mirror of
https://asciireactor.com/otho/phy-520.git
synced 2024-11-24 01:25:07 +00:00
245 lines
6.4 KiB
Plaintext
245 lines
6.4 KiB
Plaintext
10-23
|
||
──────────────────────────────────────────────────────────────────────────
|
||
|
||
graphical review of the tangent/cotangent bundle to show phases
|
||
|
||
|
||
Linear Operators
|
||
─────────────
|
||
|
||
rank 0 scalar ℝ,ℂ
|
||
rank 1 vector basis(ê¹,ê²,ê³), components [v1, v2, v3]
|
||
rank 2 𝔸:𝘃→𝘄 Linear
|
||
???rank 3 εᵢⱼᵏ - cross product, gᵢ - dot product
|
||
|
||
graphically show the operation of operators
|
||
|
||
graphically show the operation of rotation operators
|
||
|
||
graphically distinguish active and passive transformations
|
||
|
||
active - includes evolution operator U⊹
|
||
|
||
passive - matrix change of basis
|
||
|
||
𝘄 = 𝔸 𝘃.
|
||
ℝ𝘄 = ℝ𝔸ℝᵀ ℝ𝘃.
|
||
𝘄′ = 𝔸′ 𝘃′.
|
||
|
||
──────────────────────────────────────────────────────────────────────────
|
||
2017-10-25
|
||
|
||
Linear transformations
|
||
|
||
⎛1 a⎞ ⎛0⎞ = ⎛a⎞
|
||
⎝0 1⎠ ⎝1⎠ ⎝1⎠
|
||
|
||
|
||
⎛λ₁ 0⎞ ⎛0⎞ = ⎛0 ⎞
|
||
⎝0 λ₂⎠ ⎝1⎠ ⎝1/2⎠
|
||
|
||
M = U(ϕ)⎛λ₁ 0⎞ U⁻¹(ϕ) R(θ)
|
||
⎝0 λ₂⎠ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
|
||
⏟⏟⏟⏟ Vᵀ
|
||
W
|
||
|
||
Sᵀ = S, symmetric → Hermitian
|
||
Rᵀ = R⁻¹ orthogonal → unitary
|
||
|
||
M = U W Vᵀ singular decomposition
|
||
= S R polar decomposition
|
||
|
||
normal matrix analogue
|
||
|
||
x ± ιn = r exp(ιϕ)
|
||
|
||
Theorem
|
||
─────────────
|
||
if H⁺ = H and H v⃗ᵢ = v⃗ᵢ λᵢ
|
||
then λᵢ real and v⃗ᵢ⋅v⃗ⱼ = 0 if λᵢ ≠ λⱼ
|
||
|
||
take ⊹: Vⱼ⊹ H = λ⃰ⱼ vⱼ⊹
|
||
|
||
λ⃰ⱼ v⃑ⱼ⊹ v⃑ᵢ = v⃑ⱼ⊹ H v⃑ᵢ = v⃑ⱼ⊹ v⃑ᵢ λᵢ
|
||
|
||
I i=j, ‖vᵢ‖ ≠ 0, λᵢ⃰ = λᵢ, ℝ ∋ λ
|
||
|
||
i ≠ j, λᵢ ≠ λⱼ, v⃗ⱼ⊹ v⃗ᵢ = 0
|
||
|
||
|
||
|
||
───────────────────────────────────────────────────────────────────────
|
||
10-30
|
||
|
||
"The importance of being Earnest"
|
||
|
||
0) Linear
|
||
linear combinations
|
||
separable diff. eqs.
|
||
superposition
|
||
basis
|
||
|
||
1) Unitary
|
||
Rotations
|
||
U⊹ U = I
|
||
change of coordinates
|
||
preserves angles and length
|
||
|
||
2) Hermitian
|
||
Stretches
|
||
H⊹ = H
|
||
real eigenvalues → observables
|
||
orthogonal eigenvectors
|
||
diagonalizable
|
||
H = U D U⊹ → similarity transform, rotate, stretch, rotate back
|
||
|
||
H U = U D ; H⊹ = H; U⊹ U = I; U⊹ = U⁻¹
|
||
|
||
H = U D U⁻¹ = U D U⊹
|
||
|
||
U⊹ H U = D
|
||
|
||
b
|
||
|
||
3) diagonal
|
||
|
||
element-wise multiplication
|
||
|
||
|
||
|
||
|
||
───────────────────────────────────────────────────────────────────────
|
||
11-01
|
||
|
||
From last time:
|
||
The importance of
|
||
|
||
1) linear
|
||
2) Unitary
|
||
3) Hermitian
|
||
|
||
Polar Decomposition -- A = P*U
|
||
|
||
H = U D U⊹
|
||
|
||
spectral decomposition
|
||
|
||
H = λ₁ P₁ + λ₂ P₂
|
||
|
||
4) Diagonal
|
||
|
||
|
||
|
||
Now:
|
||
|
||
5) Importance of Commuting
|
||
|
||
tied up with diagonal matrices, because diagonal matrices commute
|
||
|
||
|
||
Normal matrix: [N⊹,N] = 0.
|
||
|
||
similarity transform → change of basis
|
||
|
||
|
||
A = U D U⁻¹
|
||
|
||
A² = U D U⁻¹ U D U⁻¹ = U D² U⁻¹
|
||
|
||
f(A) = f₀ + f₁ A + 1/2! f₂ A²
|
||
= U U⁻¹ + U f₁ D U⁻¹ + U 1/2! f₂ D² U⁻¹
|
||
= U(1 + f₁ D + 1/2! f₂ D² + ...) U⁻¹
|
||
= U(diagonal matrix) U⁻¹
|
||
|
||
Obvious that diagonal matrices commute
|
||
|
||
commuting --
|
||
|
||
physical measurements represented by Hermitian operators H⊹ = H
|
||
λᵢ = what you can measure
|
||
𝘃ᵢ = definte states of 𝒪.
|
||
|
||
two measurements are compatible if they have the same eigenvectors, simulataneously diagonalizable
|
||
|
||
every physical state is reprsented as a dot on a unit circle, brilliant
|
||
|
||
expansion and projection postulate
|
||
|
||
diagonal matrices are automatically diagonalizable
|
||
|
||
A = U Dₐ U⁻¹, B = U Dᵦ U⁻¹
|
||
|
||
if [A,B] = 0, are A,B simulataneously diagonalizable?
|
||
|
||
ex [x,p] = ιħ.
|
||
|
||
Thm: if [A,B] = 0 and U⁻¹ A U = D, then U⁻¹ B U is also "block diagonal".
|
||
|
||
recall ladder operators:
|
||
|
||
if N|n> = n|n>, then N(a±|n>) = (n+1)|n>.
|
||
|
||
let A 𝐮ᵢ = λᵢ 𝐮ᵢ
|
||
|
||
A(B 𝐮ᵢ) = B(A 𝐮ᵢ)z
|
||
|
||
|
||
|
||
|
||
11-06
|
||
─────────────
|
||
|
||
Postulates - lead-up
|
||
|
||
a) How does the state evolve (when not watched)? Ĥ ψ = Ê ψ.
|
||
|
||
b) what happens when we measure? e.g. x
|
||
|
||
i) pick random x weighted by prob │ψ(x)│²
|
||
|
||
ii) collapses the wave function to δ(x-a) if measured "a"
|
||
|
||
c) Observation is richer than classical mechanics due to complementarity and superposition
|
||
|
||
|
||
1) Observables are a Hermitian operator
|
||
Q̂(x,-ιħ∂/∂x) on ❙ψ(x)❭
|
||
|
||
2) Every observable has "definitey states"
|
||
|
||
eigenstates of Q̂: Q̂❙ϕₙ❭ qₙ ❙ϕₙ❭
|
||
|
||
3) Any other state is a superposition of ❙ϕₙ❭
|
||
|
||
❙ψ❭ = ∑ cₙ ❙ϕₙ❭ cₙ = Probability Amplitude
|
||
|
||
4) Observation is an irreversible process, "collapses ❙ψ❭"
|
||
|
||
5) Measurements with same ❙ϕₙ❭ are compatible.
|
||
|
||
[Q̂,R̂] = 0.
|
||
|
||
|
||
Practical Application
|
||
|
||
1) Solve Ĥ ❙ψₙ❭ = Eₙ ❙ψₙ❭ stationary states
|
||
2) Find components of ❙ψ₀❭ = cₙ❙ψₙ❭
|
||
3) Rotate State in time ❙ψ(t)❭ = exp(-ιEₙt/ħ)cₙ❙ψ₀❭
|
||
4) Solve eigenstates of Q̂❙ϕₙ❭ = qₙ❙ϕₙ❭
|
||
5) find components of ❙ψ(t)❭ = aₙ❙ϕₙ❭
|
||
6) project the state ❙ψ(t)❭ ⟶ ❙ϕₙ❭
|
||
|
||
TOOLS:
|
||
❬ϕₙ❙ϕₘ❭ = δₙₘ -- orthonormality
|
||
∑ₙ ❙ϕₙ❭❬ϕₙ❙ = 𝕀 -- closure
|
||
|
||
Postulates
|
||
|
||
1) superposition
|
||
state ❙ψ❭ collection of probability amplitues cₙ with ∑ₙ│cₙ│² = 1.
|
||
2) expansion/projection
|
||
Q̂❙ϕₙ❭ = qₙ❙ψₙ❭
|
||
❙ψ❭ = aₙ ❙ϕₙ❭ aₙ = probability amplitude of measurement "q" after measurement qₙthe system collapses to state ❙ϕₙ❭
|
||
3) evolution Ĥψ = Êψ.
|
||
4) Uncertainty [x,p] = ιħ.
|
||
5) wait until next semester -- exclusion principle |