSt/YD3AGcVypxAnAv/m7jo/yPxd/gYkibURQwOYYhW3JfT4yaDg/x7aX2xm+CvidB8c3reYPjBzrWI1t4SIhxabga+VVG+HOQ/I0Kz6AQisLZKz2enOswulJlOBOKxbepVRw/R/XhWoQ5fAB4jWtItR6X9l4N8EYPvgI5L5dZNzw9Iz99a2u81DP479AEPAusUlu0ArADeXXrtt4Gfd1iPP0vPD6XaRsTdySml5Z8DHmJyvlioArtW1izfJ8Jjenq+B/CqtLzKm4ALGTxo9wMiRN8yzH7eTHRxPJ7KPgNskPbViSnA6xja3XMece7OLC2/svD4SeBROm+Rb0pc2P5AtECfJ1rdrbq/iXhvzxZec1Gbbd3MQDcIRHcPhTq9jWgd30hcMFo/PwH2LLyun7iQPF9Y1roIXFzx2j0YHK4j1WN/YoD5sjbvYyYwDbigtK95wJbAK9q8ThPEwc41y6VEK/WdxC38u4i+2evblH8ZcdtftIL40E8fWhyAbYhA/RkxM2Vh2uflDG7F1rE5sHZFHVrPy3VYXHr+/Cj2ORf4U6LL6TfEncRHgb9I619G9GMXLSNarGVV9aFQp83T9qpmCr1Qel4+BpsTF7qnGKof+BPi2Nepx2bEBaWdzdPvO9vsa2viPNIkMcjXLEuJQH0XEeSzGH6u80NEi6toCvHBf7LNaw4iulIOZ2BmxVTaB/9wHidC7qWl5a06tavDaK1H9C9/FDi7sLw4sFp1TKYRdxydepLoMqmaT19Wnsr4JBH2exEt87LHOqjHE0Twt9M6zocw9IIC8NsO9qVxYJCveb5HdKUcBmyXnreUw+ImYubHSQyExTuI8+a6NttfP5VdUVg2i6Hn2vOp7HBWALem1xcH3malfdw4wus7tS7RZVPswtiQaI233s/NwPsZPAWwanZMnTnkVwOfILqe5ndY158QF5hN0nbaqVuPE4igLg/GQhzn5URXTHmMRasAg3zN80OiK+AsYrbFLYV1PQzuWz2VmH53EfB1oi/0X4H/IUK+yo+JgDmHGMzchZiOuLi07buJQba3Ey2+e9Pv8sDZHOBHaVvfB15LdHuczUDXQTudDsI9RQT1Z4kulX5iBstiBmbc/DsxU+MyYnbOVqlMeV53+VhWuYp4b1cRx/U3aT97EBeVk4Z5H/OJv8n3iAHYW4k7il2I/vwPjaIe3yWO7S+IFvrexJfEFgO9wJeAbYFriQveq4nB7neMsH1J4+D/ES3Mfy4tn8fg2RIQA2E/I4LqEeArRFdCSyNtqzhr5d3EnOVlwA3EAGF5Nsp2RIAsZvA88nI5iBb4HcQ0wPuIKXDFgfrZqQ7TSq+r2tZItidaqEuJ2SKfIi4mjxbK7EvMI38WuI3o3niMwbNWqo5lg6HHah0iJO8h3t9DxMW2OJd8uPdxHPDrVJdH036LM1nq1mM9Yv5+az77vcRxLjqauPAvIy66NwLHt6mXJEmSJEmSJEmSJEmSJEmSJEmSJEmStBr6/953KDDWlBGMAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f2201ef4358>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f22020737f0>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# Bell's Experiment took this a step further, to rule out locality \n",
|
|
"# completely. Establish the detectors to \"float\" such that they \n",
|
|
"# measure the components of the spins of the electron and positron \n",
|
|
"# along a unit vector a or b, with angles phi_a and phi_b, \n",
|
|
"# respectively. Compute a product P of the spins in units of hbar/2. \n",
|
|
"# This will give +/-1. \n",
|
|
"\n",
|
|
"# / pi0 \\\n",
|
|
"# /e- <------ ------> e+\\\n",
|
|
"\n",
|
|
"# QM predicts P(a,b) = -a dot b, the expectation value of the product \n",
|
|
"# of the spins.\n",
|
|
"\n",
|
|
"# In 1964, Bell derived the Bell inequality for a local hidden variable\n",
|
|
"# theory: abs(P(a,b) - P(a,c)) <= 1 + P(b,c)\n",
|
|
"\n",
|
|
"# For any local hidden variable theory, the Bell inequality must hold. \n",
|
|
"# It introduces a third unit vector c, which is any other unit vector \n",
|
|
"# than a or b.\n",
|
|
"\n",
|
|
"# Does the quantum mechanical prediction violate the Bell inequality?\n",
|
|
"# Testing several detector configurations in a plane, systematically \n",
|
|
"# from 0 to pi, we determine whether the QM prediction is consistent \n",
|
|
"# with a local hidden variable theory.\n",
|
|
"\n",
|
|
"violations = 0\n",
|
|
"trials = 0\n",
|
|
"for step_a in range(0,6):\n",
|
|
" for step_b in range (0,6):\n",
|
|
" phi_a = step_a/6*np.pi\n",
|
|
" phi_b = step_b/6*np.pi\n",
|
|
" phi_c = phi_a - 0.5*phi_b\n",
|
|
" P_ab = -1 * np.cos(phi_a - phi_b)\n",
|
|
" P_ac = -1 * np.cos(phi_a - phi_c)\n",
|
|
" P_bc = -1 * np.cos(phi_b - phi_c)\n",
|
|
" \n",
|
|
" bell_lhs = np.abs(P_ab - P_ac)\n",
|
|
" bell_rhs = 1 + P_bc\n",
|
|
" \n",
|
|
" if bell_lhs > bell_rhs:\n",
|
|
" violations = violations + 1\n",
|
|
" \n",
|
|
" trials = trials + 1\n",
|
|
" \n",
|
|
"zeroes = np.zeros(violations,dtype=int)\n",
|
|
"ones = np.full((trials-violations),1,dtype=int)\n",
|
|
"result = np.concatenate((ones,zeroes))\n",
|
|
"\n",
|
|
"plt.ylim([trials/2-10,trials/2+10])\n",
|
|
"plt.xlim([-1,2])\n",
|
|
"plt.xticks([0.125,0.85],[\"violation\",\"adherence\"])\n",
|
|
"plt.tick_params(axis='both',labelsize=15)\n",
|
|
"plt.suptitle(\"Hidden Locality Violations\",fontsize=20)\n",
|
|
"plt.hist([result],bins=4)\n",
|
|
"plt.figure()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f220202b080>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEXCAYAAACwHc/gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAHBRJREFUeJzt3XmYHVWd//F3SMKSYV9EUQRG0CgIqAwjKEyzCQ4yOoIBQSQugOsPRkXZNImjyIjzQ0EZwFHijMyAIBAWUUBpZImAKIhIIgJhS9gTkpBAMOn543suXV1d1V23t+Qk79fz3Of2rfXcuvd+6tSpU9UgSZIkSZIkSZIkSZIkSZKkEbQMuL6N6TvSPJPamGdymmf3NuZRtS2JbXleafjUNPy1I1yewZgFPDjIZWxJ9fYYahPTeo4Y5vWsslZb3gVYASxLj77Mov6H3jWAdQ5knhXJREYmAIZLeft3VQzbkuF/j19P6/i3BtOem6Y9Jr2uKvNADXY5HfRdQeliaMurEoM8NPmCVU0zHvjwEJclJyvLD/ME4I3A7MKwrtLzcPh+Wv7hwJg+pvsb4BDgBeBHadiewF7DWLaBqNtWlxLb97IRLMsqxSAfnD8Djy7vQmjQHic+y78Who0qPQ+HWcB1wCuBA/qY7hBgbeCnwLw07EEG37Qy1Oq21Xxi+84fwbKsUgzywalrI98U+AHwBLAI+D3919zfBvwcWAA8B1wLvL2fecYT7buPAC8SgXQ+8PqKaaem8m4BHA3cDSxO85wDrNvPugZjG+C/gMdSOR8japZb10w/GvgEcDOxLRYB9xE12OI8mwFfSdM9Xlj2+UQNsKmp9Gw6mww8kP4+gu7mt1Y7777p7x/WLG8N4GngKWBsP+s+Nz0f2cc0rXHnFobNojrI1wCOJz7f54nt92vgA/2Uo+j1wKnAb4n38EJa3znAq0vTTgV+lf6eRM9t1TqvM5H6NvK3ETuoJwvr+R6xcyubSvvf4e2B/03LfSGt5w7gdPo+CsrKSvNGlqPy4eTGwC3AVsCNwE1E4JxNhHOVXYma2RjgEuAvwFuATrp/JGX7pWlHA1ekeTYH3g/sD+xB7EDKTgPeBVxO7Dj2JIJia4bnUP3viPe2NjAN+BMRsh8C3gvsTQRGy+rAlWn4w8CPiZrcVsD7iG36lzTt7sCXiG30O2AhEUIHAf8EvAP4Q8NyFj/H64H1iPboO+nZJPD7tMz7gQnAsfSuaR4IbAh8C3ipn/VOI8LyXcTn90hp/HbAzsBM4r3XlRli2/2C2C73At8lmmUOAi4EdgRO6qc8EN+ho4ntehOwJJXj48SRw050N0NdmspxBPF97SwsZ1Y/5X0PEeJdwMXAQ2nZnyS+G++sWAY0/w5vD9wKLE3TPkiE/TZpHSfR8yhMGWvVHiYRNbGqxzziy1A+2bmM3kHbOin176XhbyN+EMuIWmTLKGBGWn758Pr/pemX0rPXygbAXKJ2Mb40z7ZErf6O0vCpaVmzgNcUho8Gbkjj/o5mJtJ3jbRlFBEoS4EPlsZNSMu4l56H5Kek4ZfRuzY7lthRtmxCBFXZ9sQ2+Flp+JY15Z5K75PZW9RM2/L5NP7TFeM6ifdcd8RRdir1Jwu/k8Z9rjR8Ft1HDS0npGmvpOfR9iZEiC0DdikM35Lq97gZ1UcS+xDBd1ZpeAe9v9dFE9P44lHp2sAzxI7uHaXpv5im/0Vp+FTa+w7/expW1Wy1HsPbbKYRtqzho0mQjyUOZ+cB61Ss6zx6f+HfQX0TzWpEk0K5++Exadgna97T6Wl8sXlhahr20YrpJ6Zxn6pZXt30/QV5673dVDP+12n8bun1aGLbLaT60LodlxOH3aMLw7akeZDXTduyAdHkU67xvyHNd10bZX0d8f2aRc9wWYMIu8VEDb9oFr2D/D4iaKua1j6ayvWDwrAtafY5FrWORoo6aD/ID0vDflwx/Wi6dzybF4ZPpb3vcCvI96kp10rDNvLQRWyLusfDDZczHliLOBxfUDH+hophb+1j3DKi/besVavakeojiNYPuaqd+LcVw1onbDeoGDcYrfdW1zzU2nntmJ7HE4e+fyDaPZvYn2hamkP3Ec8y4rB9dXrW4IfSXKK5Yjt61nKPSs9nt7Gs+4lt8Vqi/b3lQOIzuQx4tp9lrEPsEGYTJxbLWp/BjhXjqnyI2Bk9RdSaW9t1O6LGPlh9fTeWEjt5iCbGsqbf4QvSsi4jzsl8mNhGKx3byIfWeun5iZrxVeE0kHk2Ss99nSDrorrZYV7FsFY74eiKcYPRem9zasa3hq9fen6s4fKPIY4+niXOPzxM1JK7gH8GdiBqtcPlP4i24aOB6WldRxCf5aVtLuv7RFvvx4l2X9Lf0PMkZ53+tnXre7R+zfii04ltOxu4mvg8FqdxH2FoLpxq+t1Yr2Jc0+/w7cTR3knEeYLD0/CZwBQi6FcKBvnQei49b1ozvqq5YDDzbA/8sVnRlotWOeuaSV5Vmq71Ay33jKgyhjj6mEPU7so7wnK763C4jTjJ2jrp+Y9EE8ipRE2wHZcQzSgHAK8gjkw6iOaSJlcPt7ut67yCODdzN3ES/vnS+MMalKWJoSpvf35DbNOxxInU/YDPAv9DHG38cpDLXyHYtDK07iVqLjtS3RWqo2LYHX2MG02cuS+bnp53rxi3Ivldet6jZvwepelmED/cHej+IdfZmKit3ULvEF+bCPfBXMzTCuL+jlLOAtYkDtuPIpofmtSgy14i2oDHErX6j6Xh/9lw/gVEE81rqD7JWt7Wdf6WaKe/ht4h/po0vqzptirq67sxhqhJd9F/eZt6ifjdTCJ2VBA9m1YKBvnQ+itx8mZdorZYtBPVtZlbiEO93en9xfoM8cMpB9J5RO11EtU9TVajescw0m4m3ts7ifbeooPS8Jl0nwxdSvQhXotoY169NE+xzftJohllJ3o2IY0lenpsxODMTc9b9DPd/xKfxReJz/BaqrvMNfH99HwkEeZLiHBv6odECJ9Gz9/2xsCXie9Rfyc2W33TdystY+1UvqqwfiY997etilrt/h8E/r407ljiROx1DO6Cu12JnWxZ6yhg0SCWvUKxaaW5pl2VTiT6sh5LhMzNRO1yAnAV1bWAjxEB8FPiEPt+ola/J9Feul9p+meJILyUOHT8JdE/u4s4y78LcdJnXMMyD9Ru1AfNHcCZRCBdS5wYnEYE9xuIPuHz6X2h1BTih30AcdLuKqK2uTnR++ALxMVFy4Az6L745XIi6Pcg2oGvp/5IoImFxLbdjdg530fsaKal9bUsJk6kte6Bcs4g1vln4iRf60jrYuLwv6lvAe8m+mDfRbRvjyMuBtoY+CZRcejLE0Tb8SHESftriSOffYjgu5PeJ0xnEO3ohxA134eJ7+J/Ud9R4Hmi98lFxIn+i4g+9G9L65pDnHsYjC8S34EbiZ3rQqJ77n7Eb2ggR05aQbW6FvblQZr3I4fuKztbtcbfEYH1D9R303or8cObnx7XEIE2id79yFu2IMLyz0SgzCMC/Uf03mGcV/MeoP/uY2Wtqx2XUt9V85LC9K8nftSziVrmY+n1NjXLH030z76VCPGFxA7gbHoe2o8G/gW4h9jOs4n3vnnN+92S6u52ddvmdcQO4uk0finVV+i+OS33UQZ/lHso3dtw7z6me5De3Q8hTrieQOxsFtF9ZefBFdNuSfX2WAv4GrHzWkxcqHMm0f5/PdW/l52IGnTrmovid3Yi9dtuJ+K78iRxZe4s6q/sbPc7vE96b/fQ3a31XuDb9OzWKEkv99GesrwLIvVlDHEIex9xv4JHgP9fMd2Jadwi4nBph5EqoLScjCFqvy8yNP2rpWHzY+Jw+EiizfAw4tCr6AQiwD9FtO1eRbTv1XWrk3L2TqJ/8rVEbfw7y7c4Ut/2I9o1y/f0KFqTaIs7uTBsHNHu9a/DVzRpuWnd6e8pou1+OC88kgbtJ8RJuL7sSXypy/d4+AHVl9NKkoZIkzPsOxNt498lat3PE93kihdsjCfOJt9XmncGfdfkJUmD1CTIX0V0H9qe6ML0EaKvZ/FeEhsQXXvKF67MJZpY7K8uScOkScC2LoR5L91Xu80heqV00PNG8pKkEdYkyJ8lrjScWxh2M3ECdFsiyOcSl/COometvHXP5h7/hWOHHXbouuuuuwZcaElaBd1FzW2ImwT5vVTfr6AY2jOIq+y2pmc7+fg0f8/S3HUXXV0ryz9gVxOTJ09m8uTJy7sYWXMbrtpGjRpVe11OkzbyK4lLkIs3IdqduDnRnen1LcRl5RMK04wj7pfRX48XSdIgNAnyc4m7m11B/NeVQ4H/Ji6EaN2A5wXiHswnEhcE7UXcBAfiHg2SpGHSpGllAdFP/AzirmhLiFtQ/ktpulOJHcMJRO39duKmNe3cvU0rqY6OjuVdhOy5DVVnef0X6S7byCWpuVGjRkFNZvuPJSQpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMNQnyicCyisdRhWlmVYyfPYTllCTVGNPGtHsAiwuvHyz83QWcD5xZGLZkEOWSJDXUTpDfDizqY/wc4LbBFUeS1K522shHDXK8JGkYtBPk9wMvATPo2T7e8jHgRWAecBHw2kGXTpLUryZNK7OBk4lmk9HAB4GzgXHAt9M004DpwKPAm4BJwI3Am4H5Q1tkLS9dXV08/vjjdHV1jdg6N9lkE8aOHTti65NyNNDmkAuAvYBNasZvC9wJfB44o2J816RJk15+0dHRQUdHxwCLopEybdo0DjzwYNZYY8MRWd9LLy3kmGM+zWmnfWNE1ietSDo7O+ns7Hz59ZQpU6Amswca5B8ALgS2Ah6qmeaPxAnSj1SM6xrJWp2GxoUXXsiRR17CggUXjtAaT+eTn3yYs846fYTWJ624Ro0aBTWZPdALgkxhSVpBDDTIDwKepr42vh3wBuCOAS5fktRQk5OdFxMnMu9J0x8MTAA+m8bvDxwKXA48AbyRODn6EDB1aIsrSSprEuQzgSOBzYn2mXuAw4krOQEeBjYlrupcH3gGuBo4EVg4xOWVJJU0CfKT0qPO3cDeQ1McSVK7vPuhJGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMNQnyicCyisdRpelOBB4BFgE3ADsMWSklSbXGtDHtHsDiwusHC3+fAJwMfAGYAXweuA7YDnhikGWUJPWhnSC/nahtl60JHA+cApyVhv0GmAV8BvjyIMonSepHO23ko2qG7wqsA/ykMGwRcAXw7gGWS5LUUDtBfj/wEtF0UmwfHw8sBe4rTT8jjZMkDaMmTSuzifbv24DRwAeBs4FxwLeBDYCFQFdpvrlpmjHAX4eovJKkkiZBfk16tPyCaBc/CfjOcBRKktRcOyc7i34KTAC2IGreaxNt6MVa+QZEW3llbXzy5Mkv/93R0UFHR8cAiyJJK5/Ozk46OzsbTTvQIO8qPM8gmly2pmc7+Xjg3roFFINcktRTuYI7ZcqU2mkHemXnQcDTwEPALcB8oobeMg44ALh6gMuXJDXUpEZ+MTAduCdNfzAR2p9N418ATiX6i88FZgKfS+POHMrCSpJ6axLkM4Ejgc2JdvB7gMOB8wvTnErU7k8ANiIuHtoHeGooCytJ6q1JkJ+UHv05JT0kSSPIux9KUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmRtIkL8aWAgsA8YVhs9Kw4qP2YMsnySpH2MGMM9pwAJgrdLwLuB84MzCsCUDLJckqaF2g3x3YF/gFCLQy+YAtw22UJKk5toJ8tFEbXsKML9mmlGDLpEkqS3ttJF/AhgLfK+PaT4GvAjMAy4CXjvwokmSmmhaI98I+CpwGLC0ZpppwHTgUeBNwCTgRuDN1NfgJUmD1DTIv06E9M/7mObYwt83A7cAdwITgTMGUjhJUv+aBPm2wEeIE53rp2GtbofrE71VFlfMdw8wE3hL1UInT5788t8dHR10dHQ0Ka+0Ull33Q1ZsGDuiK1vnXU2YP78Z0dsfRq4zs5OOjs7G03bJMi3IdrGp1eMexT4T+CopoVrKQa5tKqKEO8awfXZHyEX5QrulClTaqdtEuQ3Ah2lYe8GvpSeH6iZbzvgDcDZDdYhSRqgJkH+DPDr0rC/Tc83AouA/YFDgcuBJ4A3AicDDwFTh6KgkqRqA7mys6V4PPgwsCnRz3x9IvyvBk4kLueXJA2TgQb5VHrWtO8G9h5sYSRJ7fPuh5KUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1LmDHJJypxBLkmZM8glKXMGuSRlziCXpMwZ5JKUOYNckjJnkEtS5gxyScqcQS5JmTPIJSlzBrkkZc4gl6TMGeSSlDmDXJIyZ5BLUuYMcknKnEEuSZkzyCUpcwa5JGXOIJekzBnkkpQ5g1ySMmeQS1Lm2g3yVwMLgWXAuNK4E4FHgEXADcAOgy6dJKlf7Qb5acACoKs0/ATgZOAbwHuIsL8O2HSwBZQk9a2dIN8d2Bf4FjCqMHxN4HjgFOAs4FfAB4iw/8zQFFOSVKdpkI8GzgSmAM+Uxu0KrAP8pDBsEXAF8O7BFlAri87lXYCVQOfyLoBWUE2D/BPAWOB7FePGA0uB+0rDZ6RxEobQUOhc3gXQCmpMg2k2Ar4KHEYEdtkGRJt4ud18LnFCdAzw10GUUZLUhyY18q8D04GfD3NZJEnDYFvgReDvgfXT41NE98PNgLXS65foeQIU4Diipl7lTqIG78OHDx8+mj3uZIDeR4R23eNcYI/09zaleX8A3D7QFUuShsZGRLfD4uMbRHDvS4T3GsA84KTCfOOAJ4m2dUnSCmYiva/sPB54nmhm2Qu4igjyTUa6cJKk/k0keq94if7KqRO4qM15Ooid+5vanO8o4L0Vw2cB32xzWSuCp4FJhdedtL8tJWnQxgOva3OeDgYW5L8FflgxfAfgNW0ua0XwFPCVwuvr6XmhnDQsmvQj16plxgivr9zbCeCuES7DcKl6b0NlLWDxMC5fGfE2tquWiUR30vVKw7clatR7Ud0csCdwKxEcjxNX+P5NP+v6PNFraV6a53J61vQ7gbcCR9DdC+rDadws4gZtRROAu4EXgIeBrxG3jii+t2XAdsC1RNfXe4F/7qecVXZJ5Z2dlvN74NDSNLsTO5zFxJHFrhXL6SLC/FDgL8BzwM+Iu4gWrUk0JT1CvL876X17i1nEfY6+DDyalgXxGz4+Lf8FYCbd27Glk/hM+yvHWqkcD6VlPUDcQ6no48A9afwsopuxpBG0HvEDnFga/lUitFYjfvTF5oBtgSV03zvnaOKq3asL03TQu2nl9LSeDuKOmFcBTwDrpvFvBP6UlrtzemyUxj1Izzbyd6Xln5f+Pi69j/8oTDMxTfMH4NPA3kQYv0jvwOrPIUQ4/mMq/8lpOYek8ZsRJ/d/maY5kgi95+nZtNJJ7HRuAg4ADiZ2aleV1nclsW2OTuX+PnFtRvE804PEZ3QNsT3fl4Z/j7gj6ReIHe6pxJXU+xfmvb5BOUalZc9Py9oDOBw4pzDNccR34V+Jnf6XiM/h00gaUZfRM4QhanFnpL876RnkF6TxxWaCDxCh+fb0uoO+28hXI2p784lwaLmd6jbycpD/hgjNouOIwNosvZ6YyjCxMM2GRCAeXVOuJkYRTZDnFMrwTaI9fM3CdIem9ZeDfC49j4COSdOtkV7vlV6/s7TeG+j5OcwCHgNWLwzbmuh48KHSvD8CbmuzHPum1++h2rrE0cmXS8OnAHMY3mYk9cOmlVXPhUR4bJhe70hcD3BhzfQ7A5cSzQQtlxAh+o4+1vN2oonj6TTt88Da9L5wrD+jgbfQu7nnJ8T3d5fS8GsKfz9LdINtt0a+AbFje4iogS4hat2tsu9MvLcXCvNcVrOs2+luBoFo7qFQpr2J2vF0YofRevwK2KkwXxexI1lSGNbaCUyrmHdHeoZrf+XYk7iz6ZU172MXoqfaxaV1XU/834EcT06vNDzZueq5gqilHkgcwh9MtM3eXDP9K4nD/qKlxI9+w96TA/BaIlB/Q3QxnJ3WeRU9a7FNbEzcebNchtbrchnmlV4vGcA6pxK3pfgq0fwzn7hG4p/S+FfS+3LpRVTfkqKqPBTKtHFa3ksV85ZvNlfeBhsTO7rn6K0LeBWx7ZuUYyNih1Jn4/R8T826Nie+R1oODPJVz0IiUA8mgnwCffd1nkPv//Q0mvjhP1szz35EU8p76e5ZMYb64O/L00TIvaI0vFWmujIM1JpE+/KniFtQtBRPrFZtk3HEEUe7niWaTKr605d1lV4/S4T9rkTNvOypNsrxDBH8dVrbeX9671AA/tzGujTEDPJV0wVEU8oBwFbpdUs5LG4len6cSHdYvJ/47txUs/y10rTF2x5PoPf3bUmati9LgTvS/MUTbxPSOqb3M3+71iCabIpNGOsQtfHW+7kd+Cg9uwBW9Y4pb8sq1wGfI5qeZrZZ1l8RO5j103LqNC3HcURQl0/GQmznxURTTPkci5Yzg3zV9DOiKeAcorfFbwvjRtGzbfVrRPe7y4CzibbQfyNua3xrzfJ/SQTMecTJzG2J7ojzSsueQZxkexdR43sgPZdPnE0CfpGWdSHwZqLZ41y6mw7qtHsS7jkiqL9CNKl0ET1Y5tHd4+bbRE+NK4neOZulacr9usvbssq1xHu7ltiuf0rr2ZHYqZzYx/uYSXwmFxAnYO8gjii2JdrzjxxAOf6H2La/J2rouxH/WGYeMBn4DrAFcCOxw3s9cbL7/f0sX9Iw+G+ihvn10vCqqxH3JNq7FxOH1d+l5y0aOtKyir1WPkT0WV4E3EKcICz3RtmKCJB59OxHXp4Oogb+B6Ib4MNEF7jiyfqJVN86ompZ/XkdUUNdSPQW+QKxM3myMM0/EP3IXwB+RzRvNLmys4Pe22p1IiTvI97fHGJnW+xL3tf7OAb4YyrLk2m9xZ4sTcuxJtF/v9Wf/QFiOxcdRuz4FxE73enAsTXlkiRJkiRJkiRJkiRJkiRJkiRJkiRJklYy/weVV3rGmFwA0QAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f22020bdb38>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f220202b080>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# It is seen that the QM prediction disagrees with a local hidden \n",
|
|
"# variable theory in a significant number of configurations.\n",
|
|
"\n",
|
|
"# On average, for random orientations between 0 and pi, how often? \n",
|
|
"# After running several trials, it appears to be about half of the, \n",
|
|
"# which is what one would expect from the quantum mechanical\n",
|
|
"# prediction.\n",
|
|
"\n",
|
|
"violations = 0\n",
|
|
"trials = 0\n",
|
|
"for rand_a in range(0,10):\n",
|
|
" for rand_b in range (0,10):\n",
|
|
" phi_a = np.random.rand(1)*np.pi\n",
|
|
" phi_b = np.random.rand(1)*np.pi\n",
|
|
" phi_c = phi_a - 0.5*phi_b\n",
|
|
" P_ab = -1 * np.cos(phi_a - phi_b)\n",
|
|
" P_ac = -1 * np.cos(phi_a - phi_c)\n",
|
|
" P_bc = -1 * np.cos(phi_b - phi_c)\n",
|
|
" \n",
|
|
" bell_lhs = np.abs(P_ab - P_ac)\n",
|
|
" bell_rhs = 1 + P_bc\n",
|
|
" \n",
|
|
" if bell_lhs > bell_rhs:\n",
|
|
" violations = violations + 1\n",
|
|
" \n",
|
|
" trials = trials + 1\n",
|
|
"\n",
|
|
"zeroes = np.zeros(violations,dtype=int)\n",
|
|
"ones = np.full((trials-violations),1,dtype=int)\n",
|
|
"result = np.concatenate((ones,zeroes))\n",
|
|
"\n",
|
|
"plt.ylim([trials/2-10,trials/2+10])\n",
|
|
"plt.xlim([-1,2])\n",
|
|
"plt.xticks([0.125,0.85],[\"violation\",\"adherence\"])\n",
|
|
"plt.tick_params(axis='both',labelsize=15)\n",
|
|
"plt.suptitle(\"Hidden Locality Violations\",fontsize=20)\n",
|
|
"plt.hist([result],bins=4)\n",
|
|
"plt.figure()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# The prediction (Bell's inequality) made by assuming a local hidden\n",
|
|
"# variable is violated by a significant number of the possibile \n",
|
|
"# bborientations. This simulation cannot determine which theory is\n",
|
|
"# correct, but the QM prediction has been confirmed through experiment.\n",
|
|
"# No hidden local variable holds actionable information about the \n",
|
|
"# state. Entangled states retain their entanglement in a non-local \n",
|
|
"# nature."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.4.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|