phy-520/notes.motes

245 lines
6.4 KiB
Plaintext
Raw Normal View History

10-23
──────────────────────────────────────────────────────────────────────────
graphical review of the tangent/cotangent bundle to show phases
Linear Operators
─────────────
rank 0 scalar ,
rank 1 vector basis(ê¹,ê²,ê³), components [v1, v2, v3]
rank 2 𝔸:𝘃→𝘄 Linear
???rank 3 εᵢⱼᵏ - cross product, gᵢ - dot product
graphically show the operation of operators
graphically show the operation of rotation operators
graphically distinguish active and passive transformations
active - includes evolution operator U⊹
passive - matrix change of basis
𝘄 = 𝔸 𝘃.
𝘄 = ℝ𝔸ℝᵀ 𝘃.
𝘄 = 𝔸 𝘃.
──────────────────────────────────────────────────────────────────────────
2017-10-25
Linear transformations
⎛1 a⎞ ⎛0⎞ = ⎛a⎞
⎝0 1⎠ ⎝1⎠ ⎝1⎠
⎛λ₁ 0⎞ ⎛0⎞ = ⎛0 ⎞
⎝0 λ₂⎠ ⎝1⎠ ⎝1/2⎠
M = U(ϕ)⎛λ₁ 0⎞ U⁻¹(ϕ) R(θ)
⎝0 λ₂⎠ ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⏟⏟⏟⏟ Vᵀ
W
Sᵀ = S, symmetric → Hermitian
Rᵀ = R⁻¹ orthogonal → unitary
M = U W Vᵀ singular decomposition
= S R polar decomposition
normal matrix analogue
x ± ιn = r exp(ιϕ)
Theorem
─────────────
if H⁺ = H and H v⃗ᵢ = v⃗ᵢ λᵢ
then λᵢ real and v⃗ᵢ⋅v⃗ⱼ = 0 if λᵢ ≠ λⱼ
take ⊹: Vⱼ⊹ H = λ⃰ⱼ vⱼ⊹
λ⃰ⱼ v⃑ⱼ⊹ v⃑ᵢ = v⃑ⱼ⊹ H v⃑ᵢ = v⃑ⱼ⊹ v⃑ᵢ λᵢ
I i=j, ‖vᵢ‖ ≠ 0, λᵢ⃰ = λᵢ, ∋ λ
i ≠ j, λᵢ ≠ λⱼ, v⃗ⱼ⊹ v⃗ᵢ = 0
───────────────────────────────────────────────────────────────────────
10-30
"The importance of being Earnest"
0) Linear
linear combinations
separable diff. eqs.
superposition
basis
1) Unitary
Rotations
U⊹ U = I
change of coordinates
preserves angles and length
2) Hermitian
Stretches
H⊹ = H
real eigenvalues → observables
orthogonal eigenvectors
diagonalizable
H = U D U⊹ → similarity transform, rotate, stretch, rotate back
H U = U D ; H⊹ = H; U⊹ U = I; U⊹ = U⁻¹
H = U D U⁻¹ = U D U⊹
U⊹ H U = D
b
3) diagonal
element-wise multiplication
───────────────────────────────────────────────────────────────────────
11-01
From last time:
The importance of
1) linear
2) Unitary
3) Hermitian
Polar Decomposition -- A = P*U
H = U D U⊹
spectral decomposition
H = λ₁ P₁ + λ₂ P₂
4) Diagonal
Now:
5) Importance of Commuting
tied up with diagonal matrices, because diagonal matrices commute
Normal matrix: [N⊹,N] = 0.
similarity transform → change of basis
A = U D U⁻¹
A² = U D U⁻¹ U D U⁻¹ = U D² U⁻¹
f(A) = f₀ + f₁ A + 1/2! f₂ A²
= U U⁻¹ + U f₁ D U⁻¹ + U 1/2! f₂ D² U⁻¹
= U(1 + f₁ D + 1/2! f₂ D² + ...) U⁻¹
= U(diagonal matrix) U⁻¹
Obvious that diagonal matrices commute
commuting --
physical measurements represented by Hermitian operators H⊹ = H
λᵢ = what you can measure
𝘃ᵢ = definte states of 𝒪.
two measurements are compatible if they have the same eigenvectors, simulataneously diagonalizable
every physical state is reprsented as a dot on a unit circle, brilliant
expansion and projection postulate
diagonal matrices are automatically diagonalizable
A = U Dₐ U⁻¹, B = U Dᵦ U⁻¹
if [A,B] = 0, are A,B simulataneously diagonalizable?
ex [x,p] = ιħ.
Thm: if [A,B] = 0 and U⁻¹ A U = D, then U⁻¹ B U is also "block diagonal".
recall ladder operators:
if N|n> = n|n>, then N(a±|n>) = (n+1)|n>.
let A 𝐮ᵢ = λᵢ 𝐮ᵢ
A(B 𝐮ᵢ) = B(A 𝐮ᵢ)z
11-06
─────────────
Postulates - lead-up
a) How does the state evolve (when not watched)? Ĥ ψ = Ê ψ.
b) what happens when we measure? e.g. x
i) pick random x weighted by prob │ψ(x)│²
ii) collapses the wave function to δ(x-a) if measured "a"
c) Observation is richer than classical mechanics due to complementarity and superposition
1) Observables are a Hermitian operator
Q̂(x,-ιħ∂/∂x) on ❙ψ(x)❭
2) Every observable has "definitey states"
eigenstates of Q̂: Q̂❙ϕₙ❭ qₙ ❙ϕₙ❭
3) Any other state is a superposition of ❙ϕₙ❭
❙ψ❭ = ∑ cₙ ❙ϕₙ❭ cₙ = Probability Amplitude
4) Observation is an irreversible process, "collapses ❙ψ❭"
5) Measurements with same ❙ϕₙ❭ are compatible.
[Q̂,R̂] = 0.
Practical Application
1) Solve Ĥ ❙ψₙ❭ = Eₙ ❙ψₙ❭ stationary states
2) Find components of ❙ψ₀❭ = cₙ❙ψₙ❭
3) Rotate State in time ❙ψ(t)❭ = exp(-ιEₙt/ħ)cₙ❙ψ₀❭
4) Solve eigenstates of Q̂❙ϕₙ❭ = qₙ❙ϕₙ❭
5) find components of ❙ψ(t)❭ = aₙ❙ϕₙ❭
6) project the state ❙ψ(t)❭ ⟶ ❙ϕₙ❭
TOOLS:
❬ϕₙ❙ϕₘ❭ = δₙₘ -- orthonormality
∑ₙ ❙ϕₙ❭❬ϕₙ❙ = 𝕀 -- closure
Postulates
1) superposition
state ❙ψ❭ collection of probability amplitues cₙ with ∑ₙ│cₙ│² = 1.
2) expansion/projection
Q̂❙ϕₙ❭ = qₙ❙ψₙ❭
❙ψ❭ = aₙ ❙ϕₙ❭ aₙ = probability amplitude of measurement "q" after measurement qₙthe system collapses to state ❙ϕₙ❭
3) evolution Ĥψ = Êψ.
4) Uncertainty [x,p] = ιħ.
5) wait until next semester -- exclusion principle