mirror of
				https://asciireactor.com/otho/phy-521.git
				synced 2025-10-31 17:58:05 +00:00 
			
		
		
		
	Init and final.
This commit is contained in:
		
						commit
						7873ce2360
					
				
							
								
								
									
										19
									
								
								2D_oscillator/formalism.motes
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								2D_oscillator/formalism.motes
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,19 @@ | ||||
| ℋ❙φ❭ = (ℋ𝓍𝓎 + ℋ𝓏)❙φ❭ = E❙φ❭. | ||||
| 
 | ||||
| ℋ𝓍𝓎 = (P²𝓍 + P²𝓎)/(2μ) + ½ μω² (X² + Y²). | ||||
| 
 | ||||
| ℋ𝓏 = P²𝓏/2μ. | ||||
| 
 | ||||
| ❙φ❭ = ❙φ𝓏𝓎❭ ⛒ ❙φ𝓏❭. | ||||
| 
 | ||||
| ℋ𝓍𝓎❙φ❭ = E𝓍𝓎❙φ❭. | ||||
| 
 | ||||
| E = E𝓍𝓎 + E𝓏. | ||||
| 
 | ||||
| ❬z❙φ𝓏❭ = (2πħ)⁻¹ exp(ιp𝓏z/ħ). | ||||
| 
 | ||||
| E𝓏 = p𝓏²/2μ where p𝓏 is an arbitrary real constant. | ||||
| 
 | ||||
| ℰ = ℰ𝓍𝓎 ⛒ ℰ𝓏. | ||||
| 
 | ||||
| 
 | ||||
							
								
								
									
										
											BIN
										
									
								
								classbfs120904402944051.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								classbfs120904402944051.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										30
									
								
								griffiths/3.7
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								griffiths/3.7
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,30 @@ | ||||
| 3.7 | ||||
| 
 | ||||
| Suppose f and g are eigenfunctions of Q, with eigenvalue q. Show any linear combination of f and g are eigenfunctions of Q with eigenvalue q. | ||||
| 
 | ||||
| |Qf> = q|f> | ||||
| |Qg> = w|g> | ||||
| 
 | ||||
| A and B are (possibly complex) constants. | ||||
| 
 | ||||
| |Q(A*f+B*g)> = A|Qf> + B|Qg> = Aq|f> + Bq|g> | ||||
| 	= q(A|f> + B|g>). | ||||
| 
 | ||||
| QED | ||||
| 
 | ||||
| Check that f(x)=exp(x) and g(x)=exp(-x) are eigenfunctions of the operator d^2/dx^2, with the same eigenvalue. construct two linear combiations of f and g that are orthogonal eigenfunctions on the interval [-1,1] | ||||
| 
 | ||||
| 
 | ||||
| if Q = d^2/dx^2 then we have the differential equation | ||||
| 
 | ||||
| f'' = qf | ||||
| 
 | ||||
| (e^x)'' = e^x, so this is an eigenfunction with q=1. | ||||
| 
 | ||||
| (e^-x)'' = e^-x, so this is an eigenfunction with q=1. | ||||
| 
 | ||||
| e^x + e^-x is also an eigenfunction of q, per earlier proof, and so is e^x - e^-x. These functions are just 2*sinh and 2*cosh, which are orthogonal functions because sinh is odd and cosh is even. | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
							
								
								
									
										21
									
								
								griffiths/3.8
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								griffiths/3.8
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,21 @@ | ||||
| 3.8 | ||||
| 
 | ||||
| a) | ||||
| 
 | ||||
| check that the eigenvalues of the hermitian operator in example 3.1 are real. show that the eigenfunctions are orthogonal. | ||||
| 
 | ||||
| Qf = if' | ||||
| 
 | ||||
| the eigenvalues are 0,+- 1, etc., which are obviously real. | ||||
| 
 | ||||
| 
 | ||||
| pick two arbitrary eigenfunctions: | ||||
| 
 | ||||
| f = A exp(-i q phi) | ||||
| g = A exp(-i q' phi) | ||||
| 
 | ||||
| <f|g> = A*A int[exp(i q phi) exp(-i q' phi)] dphi[0,2pi] | ||||
| 	= A*A int[exp(i (q - q') phi)] dphi[0,2pi] | ||||
| 	= A*A [i(q-q')]^-1 [exp(i(q-q') phi)]|[0,2pi]  | ||||
| 
 | ||||
| 
 | ||||
							
								
								
									
										
											BIN
										
									
								
								hw/12/H12.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								hw/12/H12.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										127
									
								
								hw/12/HW12.motes
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										127
									
								
								hw/12/HW12.motes
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,127 @@ | ||||
| 𝓗𝓍𝓎 = ½ (-∇² + ρ²). | ||||
| 
 | ||||
| ρ² = x² + y² and ħ = m = ω = 1. | ||||
| 
 | ||||
| Griffith's Eq. 2.71: | ||||
| 
 | ||||
|     Hₙ₊₁(ξ) = 2ξ Hₙ(ξ) - 2n Hₙ₋₁(ξ) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| In 2D cartesian coordinates, the del operator is defined | ||||
| 
 | ||||
|     ∇f = [∂/∂x f, ∂/∂y f]. | ||||
| 
 | ||||
| 
 | ||||
| ∇²f = ∇⋅∇f = ∇⋅[∂/∂x f, ∂/∂y f]  | ||||
|     = ∂²/∂x² f + ∂²/∂y² f. | ||||
| 
 | ||||
| ∴ ∇² = ∂²/∂²x + ∂²/∂²y. | ||||
| 
 | ||||
| Then, | ||||
|      | ||||
|     𝓗𝓍𝓎 = ½ (-(∂²/∂²x + ∂²/∂²y) + (x² + y²)). | ||||
| 
 | ||||
| 𝓗𝓍𝓎 = ½ (-(∂²/∂²x + ∂²/∂²y) + (x² + y²)) | ||||
|     = ½ (x² - ∂²/∂²x + y² - ∂²/∂²y) | ||||
|     = ½(x² - ∂²/∂²x) + ½(y² - ∂²/∂²y). | ||||
| 
 | ||||
| 𝓗𝓍 + 𝓗𝓎 = ½(x² - ∂²/∂²x) + ½(y² - ∂²/∂²y). | ||||
| 
 | ||||
| ∎ | ||||
| 
 | ||||
| The Schrodinger Equation then reads, | ||||
| 
 | ||||
|     [½(x² - ∂²/∂²x) + ½(y² - ∂²/∂²y)] Ψ = (E𝓍 + E𝓎) Ψ. | ||||
| 
 | ||||
| Assuming a separable solution Ψ(x,y) = X(x) Y(y), with E = E𝓍 + E𝓎. | ||||
| 
 | ||||
| [½(x² - ∂²/∂²x) + ½(y² - ∂²/∂²y)] X(x) Y(y) = (E𝓍 + E𝓎) X(x) Y(y). | ||||
| 
 | ||||
| ½(x² - ∂²/∂²x) X(x) Y(y) + ½(y² - ∂²/∂²y) X(x) Y(y)  | ||||
|     = (E𝓍 + E𝓎) X(x) Y(y). | ||||
| 
 | ||||
| [1/X(x)] [½(x² - ∂²/∂²x) X(x)] + [1/Y(y)] [½(y² - ∂²/∂²y) Y(y)]  | ||||
|     = (E𝓍 + E𝓎). | ||||
| 
 | ||||
| So, I have two differential equations, | ||||
| 
 | ||||
|     ½(x² - ∂²/∂²x) X(x) = E𝓍 X(x), and | ||||
|     ½(y² - ∂²/∂²y) Y(y) = E𝓎 Y(y). | ||||
| 
 | ||||
| The solutions to these differential equations are the same as for the 1D harmonic oscillator. They have eigenvalues (n + 1/2), where ħ = ω = 1, with n = 0,1,2,... . | ||||
| 
 | ||||
| ∴ the eigenvalues for the combined operator are n𝓍 + n𝓎 + 1. | ||||
| 
 | ||||
| The degeneracy is pretty obvious, just from counting the possibilities: there is n+1 degeneracy for each value of n = n𝓍 + n𝓎. | ||||
| 
 | ||||
| So, | ||||
|     n     degeneracy | ||||
|     ───────────────── | ||||
|     0          1 | ||||
|     1          2 | ||||
|     2          3 | ||||
|     3          4 | ||||
|     4          5 | ||||
|     5          6 | ||||
| 
 | ||||
| 
 | ||||
| The Hermite polynomials help to generate the eigenstates of this: | ||||
| 
 | ||||
| Hₙ(x) = (-1)ⁿ exp(x²) d/dxⁿ exp(-x²/2) = (2x - d/dx)ⁿ * 1. | ||||
| 
 | ||||
| The first six polynomials are | ||||
| 
 | ||||
| H₀(x) = 1. | ||||
| H₁(x) = 2x. | ||||
| H₂(x) = 4x² - 2. | ||||
| H₃(x) = 8x³ - 12x. | ||||
| H₄(x) = 16x⁴ - 48x² + 12. | ||||
| H₅(x) = 32x⁵ - 160x³ + 120x. | ||||
| H₆(x) = 64x⁶ - 480x⁴ + 720x² - 120. | ||||
| 
 | ||||
| 
 | ||||
| The wave functions involving these polynomials, with the unitizations given in the intro, are | ||||
| 
 | ||||
|     Ψₙₘ(x) = π^(-1/4) 1/√(2ⁿ n!) Hₙ(x) exp(-x²/2)  | ||||
|                 π^(-1/4) 1/√(2ᵐ m!) Hₘ(y) exp(-y²/2). | ||||
| 
 | ||||
| Ψₙₘ(x) = 1/√π 1/√(2ⁿ n! 2ᵐ m!) Hₙ(x) Hₘ(y) exp(-(x²/2 + y²/2)). | ||||
| 
 | ||||
| For n = {1,...,∞}, the lowest possible energy is 3, and this level has no degeneracy. | ||||
| 
 | ||||
| For additional levels,  | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| a𝓍 = 1/√2(x + ιp𝓍) | ||||
| a𝓎 = 1/√2(y + ιp𝓎) | ||||
| ======= | ||||
| The lowering operators are | ||||
| 
 | ||||
|     a𝓍 = 1/√2 (x + ιp𝓍) and | ||||
|     a𝓎 = 1/√2 (y + ιp𝓎). | ||||
| 
 | ||||
| They are not hermitian, but x,y and p𝓍,p𝓎 are, so the raising operators are | ||||
| 
 | ||||
|     a𝓍᛭ = 1/√2 (x - ιp𝓍) and | ||||
|     a𝓎᛭ = 1/√2 (y - ιp𝓎). | ||||
| 
 | ||||
| Applying these to the ground state ❙00❭, I can find the first six states, with normalization: | ||||
| 
 | ||||
| a𝓍᛭❙00❭ = 1/√2 (x - ιp𝓍)❙00❭  | ||||
|         = 1/√2 (x❙00❭ - ιp𝓍❙00❭) | ||||
| 
 | ||||
| 
 | ||||
|      | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| b) & c) | ||||
| 
 | ||||
| I'm still working out the algebra, here. I will try to finish it as soon as I can, but I know I also have new work to do. | ||||
| 
 | ||||
| 
 | ||||
| I finished much of this assignment, but need to get done faster in the future. | ||||
							
								
								
									
										3883
									
								
								hw/12/HW12.motes.ps
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3883
									
								
								hw/12/HW12.motes.ps
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								hw/12/bookprobs_othoulrich_hw12.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								hw/12/bookprobs_othoulrich_hw12.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								hw/12/othoulrich_hw12.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								hw/12/othoulrich_hw12.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								hw/hw14.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								hw/hw14.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										349
									
								
								presentation/.ipynb_checkpoints/Entanglement-checkpoint.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										349
									
								
								presentation/.ipynb_checkpoints/Entanglement-checkpoint.ipynb
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								presentation/Document.docx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								presentation/Document.docx
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										387
									
								
								presentation/Entanglement.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										387
									
								
								presentation/Entanglement.ipynb
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										43
									
								
								presentation/entanglement.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										43
									
								
								presentation/entanglement.cpp
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,43 @@ | ||||
| #include <vector> | ||||
| 
 | ||||
| struct spin {bool up; bool down;} | ||||
| struct entangled_spin {bool up_1; bool up_2; bool down_1; bool down_2; } | ||||
| 
 | ||||
| struct state { double prob_up; double prob_down; } | ||||
| struct entangled_state {} | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| spin measure (particle measured) { | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| int main(int argc, char const *argv[]) | ||||
| { | ||||
| 
 | ||||
|     std::vector<spin> v; | ||||
|     spin electron_spin; | ||||
|     spin positron_spin; | ||||
| 
 | ||||
| 
 | ||||
|     \\ uncorrelated measurements | ||||
|     for (int trial=1; trial<=1000; trial++) { | ||||
|         particle positron; | ||||
|         particle electron; | ||||
|         measure_spin(positron) | ||||
|     } | ||||
| 
 | ||||
|     \\ entangled measurements | ||||
|     for (int trial=1; trial<=1000; trial++) { | ||||
|         entangled_pair pair = new entangled_pair( | ||||
|             particle position,  | ||||
|             particle electron); | ||||
|         measure_spin(positron) | ||||
|     } | ||||
| 
 | ||||
|     return 0; | ||||
| 
 | ||||
| 
 | ||||
| //=============================================================================
 | ||||
							
								
								
									
										564
									
								
								presentation/notebook.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										564
									
								
								presentation/notebook.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,564 @@ | ||||
| 
 | ||||
| % Default to the notebook output style | ||||
| 
 | ||||
|      | ||||
| 
 | ||||
| 
 | ||||
| % Inherit from the specified cell style. | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|      | ||||
| \documentclass[11pt]{article} | ||||
| 
 | ||||
|      | ||||
|      | ||||
|     \usepackage[T1]{fontenc} | ||||
|     % Nicer default font (+ math font) than Computer Modern for most use cases | ||||
|     \usepackage{mathpazo} | ||||
| 
 | ||||
|     % Basic figure setup, for now with no caption control since it's done | ||||
|     % automatically by Pandoc (which extracts  syntax from Markdown). | ||||
|     \usepackage{graphicx} | ||||
|     % We will generate all images so they have a width \maxwidth. This means | ||||
|     % that they will get their normal width if they fit onto the page, but | ||||
|     % are scaled down if they would overflow the margins. | ||||
|     \makeatletter | ||||
|     \def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth | ||||
|     \else\Gin@nat@width\fi} | ||||
|     \makeatother | ||||
|     \let\Oldincludegraphics\includegraphics | ||||
|     % Set max figure width to be 80% of text width, for now hardcoded. | ||||
|     \renewcommand{\includegraphics}[1]{\Oldincludegraphics[width=.8\maxwidth]{#1}} | ||||
|     % Ensure that by default, figures have no caption (until we provide a | ||||
|     % proper Figure object with a Caption API and a way to capture that | ||||
|     % in the conversion process - todo). | ||||
|     \usepackage{caption} | ||||
|     \DeclareCaptionLabelFormat{nolabel}{} | ||||
|     \captionsetup{labelformat=nolabel} | ||||
| 
 | ||||
|     \usepackage{adjustbox} % Used to constrain images to a maximum size  | ||||
|     \usepackage{xcolor} % Allow colors to be defined | ||||
|     \usepackage{enumerate} % Needed for markdown enumerations to work | ||||
|     \usepackage{geometry} % Used to adjust the document margins | ||||
|     \usepackage{amsmath} % Equations | ||||
|     \usepackage{amssymb} % Equations | ||||
|     \usepackage{textcomp} % defines textquotesingle | ||||
|     % Hack from http://tex.stackexchange.com/a/47451/13684: | ||||
|     \AtBeginDocument{% | ||||
|         \def\PYZsq{\textquotesingle}% Upright quotes in Pygmentized code | ||||
|     } | ||||
|     \usepackage{upquote} % Upright quotes for verbatim code | ||||
|     \usepackage{eurosym} % defines \euro | ||||
|     \usepackage[mathletters]{ucs} % Extended unicode (utf-8) support | ||||
|     \usepackage[utf8x]{inputenc} % Allow utf-8 characters in the tex document | ||||
|     \usepackage{fancyvrb} % verbatim replacement that allows latex | ||||
|     \usepackage{grffile} % extends the file name processing of package graphics  | ||||
|                          % to support a larger range  | ||||
|     % The hyperref package gives us a pdf with properly built | ||||
|     % internal navigation ('pdf bookmarks' for the table of contents, | ||||
|     % internal cross-reference links, web links for URLs, etc.) | ||||
|     \usepackage{hyperref} | ||||
|     \usepackage{longtable} % longtable support required by pandoc >1.10 | ||||
|     \usepackage{booktabs}  % table support for pandoc > 1.12.2 | ||||
|     \usepackage[inline]{enumitem} % IRkernel/repr support (it uses the enumerate* environment) | ||||
|     \usepackage[normalem]{ulem} % ulem is needed to support strikethroughs (\sout) | ||||
|                                 % normalem makes italics be italics, not underlines | ||||
|      | ||||
| 
 | ||||
|      | ||||
|      | ||||
|     % Colors for the hyperref package | ||||
|     \definecolor{urlcolor}{rgb}{0,.145,.698} | ||||
|     \definecolor{linkcolor}{rgb}{.71,0.21,0.01} | ||||
|     \definecolor{citecolor}{rgb}{.12,.54,.11} | ||||
| 
 | ||||
|     % ANSI colors | ||||
|     \definecolor{ansi-black}{HTML}{3E424D} | ||||
|     \definecolor{ansi-black-intense}{HTML}{282C36} | ||||
|     \definecolor{ansi-red}{HTML}{E75C58} | ||||
|     \definecolor{ansi-red-intense}{HTML}{B22B31} | ||||
|     \definecolor{ansi-green}{HTML}{00A250} | ||||
|     \definecolor{ansi-green-intense}{HTML}{007427} | ||||
|     \definecolor{ansi-yellow}{HTML}{DDB62B} | ||||
|     \definecolor{ansi-yellow-intense}{HTML}{B27D12} | ||||
|     \definecolor{ansi-blue}{HTML}{208FFB} | ||||
|     \definecolor{ansi-blue-intense}{HTML}{0065CA} | ||||
|     \definecolor{ansi-magenta}{HTML}{D160C4} | ||||
|     \definecolor{ansi-magenta-intense}{HTML}{A03196} | ||||
|     \definecolor{ansi-cyan}{HTML}{60C6C8} | ||||
|     \definecolor{ansi-cyan-intense}{HTML}{258F8F} | ||||
|     \definecolor{ansi-white}{HTML}{C5C1B4} | ||||
|     \definecolor{ansi-white-intense}{HTML}{A1A6B2} | ||||
| 
 | ||||
|     % commands and environments needed by pandoc snippets | ||||
|     % extracted from the output of `pandoc -s` | ||||
|     \providecommand{\tightlist}{% | ||||
|       \setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}} | ||||
|     \DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} | ||||
|     % Add ',fontsize=\small' for more characters per line | ||||
|     \newenvironment{Shaded}{}{} | ||||
|     \newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}} | ||||
|     \newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{{#1}}} | ||||
|     \newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}} | ||||
|     \newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}} | ||||
|     \newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}} | ||||
|     \newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}} | ||||
|     \newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}} | ||||
|     \newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{{#1}}}} | ||||
|     \newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{{#1}}} | ||||
|     \newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}} | ||||
|     \newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{{#1}}} | ||||
|     \newcommand{\RegionMarkerTok}[1]{{#1}} | ||||
|     \newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}} | ||||
|     \newcommand{\NormalTok}[1]{{#1}} | ||||
|      | ||||
|     % Additional commands for more recent versions of Pandoc | ||||
|     \newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.53,0.00,0.00}{{#1}}} | ||||
|     \newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}} | ||||
|     \newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}} | ||||
|     \newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.73,0.40,0.53}{{#1}}} | ||||
|     \newcommand{\ImportTok}[1]{{#1}} | ||||
|     \newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.73,0.13,0.13}{\textit{{#1}}}} | ||||
|     \newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}} | ||||
|     \newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}} | ||||
|     \newcommand{\VariableTok}[1]{\textcolor[rgb]{0.10,0.09,0.49}{{#1}}} | ||||
|     \newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}} | ||||
|     \newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.40,0.40,0.40}{{#1}}} | ||||
|     \newcommand{\BuiltInTok}[1]{{#1}} | ||||
|     \newcommand{\ExtensionTok}[1]{{#1}} | ||||
|     \newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.74,0.48,0.00}{{#1}}} | ||||
|     \newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.49,0.56,0.16}{{#1}}} | ||||
|     \newcommand{\InformationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}} | ||||
|     \newcommand{\WarningTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}} | ||||
|      | ||||
|      | ||||
|     % Define a nice break command that doesn't care if a line doesn't already | ||||
|     % exist. | ||||
|     \def\br{\hspace*{\fill} \\* } | ||||
|     % Math Jax compatability definitions | ||||
|     \def\gt{>} | ||||
|     \def\lt{<} | ||||
|     % Document parameters | ||||
|     \title{Entanglement} | ||||
|      | ||||
|      | ||||
|      | ||||
| 
 | ||||
|     % Pygments definitions | ||||
|      | ||||
| \makeatletter | ||||
| \def\PY@reset{\let\PY@it=\relax \let\PY@bf=\relax% | ||||
|     \let\PY@ul=\relax \let\PY@tc=\relax% | ||||
|     \let\PY@bc=\relax \let\PY@ff=\relax} | ||||
| \def\PY@tok#1{\csname PY@tok@#1\endcsname} | ||||
| \def\PY@toks#1+{\ifx\relax#1\empty\else% | ||||
|     \PY@tok{#1}\expandafter\PY@toks\fi} | ||||
| \def\PY@do#1{\PY@bc{\PY@tc{\PY@ul{% | ||||
|     \PY@it{\PY@bf{\PY@ff{#1}}}}}}} | ||||
| \def\PY#1#2{\PY@reset\PY@toks#1+\relax+\PY@do{#2}} | ||||
| 
 | ||||
| \expandafter\def\csname PY@tok@ss\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} | ||||
| \expandafter\def\csname PY@tok@gp\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@go\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.53,0.53}{##1}}} | ||||
| \expandafter\def\csname PY@tok@vm\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} | ||||
| \expandafter\def\csname PY@tok@gd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.00,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@si\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}} | ||||
| \expandafter\def\csname PY@tok@nv\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} | ||||
| \expandafter\def\csname PY@tok@gs\endcsname{\let\PY@bf=\textbf} | ||||
| \expandafter\def\csname PY@tok@cp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.74,0.48,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@sr\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}} | ||||
| \expandafter\def\csname PY@tok@gi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.63,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@s1\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@nl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.63,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@m\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} | ||||
| \expandafter\def\csname PY@tok@na\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.49,0.56,0.16}{##1}}} | ||||
| \expandafter\def\csname PY@tok@c1\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@kc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@nd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@sd\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@il\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} | ||||
| \expandafter\def\csname PY@tok@sc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@nf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@kr\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@mo\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} | ||||
| \expandafter\def\csname PY@tok@mb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} | ||||
| \expandafter\def\csname PY@tok@cpf\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@mf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} | ||||
| \expandafter\def\csname PY@tok@o\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} | ||||
| \expandafter\def\csname PY@tok@mi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} | ||||
| \expandafter\def\csname PY@tok@gu\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.50,0.00,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@mh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} | ||||
| \expandafter\def\csname PY@tok@no\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.00,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@kn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@nb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@ne\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.82,0.25,0.23}{##1}}} | ||||
| \expandafter\def\csname PY@tok@w\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.73,0.73}{##1}}} | ||||
| \expandafter\def\csname PY@tok@vi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} | ||||
| \expandafter\def\csname PY@tok@ni\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.60,0.60,0.60}{##1}}} | ||||
| \expandafter\def\csname PY@tok@sx\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@s2\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@c\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@gr\endcsname{\def\PY@tc##1{\textcolor[rgb]{1.00,0.00,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@dl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@kt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.69,0.00,0.25}{##1}}} | ||||
| \expandafter\def\csname PY@tok@k\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@gt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.27,0.87}{##1}}} | ||||
| \expandafter\def\csname PY@tok@bp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@vc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} | ||||
| \expandafter\def\csname PY@tok@vg\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} | ||||
| \expandafter\def\csname PY@tok@gh\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@kp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@nc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@err\endcsname{\def\PY@bc##1{\setlength{\fboxsep}{0pt}\fcolorbox[rgb]{1.00,0.00,0.00}{1,1,1}{\strut ##1}}} | ||||
| \expandafter\def\csname PY@tok@nn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@nt\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@sb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@ch\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@sh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@fm\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@ow\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@s\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@ge\endcsname{\let\PY@it=\textit} | ||||
| \expandafter\def\csname PY@tok@cs\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@kd\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} | ||||
| \expandafter\def\csname PY@tok@se\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.13}{##1}}} | ||||
| \expandafter\def\csname PY@tok@cm\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} | ||||
| \expandafter\def\csname PY@tok@sa\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} | ||||
| 
 | ||||
| \def\PYZbs{\char`\\} | ||||
| \def\PYZus{\char`\_} | ||||
| \def\PYZob{\char`\{} | ||||
| \def\PYZcb{\char`\}} | ||||
| \def\PYZca{\char`\^} | ||||
| \def\PYZam{\char`\&} | ||||
| \def\PYZlt{\char`\<} | ||||
| \def\PYZgt{\char`\>} | ||||
| \def\PYZsh{\char`\#} | ||||
| \def\PYZpc{\char`\%} | ||||
| \def\PYZdl{\char`\$} | ||||
| \def\PYZhy{\char`\-} | ||||
| \def\PYZsq{\char`\'} | ||||
| \def\PYZdq{\char`\"} | ||||
| \def\PYZti{\char`\~} | ||||
| % for compatibility with earlier versions | ||||
| \def\PYZat{@} | ||||
| \def\PYZlb{[} | ||||
| \def\PYZrb{]} | ||||
| \makeatother | ||||
| 
 | ||||
| 
 | ||||
|     % Exact colors from NB | ||||
|     \definecolor{incolor}{rgb}{0.0, 0.0, 0.5} | ||||
|     \definecolor{outcolor}{rgb}{0.545, 0.0, 0.0} | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|      | ||||
|     % Prevent overflowing lines due to hard-to-break entities | ||||
|     \sloppy  | ||||
|     % Setup hyperref package | ||||
|     \hypersetup{ | ||||
|       breaklinks=true,  % so long urls are correctly broken across lines | ||||
|       colorlinks=true, | ||||
|       urlcolor=urlcolor, | ||||
|       linkcolor=linkcolor, | ||||
|       citecolor=citecolor, | ||||
|       } | ||||
|     % Slightly bigger margins than the latex defaults | ||||
|      | ||||
|     \geometry{verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in} | ||||
|      | ||||
|      | ||||
| 
 | ||||
|     \begin{document} | ||||
|      | ||||
|      | ||||
|     \maketitle | ||||
|      | ||||
|      | ||||
| 
 | ||||
|      | ||||
|     \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{incolor}In [{\color{incolor}1}]:} \PY{c+c1}{\PYZsh{} EPR Paradox Example} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} A neutral pi meson (pi0) decays into an electron/positron (e\PYZhy{}/e+) } | ||||
|         \PY{c+c1}{\PYZsh{} pair.} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} pi0 \PYZhy{}\PYZhy{}\PYZgt{} e+ + e\PYZhy{} (electron\PYZhy{}positron pair)} | ||||
|         \PY{c+c1}{\PYZsh{} pi0 has angular momentum l = s = 0} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} Align electron and positron detectors in opposite directions.} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} |            pi0            |} | ||||
|         \PY{c+c1}{\PYZsh{} |e\PYZhy{} \PYZlt{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}       \PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZgt{} e+|} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} Where hbar = 1, the measurement of the spin in some direction is } | ||||
|         \PY{c+c1}{\PYZsh{} +/\PYZhy{}1 with spin state [1 0] (up) or [0 1] (down).} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} The Pauli exclusion principle with conserved angular momentum 0} | ||||
|         \PY{c+c1}{\PYZsh{} dictates this system must be in the singlet state } | ||||
|         \PY{c+c1}{\PYZsh{} chi = [1/sqrt(2) (|up+\PYZgt{}|down\PYZhy{}\PYZgt{} \PYZhy{} |down+\PYZgt{}|up\PYZhy{}\PYZgt{})].} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} In this state, if the positron is measured to have spin [1 0], the } | ||||
|         \PY{c+c1}{\PYZsh{} electron must have spin [0 1], or vice versa. There is an equal } | ||||
|         \PY{c+c1}{\PYZsh{} probability to find either state during the first measurement.} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} This view is consistent with the realist view. The realist view could } | ||||
|         \PY{c+c1}{\PYZsh{} hold that the electron and position had those angular momenta } | ||||
|         \PY{c+c1}{\PYZsh{} from creation.} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} EPR assumes influences cannot propagate faster than the speed of } | ||||
|         \PY{c+c1}{\PYZsh{} light. \PYZdq{}Wave function collapse\PYZdq{} is apparently instantaneous, however.} | ||||
|          | ||||
|          | ||||
|         \PY{k+kn}{import} \PY{n+nn}{numpy} \PY{k}{as} \PY{n+nn}{np} | ||||
|         \PY{k+kn}{import} \PY{n+nn}{matplotlib} | ||||
|         \PY{k+kn}{import} \PY{n+nn}{matplotlib}\PY{n+nn}{.}\PY{n+nn}{pyplot} \PY{k}{as} \PY{n+nn}{plt} | ||||
|         \PY{k+kn}{import} \PY{n+nn}{matplotlib}\PY{n+nn}{.}\PY{n+nn}{patches} \PY{k}{as} \PY{n+nn}{mpatches} | ||||
|         \PY{o}{\PYZpc{}}\PY{k}{matplotlib} inline  | ||||
| \end{Verbatim} | ||||
| 
 | ||||
| 
 | ||||
|     \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{incolor}In [{\color{incolor}2}]:} \PY{c+c1}{\PYZsh{} If information about the measurement of the wave function propagated} | ||||
|         \PY{c+c1}{\PYZsh{} at a finite speed, the particles could conceivably be measured such} | ||||
|         \PY{c+c1}{\PYZsh{} that both are equally likely to hold either spin up or spin down.} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} What would happen if the measurements were uncorrelated?} | ||||
|          | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{hist}\PY{p}{(}\PY{n}{np}\PY{o}{.}\PY{n}{random}\PY{o}{.}\PY{n}{randint}\PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{,}\PY{l+m+mi}{1000}\PY{p}{)}\PY{p}{,}\PY{n}{bins}\PY{o}{=}\PY{l+m+mi}{4}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{hist}\PY{p}{(}\PY{n}{np}\PY{o}{.}\PY{n}{random}\PY{o}{.}\PY{n}{randint}\PY{p}{(}\PY{l+m+mi}{3}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{,}\PY{l+m+mi}{1000}\PY{p}{)}\PY{p}{,}\PY{n}{bins}\PY{o}{=}\PY{l+m+mi}{4}\PY{p}{)} | ||||
|         \PY{n}{elepatch} \PY{o}{=} \PY{n}{mpatches}\PY{o}{.}\PY{n}{Patch}\PY{p}{(}\PY{n}{color}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{blue}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{e\PYZhy{}}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)} | ||||
|         \PY{n}{pospatch} \PY{o}{=} \PY{n}{mpatches}\PY{o}{.}\PY{n}{Patch}\PY{p}{(}\PY{n}{color}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{orange}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{e+}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)} | ||||
|         \PY{c+c1}{\PYZsh{}plt.legend(handles=[elepatch,pospatch])} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{text}\PY{p}{(}\PY{l+m+mf}{0.5}\PY{p}{,}\PY{l+m+mi}{565}\PY{p}{,}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{e\PYZhy{}}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{n}{size}\PY{o}{=}\PY{l+m+mi}{20}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{text}\PY{p}{(}\PY{l+m+mf}{3.5}\PY{p}{,}\PY{l+m+mi}{565}\PY{p}{,}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{e+}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{n}{size}\PY{o}{=}\PY{l+m+mi}{20}\PY{p}{)} | ||||
|          | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{suptitle}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Uncorrelated Spins}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{n}{fontsize}\PY{o}{=}\PY{l+m+mi}{20}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{ylim}\PY{p}{(}\PY{p}{[}\PY{l+m+mi}{400}\PY{p}{,}\PY{l+m+mi}{600}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{xlim}\PY{p}{(}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{5}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{xticks}\PY{p}{(}\PY{p}{[}\PY{l+m+mf}{0.125}\PY{p}{,}\PY{l+m+mf}{0.85}\PY{p}{,}\PY{l+m+mf}{3.125}\PY{p}{,}\PY{l+m+mf}{3.85}\PY{p}{]}\PY{p}{,}\PY{p}{[}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{down}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{up}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{down}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{up}\PY{l+s+s2}{\PYZdq{}}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{tick\PYZus{}params}\PY{p}{(}\PY{n}{axis}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{both}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{n}{labelsize}\PY{o}{=}\PY{l+m+mi}{15}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)} | ||||
| \end{Verbatim} | ||||
| 
 | ||||
| 
 | ||||
|     \begin{center} | ||||
|     \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_1_0.png} | ||||
|     \end{center} | ||||
|     { \hspace*{\fill} \\} | ||||
|      | ||||
|     \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{incolor}In [{\color{incolor}3}]:} \PY{c+c1}{\PYZsh{} How many violations of angular momentum would be measured?} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} From running several simulations, it\PYZsq{}s evident a violation in the } | ||||
|         \PY{c+c1}{\PYZsh{} conservation of angular momentum would be measured half of the time.} | ||||
|         \PY{c+c1}{\PYZsh{} We can conclude that the information that the entangled particles are in} | ||||
|         \PY{c+c1}{\PYZsh{} orthogonal spin states is instantaneously agreed once a measurement} | ||||
|         \PY{c+c1}{\PYZsh{} is made.} | ||||
|          | ||||
|         \PY{n}{violations} \PY{o}{=} \PY{l+m+mi}{0} | ||||
|          | ||||
|         \PY{k}{for} \PY{n}{trial} \PY{o+ow}{in} \PY{n+nb}{range}\PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{1000}\PY{p}{)}\PY{p}{:} | ||||
|             \PY{n}{elespin} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{random}\PY{o}{.}\PY{n}{randint}\PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)} | ||||
|             \PY{n}{posspin} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{random}\PY{o}{.}\PY{n}{randint}\PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{)} | ||||
|             \PY{k}{if} \PY{n}{elespin} \PY{o}{==} \PY{l+m+mi}{0}\PY{p}{:} | ||||
|                 \PY{n}{elespin} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{matrix}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{0 1}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)} | ||||
|             \PY{k}{else}\PY{p}{:} | ||||
|                 \PY{n}{elespin} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{matrix}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{1 0}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)} | ||||
|             \PY{k}{if} \PY{n}{posspin} \PY{o}{==} \PY{l+m+mi}{0}\PY{p}{:} | ||||
|                 \PY{n}{posspin} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{matrix}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{0 1}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)} | ||||
|             \PY{k}{else}\PY{p}{:} | ||||
|                 \PY{n}{posspin} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{matrix}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{1 0}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)} | ||||
|              | ||||
|             \PY{n}{elespin}\PY{o}{.}\PY{n}{transpose}\PY{p}{(}\PY{p}{)} | ||||
|             \PY{n}{posspin}\PY{o}{.}\PY{n}{transpose}\PY{p}{(}\PY{p}{)} | ||||
|             \PY{n}{chi\PYZus{}squared} \PY{o}{=} \PY{n}{elespin}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{matrix}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{1; 0}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{o}{*}\PY{n}{posspin}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{matrix}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{0; 1}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)} \PY{o}{\PYZhy{}} \PY{n}{posspin}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{matrix}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{1; 0}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}\PY{o}{*}\PY{n}{elespin}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{matrix}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{0; 1}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)} | ||||
|              | ||||
|             \PY{k}{if} \PY{n}{chi\PYZus{}squared} \PY{o}{==} \PY{l+m+mi}{0}\PY{p}{:} | ||||
|                 \PY{n}{violations} \PY{o}{=} \PY{n}{violations} \PY{o}{+} \PY{l+m+mi}{1} | ||||
|          | ||||
|         \PY{n}{zeroes} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{zeros}\PY{p}{(}\PY{n}{violations}\PY{p}{,}\PY{n}{dtype}\PY{o}{=}\PY{n+nb}{int}\PY{p}{)} | ||||
|         \PY{n}{ones} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{full}\PY{p}{(}\PY{p}{(}\PY{l+m+mi}{1000}\PY{o}{\PYZhy{}}\PY{n}{violations}\PY{p}{)}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{,}\PY{n}{dtype}\PY{o}{=}\PY{n+nb}{int}\PY{p}{)} | ||||
|         \PY{n}{result} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{concatenate}\PY{p}{(}\PY{p}{(}\PY{n}{ones}\PY{p}{,}\PY{n}{zeroes}\PY{p}{)}\PY{p}{)} | ||||
|          | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{ylim}\PY{p}{(}\PY{p}{[}\PY{l+m+mi}{400}\PY{p}{,}\PY{l+m+mi}{600}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{xlim}\PY{p}{(}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{xticks}\PY{p}{(}\PY{p}{[}\PY{l+m+mf}{0.125}\PY{p}{,}\PY{l+m+mf}{0.85}\PY{p}{]}\PY{p}{,}\PY{p}{[}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{violation}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{adherence}\PY{l+s+s2}{\PYZdq{}}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{tick\PYZus{}params}\PY{p}{(}\PY{n}{axis}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{both}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{n}{labelsize}\PY{o}{=}\PY{l+m+mi}{15}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{suptitle}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Conservation Violations}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{n}{fontsize}\PY{o}{=}\PY{l+m+mi}{20}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{hist}\PY{p}{(}\PY{p}{[}\PY{n}{result}\PY{p}{]}\PY{p}{,}\PY{n}{bins}\PY{o}{=}\PY{l+m+mi}{4}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{figure}\PY{p}{(}\PY{p}{)} | ||||
| \end{Verbatim} | ||||
| 
 | ||||
| 
 | ||||
| \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{outcolor}Out[{\color{outcolor}3}]:} <matplotlib.figure.Figure at 0x7f22020419e8> | ||||
| \end{Verbatim} | ||||
|              | ||||
|     \begin{center} | ||||
|     \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_2_1.png} | ||||
|     \end{center} | ||||
|     { \hspace*{\fill} \\} | ||||
|      | ||||
|      | ||||
|     \begin{verbatim} | ||||
| <matplotlib.figure.Figure at 0x7f22020419e8> | ||||
|     \end{verbatim} | ||||
| 
 | ||||
|      | ||||
|     \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{incolor}In [{\color{incolor}4}]:} \PY{c+c1}{\PYZsh{} Bell\PYZsq{}s Experiment took this a step further, to rule out locality } | ||||
|         \PY{c+c1}{\PYZsh{} completely. Establish the detectors to \PYZdq{}float\PYZdq{} such that they } | ||||
|         \PY{c+c1}{\PYZsh{} measure the components of the spins of the electron and positron } | ||||
|         \PY{c+c1}{\PYZsh{} along a unit vector a or b, with angles phi\PYZus{}a and phi\PYZus{}b, } | ||||
|         \PY{c+c1}{\PYZsh{} respectively. Compute a product P of the spins in units of hbar/2. } | ||||
|         \PY{c+c1}{\PYZsh{} This will give +/\PYZhy{}1. } | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} /            pi0            \PYZbs{}} | ||||
|         \PY{c+c1}{\PYZsh{} /e\PYZhy{} \PYZlt{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}       \PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZhy{}\PYZgt{} e+\PYZbs{}} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} QM predicts P(a,b) = \PYZhy{}a dot b, the expectation value of the product } | ||||
|         \PY{c+c1}{\PYZsh{} of the spins.} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} In 1964, Bell derived the Bell inequality for a local hidden variable} | ||||
|         \PY{c+c1}{\PYZsh{} theory:   abs(P(a,b) \PYZhy{} P(a,c)) \PYZlt{}= 1 + P(b,c)} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} For any local hidden variable theory, the Bell inequality must hold. } | ||||
|         \PY{c+c1}{\PYZsh{} It introduces a third unit vector c, which is any other unit vector } | ||||
|         \PY{c+c1}{\PYZsh{} than a or b.} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} Does the quantum mechanical prediction violate the Bell inequality?} | ||||
|         \PY{c+c1}{\PYZsh{} Testing several detector configurations in a plane, systematically } | ||||
|         \PY{c+c1}{\PYZsh{} from 0 to pi, we determine whether the QM prediction is consistent } | ||||
|         \PY{c+c1}{\PYZsh{} with a local hidden variable theory.} | ||||
|          | ||||
|         \PY{n}{violations} \PY{o}{=} \PY{l+m+mi}{0} | ||||
|         \PY{n}{trials} \PY{o}{=} \PY{l+m+mi}{0} | ||||
|         \PY{k}{for} \PY{n}{step\PYZus{}a} \PY{o+ow}{in} \PY{n+nb}{range}\PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{6}\PY{p}{)}\PY{p}{:} | ||||
|             \PY{k}{for} \PY{n}{step\PYZus{}b} \PY{o+ow}{in} \PY{n+nb}{range} \PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{6}\PY{p}{)}\PY{p}{:} | ||||
|                 \PY{n}{phi\PYZus{}a} \PY{o}{=} \PY{n}{step\PYZus{}a}\PY{o}{/}\PY{l+m+mi}{6}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{pi} | ||||
|                 \PY{n}{phi\PYZus{}b} \PY{o}{=} \PY{n}{step\PYZus{}b}\PY{o}{/}\PY{l+m+mi}{6}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{pi} | ||||
|                 \PY{n}{phi\PYZus{}c} \PY{o}{=} \PY{n}{phi\PYZus{}a} \PY{o}{\PYZhy{}} \PY{l+m+mf}{0.5}\PY{o}{*}\PY{n}{phi\PYZus{}b} | ||||
|                 \PY{n}{P\PYZus{}ab} \PY{o}{=} \PY{o}{\PYZhy{}}\PY{l+m+mi}{1} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{cos}\PY{p}{(}\PY{n}{phi\PYZus{}a} \PY{o}{\PYZhy{}} \PY{n}{phi\PYZus{}b}\PY{p}{)} | ||||
|                 \PY{n}{P\PYZus{}ac} \PY{o}{=} \PY{o}{\PYZhy{}}\PY{l+m+mi}{1} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{cos}\PY{p}{(}\PY{n}{phi\PYZus{}a} \PY{o}{\PYZhy{}} \PY{n}{phi\PYZus{}c}\PY{p}{)} | ||||
|                 \PY{n}{P\PYZus{}bc} \PY{o}{=} \PY{o}{\PYZhy{}}\PY{l+m+mi}{1} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{cos}\PY{p}{(}\PY{n}{phi\PYZus{}b} \PY{o}{\PYZhy{}} \PY{n}{phi\PYZus{}c}\PY{p}{)} | ||||
|                  | ||||
|                 \PY{n}{bell\PYZus{}lhs} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{abs}\PY{p}{(}\PY{n}{P\PYZus{}ab} \PY{o}{\PYZhy{}} \PY{n}{P\PYZus{}ac}\PY{p}{)} | ||||
|                 \PY{n}{bell\PYZus{}rhs} \PY{o}{=} \PY{l+m+mi}{1} \PY{o}{+} \PY{n}{P\PYZus{}bc} | ||||
|                  | ||||
|                 \PY{k}{if} \PY{n}{bell\PYZus{}lhs} \PY{o}{\PYZgt{}} \PY{n}{bell\PYZus{}rhs}\PY{p}{:} | ||||
|                     \PY{n}{violations} \PY{o}{=} \PY{n}{violations} \PY{o}{+} \PY{l+m+mi}{1} | ||||
|                      | ||||
|                 \PY{n}{trials} \PY{o}{=} \PY{n}{trials} \PY{o}{+} \PY{l+m+mi}{1} | ||||
|                          | ||||
|         \PY{n}{zeroes} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{zeros}\PY{p}{(}\PY{n}{violations}\PY{p}{,}\PY{n}{dtype}\PY{o}{=}\PY{n+nb}{int}\PY{p}{)} | ||||
|         \PY{n}{ones} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{full}\PY{p}{(}\PY{p}{(}\PY{n}{trials}\PY{o}{\PYZhy{}}\PY{n}{violations}\PY{p}{)}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{,}\PY{n}{dtype}\PY{o}{=}\PY{n+nb}{int}\PY{p}{)} | ||||
|         \PY{n}{result} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{concatenate}\PY{p}{(}\PY{p}{(}\PY{n}{ones}\PY{p}{,}\PY{n}{zeroes}\PY{p}{)}\PY{p}{)} | ||||
|          | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{ylim}\PY{p}{(}\PY{p}{[}\PY{n}{trials}\PY{o}{/}\PY{l+m+mi}{2}\PY{o}{\PYZhy{}}\PY{l+m+mi}{10}\PY{p}{,}\PY{n}{trials}\PY{o}{/}\PY{l+m+mi}{2}\PY{o}{+}\PY{l+m+mi}{10}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{xlim}\PY{p}{(}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{xticks}\PY{p}{(}\PY{p}{[}\PY{l+m+mf}{0.125}\PY{p}{,}\PY{l+m+mf}{0.85}\PY{p}{]}\PY{p}{,}\PY{p}{[}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{violation}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{adherence}\PY{l+s+s2}{\PYZdq{}}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{tick\PYZus{}params}\PY{p}{(}\PY{n}{axis}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{both}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{n}{labelsize}\PY{o}{=}\PY{l+m+mi}{15}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{suptitle}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Hidden Locality Violations}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{n}{fontsize}\PY{o}{=}\PY{l+m+mi}{20}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{hist}\PY{p}{(}\PY{p}{[}\PY{n}{result}\PY{p}{]}\PY{p}{,}\PY{n}{bins}\PY{o}{=}\PY{l+m+mi}{4}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{figure}\PY{p}{(}\PY{p}{)} | ||||
| \end{Verbatim} | ||||
| 
 | ||||
| 
 | ||||
| \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{outcolor}Out[{\color{outcolor}4}]:} <matplotlib.figure.Figure at 0x7f22020737f0> | ||||
| \end{Verbatim} | ||||
|              | ||||
|     \begin{center} | ||||
|     \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_3_1.png} | ||||
|     \end{center} | ||||
|     { \hspace*{\fill} \\} | ||||
|      | ||||
|      | ||||
|     \begin{verbatim} | ||||
| <matplotlib.figure.Figure at 0x7f22020737f0> | ||||
|     \end{verbatim} | ||||
| 
 | ||||
|      | ||||
|     \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{incolor}In [{\color{incolor}5}]:} \PY{c+c1}{\PYZsh{} It is seen that the QM prediction disagrees with a local hidden } | ||||
|         \PY{c+c1}{\PYZsh{} variable theory in a significant number of configurations.} | ||||
|          | ||||
|         \PY{c+c1}{\PYZsh{} On average, for random orientations between 0 and pi, how often? } | ||||
|         \PY{c+c1}{\PYZsh{} After running several trials, it appears to be about half of the, } | ||||
|         \PY{c+c1}{\PYZsh{} which is what one would expect from the quantum mechanical} | ||||
|         \PY{c+c1}{\PYZsh{} prediction.} | ||||
|          | ||||
|         \PY{n}{violations} \PY{o}{=} \PY{l+m+mi}{0} | ||||
|         \PY{n}{trials} \PY{o}{=} \PY{l+m+mi}{0} | ||||
|         \PY{k}{for} \PY{n}{rand\PYZus{}a} \PY{o+ow}{in} \PY{n+nb}{range}\PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{10}\PY{p}{)}\PY{p}{:} | ||||
|             \PY{k}{for} \PY{n}{rand\PYZus{}b} \PY{o+ow}{in} \PY{n+nb}{range} \PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,}\PY{l+m+mi}{10}\PY{p}{)}\PY{p}{:} | ||||
|                 \PY{n}{phi\PYZus{}a} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{random}\PY{o}{.}\PY{n}{rand}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{)}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{pi} | ||||
|                 \PY{n}{phi\PYZus{}b} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{random}\PY{o}{.}\PY{n}{rand}\PY{p}{(}\PY{l+m+mi}{1}\PY{p}{)}\PY{o}{*}\PY{n}{np}\PY{o}{.}\PY{n}{pi} | ||||
|                 \PY{n}{phi\PYZus{}c} \PY{o}{=} \PY{n}{phi\PYZus{}a} \PY{o}{\PYZhy{}} \PY{l+m+mf}{0.5}\PY{o}{*}\PY{n}{phi\PYZus{}b} | ||||
|                 \PY{n}{P\PYZus{}ab} \PY{o}{=} \PY{o}{\PYZhy{}}\PY{l+m+mi}{1} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{cos}\PY{p}{(}\PY{n}{phi\PYZus{}a} \PY{o}{\PYZhy{}} \PY{n}{phi\PYZus{}b}\PY{p}{)} | ||||
|                 \PY{n}{P\PYZus{}ac} \PY{o}{=} \PY{o}{\PYZhy{}}\PY{l+m+mi}{1} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{cos}\PY{p}{(}\PY{n}{phi\PYZus{}a} \PY{o}{\PYZhy{}} \PY{n}{phi\PYZus{}c}\PY{p}{)} | ||||
|                 \PY{n}{P\PYZus{}bc} \PY{o}{=} \PY{o}{\PYZhy{}}\PY{l+m+mi}{1} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{cos}\PY{p}{(}\PY{n}{phi\PYZus{}b} \PY{o}{\PYZhy{}} \PY{n}{phi\PYZus{}c}\PY{p}{)} | ||||
|                  | ||||
|                 \PY{n}{bell\PYZus{}lhs} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{abs}\PY{p}{(}\PY{n}{P\PYZus{}ab} \PY{o}{\PYZhy{}} \PY{n}{P\PYZus{}ac}\PY{p}{)} | ||||
|                 \PY{n}{bell\PYZus{}rhs} \PY{o}{=} \PY{l+m+mi}{1} \PY{o}{+} \PY{n}{P\PYZus{}bc} | ||||
|                  | ||||
|                 \PY{k}{if} \PY{n}{bell\PYZus{}lhs} \PY{o}{\PYZgt{}} \PY{n}{bell\PYZus{}rhs}\PY{p}{:} | ||||
|                     \PY{n}{violations} \PY{o}{=} \PY{n}{violations} \PY{o}{+} \PY{l+m+mi}{1} | ||||
|                      | ||||
|                 \PY{n}{trials} \PY{o}{=} \PY{n}{trials} \PY{o}{+} \PY{l+m+mi}{1} | ||||
|          | ||||
|         \PY{n}{zeroes} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{zeros}\PY{p}{(}\PY{n}{violations}\PY{p}{,}\PY{n}{dtype}\PY{o}{=}\PY{n+nb}{int}\PY{p}{)} | ||||
|         \PY{n}{ones} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{full}\PY{p}{(}\PY{p}{(}\PY{n}{trials}\PY{o}{\PYZhy{}}\PY{n}{violations}\PY{p}{)}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{,}\PY{n}{dtype}\PY{o}{=}\PY{n+nb}{int}\PY{p}{)} | ||||
|         \PY{n}{result} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{concatenate}\PY{p}{(}\PY{p}{(}\PY{n}{ones}\PY{p}{,}\PY{n}{zeroes}\PY{p}{)}\PY{p}{)} | ||||
|          | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{ylim}\PY{p}{(}\PY{p}{[}\PY{n}{trials}\PY{o}{/}\PY{l+m+mi}{2}\PY{o}{\PYZhy{}}\PY{l+m+mi}{10}\PY{p}{,}\PY{n}{trials}\PY{o}{/}\PY{l+m+mi}{2}\PY{o}{+}\PY{l+m+mi}{10}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{xlim}\PY{p}{(}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{,}\PY{l+m+mi}{2}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{xticks}\PY{p}{(}\PY{p}{[}\PY{l+m+mf}{0.125}\PY{p}{,}\PY{l+m+mf}{0.85}\PY{p}{]}\PY{p}{,}\PY{p}{[}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{violation}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{adherence}\PY{l+s+s2}{\PYZdq{}}\PY{p}{]}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{tick\PYZus{}params}\PY{p}{(}\PY{n}{axis}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{both}\PY{l+s+s1}{\PYZsq{}}\PY{p}{,}\PY{n}{labelsize}\PY{o}{=}\PY{l+m+mi}{15}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{suptitle}\PY{p}{(}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Hidden Locality Violations}\PY{l+s+s2}{\PYZdq{}}\PY{p}{,}\PY{n}{fontsize}\PY{o}{=}\PY{l+m+mi}{20}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{hist}\PY{p}{(}\PY{p}{[}\PY{n}{result}\PY{p}{]}\PY{p}{,}\PY{n}{bins}\PY{o}{=}\PY{l+m+mi}{4}\PY{p}{)} | ||||
|         \PY{n}{plt}\PY{o}{.}\PY{n}{figure}\PY{p}{(}\PY{p}{)} | ||||
| \end{Verbatim} | ||||
| 
 | ||||
| 
 | ||||
| \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{outcolor}Out[{\color{outcolor}5}]:} <matplotlib.figure.Figure at 0x7f220202b080> | ||||
| \end{Verbatim} | ||||
|              | ||||
|     \begin{center} | ||||
|     \adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_4_1.png} | ||||
|     \end{center} | ||||
|     { \hspace*{\fill} \\} | ||||
|      | ||||
|      | ||||
|     \begin{verbatim} | ||||
| <matplotlib.figure.Figure at 0x7f220202b080> | ||||
|     \end{verbatim} | ||||
| 
 | ||||
|      | ||||
|     \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{incolor}In [{\color{incolor}6}]:} \PY{c+c1}{\PYZsh{} The prediction (Bell\PYZsq{}s inequality) made by assuming a local hidden} | ||||
|         \PY{c+c1}{\PYZsh{} variable is violated by a significant number of the possibile } | ||||
|         \PY{c+c1}{\PYZsh{} bborientations. This simulation cannot determine which theory is} | ||||
|         \PY{c+c1}{\PYZsh{} correct, but the QM prediction has been confirmed through experiment.} | ||||
|         \PY{c+c1}{\PYZsh{} No hidden local variable holds actionable information about the } | ||||
|         \PY{c+c1}{\PYZsh{} state. Entangled states retain their entanglement in a non\PYZhy{}local } | ||||
|         \PY{c+c1}{\PYZsh{} nature.} | ||||
| \end{Verbatim} | ||||
| 
 | ||||
| 
 | ||||
|     \begin{Verbatim}[commandchars=\\\{\}] | ||||
| {\color{incolor}In [{\color{incolor}7}]:} \PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)} | ||||
| \end{Verbatim} | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|     % Add a bibliography block to the postdoc | ||||
|      | ||||
|      | ||||
|      | ||||
|     \end{document} | ||||
							
								
								
									
										
											BIN
										
									
								
								presentation/output_1_0.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								presentation/output_1_0.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 7.2 KiB | 
							
								
								
									
										
											BIN
										
									
								
								presentation/output_2_1.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								presentation/output_2_1.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 7.8 KiB | 
							
								
								
									
										
											BIN
										
									
								
								presentation/output_3_1.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								presentation/output_3_1.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 6.9 KiB | 
							
								
								
									
										
											BIN
										
									
								
								presentation/output_4_1.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								presentation/output_4_1.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 7.1 KiB | 
							
								
								
									
										70
									
								
								presentation/sim_notes.motes
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										70
									
								
								presentation/sim_notes.motes
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,70 @@ | ||||
| Three viewpoints: realist, orthodox, agnostic | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| // |phi_1> |phi_2>  | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| For parallel detectors: | ||||
| 
 | ||||
| P(a,b) = -1 | ||||
| 
 | ||||
| 
 | ||||
| arbitrary orientation: | ||||
| 
 | ||||
| P(a,b) = -a⋅b | ||||
| 
 | ||||
| Our understanding of entanglement is consistent with the idea that modern local variables  | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| A(a,λ) = ±1. | ||||
| B(b,λ) = ±1. | ||||
| 
 | ||||
| If detectors are aligned: | ||||
| 
 | ||||
| A(a,λ) = -B(b,λ). | ||||
| 
 | ||||
| Average of product of measurements | ||||
| 
 | ||||
| P(a,b) = ∫ ρ(λ) A(a,λ) B(b,λ) dλ | ||||
| 
 | ||||
|     but since A(a,λ) = -B(b,λ), | ||||
| 
 | ||||
|     P(a,b) = - ∫ ρ(λ) A(a,λ) A(b,λ) dλ | ||||
| 
 | ||||
| c is any other unit vector... | ||||
| 
 | ||||
| P(a,b) - P(a,c) = - ∫ ρ(λ) [ A(a,λ) A(b,λ) - A(a,λ) A(c,λ) ] dλ | ||||
| 
 | ||||
|     = - ∫ ρ(λ) [ 1 - A(a,λ) A(c,λ) ] A(a,λ) A(b,λ) dλ | ||||
| 
 | ||||
| Because A(a,λ) = ±1 and B(b,λ) = ±1, | ||||
| 
 | ||||
|     -1 ≤ [A(a,λ) A(b,λ)] ≤ +1. | ||||
| 
 | ||||
| ρ(λ) [1 - A(b,λ) A(c,λ)] ≥ 0, so | ||||
| 
 | ||||
|     │P(a,b) - P(a,c)│ ≤ ∫ ρ(λ) [1 - A(B,λ) A(c,λ)] dλ. | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| │P(a,b) - P(a,c)│ ≤ 1 + P(b,c) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| simulation: | ||||
| 
 | ||||
| 
 | ||||
| pion decays, leaving two particles | ||||
| 
 | ||||
| each particle has a spin state | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|      | ||||
| 
 | ||||
							
								
								
									
										207
									
								
								presentation/simulation.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										207
									
								
								presentation/simulation.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,207 @@ | ||||
| # EPR Paradox Example | ||||
| 
 | ||||
| # A pion (pi0) decays into an electron/positron (e-/e+) pair. | ||||
| 
 | ||||
| # pi0 --> e+ + e- (electron-positron pair) | ||||
| # pi0 has angular momentum l = 0 | ||||
| 
 | ||||
| # Align electron and positron detectors in opposite directions. | ||||
| 
 | ||||
| # |            pi0            | | ||||
| # |e- <------       ------> e+| | ||||
| 
 | ||||
| # Where hbar = 1, the measurement of the spin in some direction is either | ||||
| # [1 0] or [0 1]. | ||||
| 
 | ||||
| # Pauli exclusion principle with conserved angular momentum l=0 says this  | ||||
| # system must be in the singlet state  | ||||
| # chi = [1/sqrt(2) (|up+>|down-> - |down+>|up->)]. | ||||
| 
 | ||||
| # In this state, if the positron is measured to have spin up, the electron | ||||
| # must have spin down, or vice versa. There is an equal probability to | ||||
| # measure either spin by the first measurement. | ||||
| 
 | ||||
| # This view is consistent with the realist view. The realist view could hold | ||||
| # that the electron and position had those angular momenta from creation. | ||||
| 
 | ||||
| # EPR assumes influences cannot propagate faster than the speed of light. | ||||
| # "Wave function collapse" is instantaneous. | ||||
| 
 | ||||
| 
 | ||||
| import numpy as np | ||||
| import matplotlib | ||||
| import matplotlib.pyplot as plt | ||||
| import matplotlib.patches as mpatches | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # If information about the measurement of the wave function propagated | ||||
| # at a finite speed, the particles could conceivably be measured such | ||||
| # that both are equally likely to hold either spin up or spin down. | ||||
| 
 | ||||
| # What would happen if the measurements were uncorrelated? | ||||
| 
 | ||||
| plt.ylim([400,600]) | ||||
| plt.xlim([-1,5]) | ||||
| plt.xticks([0.125,0.85,3.125,3.85],["down","up","down","up"]) | ||||
| plt.tick_params(axis='both',labelsize=15) | ||||
| plt.hist(np.random.randint(0,2,1000),bins=4) | ||||
| plt.hist(np.random.randint(3,5,1000),bins=4) | ||||
| elepatch = mpatches.Patch(color='blue', label='e-') | ||||
| pospatch = mpatches.Patch(color='orange', label='e+') | ||||
| plt.legend(handles=[elepatch,pospatch]) | ||||
| plt.figure() | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # On average, how many violations of angular momentum would be measured? | ||||
| 
 | ||||
| # Clearly, a violation in angular momentum would be measured half of the time. | ||||
| # We can conclude that the information that the entangled particles are in | ||||
| # the opposite spin states of eachother is instantaneously known once | ||||
| # a measurement is made. | ||||
| 
 | ||||
| violations = 0 | ||||
| 
 | ||||
| for trial in range(0,1000): | ||||
|     elespin = np.random.randint(0,2) | ||||
|     posspin = np.random.randint(0,2) | ||||
|     if elespin == 0: | ||||
|         elespin = np.matrix('0 1') | ||||
|     else: | ||||
|         elespin = np.matrix('1 0') | ||||
|     if posspin == 0: | ||||
|         posspin = np.matrix('0 1') | ||||
|     else: | ||||
|         posspin = np.matrix('1 0') | ||||
|      | ||||
|     elespin.transpose() | ||||
|     posspin.transpose() | ||||
|     chi_squared = elespin*np.matrix('1; 0')*posspin*np.matrix('0; 1') - posspin*np.matrix('1; 0')*elespin*np.matrix('0; 1') | ||||
|      | ||||
|     if chi_squared == 0: | ||||
|         violations = violations + 1 | ||||
| 
 | ||||
| zeroes = np.zeros(violations,dtype=int) | ||||
| ones = np.full((1000-violations),1,dtype=int) | ||||
| result = np.concatenate((ones,zeroes)) | ||||
| 
 | ||||
| plt.ylim([400,600]) | ||||
| plt.xlim([-1,2]) | ||||
| plt.xticks([0.125,0.85],["violation","adherence"]) | ||||
| plt.tick_params(axis='both',labelsize=15) | ||||
| plt.suptitle("Conservation Violations",fontsize=20) | ||||
| plt.hist([result],bins=4) | ||||
| plt.figure() | ||||
|          | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # Bell's Experiment took this a step further, to rule out locality completely. | ||||
| # Establish the detectors to "float" such that they measure the components of | ||||
| # the spins of the electron and positron along a unit vector a or b, with  | ||||
| # angles phi_a and phi_b, respectively. Compute a product P of the spins in  | ||||
| # units of hbar/2. This will give +/-1.  | ||||
| 
 | ||||
| # /            pi0            \ | ||||
| # /e- <------       ------> e+\ | ||||
| 
 | ||||
| # QM predicts P(a,b) = -a dot b, the expectation value of the product of | ||||
| # the spins. | ||||
| 
 | ||||
| # In 1964, Bell derived the Bell inequality for a local hidden variable | ||||
| # theory:   abs(P(a,b) - P(a,c)) <= 1 + P(b,c) | ||||
| 
 | ||||
| # For any local hidden variable theory, the Bell inequality must hold. It | ||||
| # introduces a third unit vector c, which is any other unit vector than | ||||
| # a or b. | ||||
| 
 | ||||
| # Does the quantum mechanical prediction violate the Bell inequality? Testing | ||||
| # several detector configurations in a plane, systematically from 0 to pi, | ||||
| # we determine whether the QM prediction is consistent with a local hidden | ||||
| # variable theory. | ||||
| 
 | ||||
| violations = 0 | ||||
| trials = 0 | ||||
| for step_a in range(0,6): | ||||
|     for step_b in range (0,6): | ||||
|         phi_a = step_a/6*np.pi | ||||
|         phi_b = step_b/6*np.pi | ||||
|         phi_c = phi_a - 0.5*phi_b | ||||
|         P_ab = -1 * np.cos(phi_a - phi_b) | ||||
|         P_ac = -1 * np.cos(phi_a - phi_c) | ||||
|         P_bc = -1 * np.cos(phi_b - phi_c) | ||||
|          | ||||
|         bell_lhs = np.abs(P_ab - P_ac) | ||||
|         bell_rhs = 1 + P_bc | ||||
|          | ||||
|         if bell_lhs > bell_rhs: | ||||
|             violations = violations + 1 | ||||
|              | ||||
|         trials = trials + 1 | ||||
|                  | ||||
| zeroes = np.zeros(violations,dtype=int) | ||||
| ones = np.full((trials-violations),1,dtype=int) | ||||
| result = np.concatenate((ones,zeroes)) | ||||
| 
 | ||||
| plt.ylim([trials/2-10,trials/2+10]) | ||||
| plt.xlim([-1,2]) | ||||
| plt.xticks([0.125,0.85],["violation","adherence"]) | ||||
| plt.tick_params(axis='both',labelsize=15) | ||||
| plt.suptitle("Hidden Locality Violations",fontsize=20) | ||||
| plt.hist([result],bins=4) | ||||
| plt.figure() | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # It is seen that the QM prediction disagrees with a local hidden variable | ||||
| # theory in a significant number of configurations. | ||||
| 
 | ||||
| # On average, for random orientations between 0 and pi, how often? After running several trials, | ||||
| # it appears to be about half of the time. | ||||
| 
 | ||||
| violations = 0 | ||||
| trials = 0 | ||||
| for rand_a in range(0,10): | ||||
|     for rand_b in range (0,10): | ||||
|         phi_a = np.random.rand(1)*np.pi | ||||
|         phi_b = np.random.rand(1)*np.pi | ||||
|         phi_c = phi_a - 0.5*phi_b | ||||
|         P_ab = -1 * np.cos(phi_a - phi_b) | ||||
|         P_ac = -1 * np.cos(phi_a - phi_c) | ||||
|         P_bc = -1 * np.cos(phi_b - phi_c) | ||||
|          | ||||
|         bell_lhs = np.abs(P_ab - P_ac) | ||||
|         bell_rhs = 1 + P_bc | ||||
|          | ||||
|         if bell_lhs > bell_rhs: | ||||
|             violations = violations + 1 | ||||
|              | ||||
|         trials = trials + 1 | ||||
| 
 | ||||
| zeroes = np.zeros(violations,dtype=int) | ||||
| ones = np.full((trials-violations),1,dtype=int) | ||||
| result = np.concatenate((ones,zeroes)) | ||||
| 
 | ||||
| plt.ylim([trials/2-10,trials/2+10]) | ||||
| plt.xlim([-1,2]) | ||||
| plt.xticks([0.125,0.85],["violation","adherence"]) | ||||
| plt.tick_params(axis='both',labelsize=15) | ||||
| plt.suptitle("Hidden Locality violations",fontsize=20) | ||||
| plt.hist([result],bins=4) | ||||
| plt.figure() | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # The prediction (Bell's inequality) made by assuming a local hidden | ||||
| # variable is violated by a significant number of the possibile orientations. | ||||
| # This simulation cannot determine which theory is correct, but the QM | ||||
| # prediction has been confirmed through experiment. No hidden local variable | ||||
| # holds actionable information about the state. Entangled states retain | ||||
| # their entanglement in a non-local nature. | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
							
								
								
									
										
											BIN
										
									
								
								recursion.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								recursion.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
		Loading…
	
		Reference in New Issue
	
	Block a user