Updated with archived mats.

This commit is contained in:
Adamo 2020-12-23 16:28:58 -05:00
parent c23022e3af
commit 2756b2b2c8
18 changed files with 10120 additions and 31 deletions

BIN
23_NLTE_ionization.pdf Normal file

Binary file not shown.

0
Ulrich.ps Normal file
View File

78
hw7.motes Normal file
View File

@ -0,0 +1,78 @@
Problem 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
a) The wave function ψ(ξ) = ξᵖ exp(-ξ²/2) L(ξ²), should satisfy the boundary condition for either even or odd fuctions of ξ with p=0 or p=1, respectively, for any function L(u).
Recall ξ = √(mω/ħ) x.
dξ = √(mω/ħ) dx = α dx.
ψ(ξ) = ξᵖ exp(-ξ²/2) L(ξ²).
ψ'(ξ) = d/dξ (ξᵖ exp(-ξ²/2) L(ξ²))
= (d/dξ ξᵖ) exp(-ξ²/2) L(ξ²)
+ ξᵖ (d/dξ exp(-ξ²/2)) L(ξ²)
+ ξᵖ exp(-ξ²/2) (d/dξ L(ξ²)).
For an even state, ψ'(0) = 0 and p=0, so
ψ'(ξ) = (d/dξ 1) exp(-ξ²/2) L(ξ²)
+ 1 d/dξ exp(-ξ²/2) L(ξ²)
+ 1 exp(-ξ²/2) d/dξ L(ξ²).
ψ'(ξ) = - ξ exp(-ξ²/2) L(ξ²)
+ exp(-ξ²/2) L'(ξ²).
ψ'(0) = L'(0).
This must be wrong, somehow... in this case the boundary condition only applies if L'(0) = 0.
For an odd state, ψ(0) = 0 and p=1, so
ψ(0) = 0ᵖ * ... = 0. This is trivial.
b) Equation 2.72 from Griffiths:
dHₙ/dξ = 2nHₙ₋₁(ξ).
Substituting the state ψ(ξ), I can obtain the associated Laguerre differential equation
uL'' + (p - ½ + 1 - u)L' + kL = 0, with u = ξ².
A better and equivalent substitution uses
ψ(x,t) = A exp(ι(kx - (ħk²/2m)t)).
h = ξᵖ L(ξ²).
u = ξ².
ξᵖ = ξ²
h = ξᵖ L(ξ²)
ψ(x,t) = A exp( ι(kx - k²/4πm ξᵖ L(ξ²) t) )
= A exp( ι(kx - k²/4πm ξᵖ L(u) t) ).
This... is probably not the "h" you meant.
h = ξᵖ L(ξ²).
dHₙ/dξ = 2nHₙ₋₁(ξ).
h'(ξ) = dh/dξ = pξᵖ⁻¹ L(ξ²) + ξᵖ L'(ξ²).
h''(ξ) = pξᵖ⁻¹ L(ξ²) + ξᵖ L'(ξ²) = p(p-1)ξᵖ⁻² L(ξ²) + pξᵖ⁻¹ L'(ξ²) + pξᵖ⁻¹ L'(ξ²) + ξᵖ L''(ξ²).
p(p-1)ξᵖ⁻² L(ξ²) + pξᵖ⁻¹ L'(ξ²) + pξᵖ⁻¹ L'(ξ²) + ξᵖ L''(ξ²).
Hₙ in Griffiths maps to hₚ in the problem sheet, I'll assume.
Hₙ = ξⁿ.

3279
hw7.motes.ps Normal file

File diff suppressed because it is too large Load Diff

View File

@ -2,8 +2,3 @@ Ehrenfest Theorems
<p> = m d/dt <x> and <-∂/∂x V> = d/dt <p>
─────────────

View File

@ -226,12 +226,6 @@ Regarding group and phase velocities,
Here, ω represents the phase velocity, and ϕ is narrowly peaked about k₀.
<<<<<<< HEAD
*** dispersion notes: derive group velocity from 2 frequencies
*** dispersion comes from curvature of ω(k)
=======
A Taylor expansion helps elucidate the situation
ω(k) = ω₀ + ω′₀(k-k₀)
@ -247,4 +241,3 @@ At t=0, ψ(x,0) = 1/√(π) ∫[-∞,∞]ds ϕ(k₀ + s) exp(ι(kₒ+s)x),
ψ(x,t) = 1/√(π) exp(ι(-ω₀ + kₒ ω′₀)t∫[-∞,∞]ds ϕ(k₀ + s) exp(ι(kₒ+s)x)
>>>>>>> 9d60318cfe5d81c018be9b1fdbf72e03e8733ea0

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,715 @@
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 37537, 706]
NotebookOptionsPosition[ 37139, 688]
NotebookOutlinePosition[ 37483, 703]
CellTagsIndexPosition[ 37440, 700]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"n1", ":=", "4"}], "\[IndentingNewLine]",
RowBox[{"n2", ":=", "2"}], "\[IndentingNewLine]",
RowBox[{"n3", ":=", "1"}], "\[IndentingNewLine]",
RowBox[{"a", ":=", "\[Pi]"}], "\[IndentingNewLine]",
RowBox[{"a1", ":=",
RowBox[{"Plot", "[",
RowBox[{"0", ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "a"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{
RowBox[{"n1", "^", "2"}], " ", "+", "n1"}]}], "}"}]}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p1", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2", "/", "a"}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{"n1", "*", "x", "*",
RowBox[{"\[Pi]", "/", "a"}]}], "]"}]}], "+",
RowBox[{"n1", "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "a"}], "}"}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{
RowBox[{"n1", "^", "2"}], " ", "+", "n1"}]}], "}"}]}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p1e", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"n1", "^", "2"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", " ", "a"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p2", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2", "/", "a"}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{"n2", "*", "x", "*",
RowBox[{"\[Pi]", "/", "a"}]}], "]"}]}], "+",
RowBox[{"n2", "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "a"}], "}"}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{
RowBox[{"n2", "^", "2"}], " ", "+", "n2"}]}], "}"}]}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p2e", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"n2", "^", "2"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", " ", "a"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"p3", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2", "/", "a"}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{"n3", "*", "x", "*",
RowBox[{"\[Pi]", "/", "a"}]}], "]"}]}], "+",
RowBox[{"n3", "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "a"}], "}"}], ",", " ",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{"0", ",", " ",
RowBox[{
RowBox[{"n3", "^", "2"}], " ", "+", "n2"}]}], "}"}]}], ",", " ",
RowBox[{"GridLines", "\[Rule]", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Pi]", "-", ".01"}], "}"}], ",", " ",
RowBox[{"{", "}"}]}], "}"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"p3e", ":=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"n3", "^", "2"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", " ", "a"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{
"a1", ",", " ", "p1", ",", " ", "p1e", ",", "p2", ",", " ", "p2e", ",", " ",
"p3", ",", " ", "p3e"}], "]"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwdxWlIkwEAgOEVBTErCbEiFDZizKKDYpNkM9AawZLoYAcpVp9TKZAxmWuw
NiVIW8vEEeIGyxEyf8wcRUqZlalILMF1WAYdjMxMMXGMBBFq7/fj4ZEL1rPV
6yUSSUEGO/zZbbcGF0pkgi7A7sldIW5cffWAa1r2DnBKyHrJOde7Rtk4nP2d
K/WffvDszb6fHJ5dS7G2MCHzZd4R2qlkqUazh4X26EHe7kqK25/d03J8puco
1y8Hj/Pjh2odr3Wc0fPFdP8lzjtnaeDS1movH9ZG/FzQYg2ysznSyyr5+z4+
nb9unD2r7kmWx3KnuObv0heusCd/sdm6KN5s6l/mqWjV7tuZy5rqlBw3KdQ8
4vUV8WvpoWI2NUlPcFfCI/5EHjjJhjG7iX3tneX84YC3go/kTwj8aIvuCm/V
Kzo5nPs1wHdzUm9ZtXnDO7b1bPvMbafmxYeNjjmeXjj/h/2m7jQr93lW2Ogs
+8cTv63iQ9/ub2wVj+dxeXFvCS9ushxjWdRs4OlrRWZONpRW8YjNcJmf779R
x7Uro/WsSjvcrAjJOjgrNh7kucKnYdZcXermxEdbhAfVLyx3Ms9IYrU85nrj
5PkLjS7+DzSfZv0=
"]],
Cell[BoxData[
GraphicsBox[{{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxFz30s1AEYB/Bzd3Fnazt2zuyGEG3Y1Fqr253IhFjiWm9Upx/qnLo7L6tI
s0qnUTqXzGuXmsMaZeJK0i27hcksF3FEQirvoeNw1Zbn+W7Pvvv893ydCAk/
lkwikQ7+vX9NeWPZ+XVXwl7S/7h+b+Y63Dvks+GVZ14xfQoBeIwpNDQoJOD+
gIy35Yp08EeBYlup4i6Yf96uv0ChBOfOn6zLVzwFc7XBln5JGrA0NfRMnbQV
fOFFbA7ZpQusmzhAryB04CyvJVLDiU/gBI/W+5ryAfw/Or5mUDwMJl4fDZOf
HQFHz+k0mluj4Nvb1RKVbBxM1qh3Z6ROgK3cQzqHCn6Ag5R+j2cVk2DbmY6A
dPU0uOhdoxklbhbMs99n2hIzB/YYZoxeTZ4HV1daC+sTf4HTPp/q9pAt4D7e
npAHeYu4T+lP/JQvgbukRVGXHv0GcwKd1wfLDOC2/ZxK35JlcHltIWfkyQrY
xsVTdLrKCP5gRrtu17QKrqclqbra1sCeNgwRoV0Hz+QsMXf2mMAumZleEhHJ
d8MjEfp+v2/ooLHu5XqxGfhyYqyQNYUObSgOZl0kg6dXRWmUJXRZ77Xn4iQK
eEXoHZViRNuv5UYmpFLB44HZ7TTqJnCLW4ePQzZaRFNRnejmYPXDrd4tuehO
Lk/Lt7IAG0TFh6Ny0K1hyiObWTQwweFVVOSh46beLw7ko6VlAn/rQnQ6/caX
tFJ0SV8bm69C96Qck6+q0cGNiSnhenS4mNoqG0Qfd85nNQ2hz2W9rHMbRWdE
kKaNk+jmlTuEah2trXGs1ZPo4A6i1sSgoPXtupIrFmhDEbs3jIE2hVa7yqzR
5hSf5FdMNDOesHKzQ7MdFwSRbLRz980auT3aPdN2TeuI3sGtCjE6of8AVY0a
Fg==
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwd2Xk41F8XAPCxzFiiopIoWwupZqYkEZ2bFkVUSklJlBKyZclOScqSJG3E
j7Ike6hkSZSQ7LsIicgytqzzHu8/PJ9ner6+c++559xzkjax1jXlpFAoufhj
4TdXPn9Fl6Lt7sVNVlwUCpOs78vbJfHgCKz14/X/ip5OZVxsCjGCU9QfQg84
mOTXcrN/WSHWYP9mk9gGLiZpPuBT+DLEExQs2thaNCapMwqRjQi5BzOhVPsw
ASbRtVzV/DgkEoYXJ7yQWsUk91lnM8JCUiA2pCqwfSuT7CrW5Fe/VgDeLweM
bC4yydLa2O9KDwpA5kxgpbQpk3R3cj7cklEAAj2HW6vRQZQcyVWjBfDR8VKh
wmUm6dy1SXHY7iMMp5ZlDl9hEr/0Reef2xWCUMV41ElrJqmPLM+cti2C2V85
Ld+cmSQxWc51+H4RpE+sMLF1YRKvXB/Sk1YED/8ctlruyiQbW1TLqkaK4NKl
LytOuzGJm0hSR7xtMeyi7r3X6sEkawMDF52y/QxrRUKiym4yiY2LjnGGTQmM
lvb92x/IJJpWqvG8wSXwYGaHXD16rYn8kGFKCRRm3v5uGoTvc4jmzjtYAmNG
gj437zGJ2qq8x4YWX8He5Z3D2/tMwv92SyXPpVJoKyyh8oYxyctxATh7phxu
/NU+oPKcSTz6pm+luZTDwTJjh7do/bbectrTcujfckhgRySTCBQXGaQ1lsMi
2zRrRhST2IW6OdJOfgPlsA62WDSTEIWBpNSjFfCm/2J77UsmufrWNIhzbSWc
/XH8duVrJqEfOibFsb0Srjs9/7Y3iUmGm1TT2fsqIdTD5mgW2n5mWf3spUrQ
G4vle5LMJC67C9dMvqqEM1/tVPVSmcS3SCKpf1sV2D4WVIrPYJKDevzwZ28V
FO+QW7TkDZPw9YxX9p6ogvA1Ussd0AE838Z+OVZBulJr4e5MJnmg6ara8b4K
bMRlb5dkMUlUZUNZrXo1WHIJaGW+YxIT40+GNcerQSmGvXPJe1xfVvJQ1cVq
kHBbpGeGjl3mu+y7bzWkxDWvEM1hkqST2898La0GszshKVc/MMn71uA/ubo1
YD6jNzych/t71c3tw4UayH6SHaKWj/sxf3lxjn0NELHThnfQBZKw7W1YDXil
0swlCpjki8lf5/TmGtCRHDy1+yOT1PYe4oszqYWIMzJE7xOTDD2R23/TrhZS
KxYvC0bza/F4G92oBWpe1fpSNEkq+rcyuhZ8Aif5VIswHm2h1+9nLdx4n/FZ
pJhJPstIrDMdqYXZNAjRQnfUzBrt4aiDkrODzzzRIjveN0xJ1UEXZ6/ZL/SN
6e1fzM/XwbXKrq64z0wSkbiMS8OmDu5dXfmsHv32LGv3Wq86SHzQF8T9hUn+
5qVktUTWwVxE5qZzaP2b8rGH2+tAOGOTIm8Jk1zbztcpN1QHF40Dy5nooF+/
11DZdXDaUjlSH12k8fJhrkQ90Gprx1+iGQJSt+jn6kGsh3JR6SvGf+58Ab9V
PUhueVx1Gn3Rqm22x70ehsb1nF3RTyuf2kdG1EPZ7Y+OH9C0hysuLm2rh90R
f9YrljKJ9IGxyIGBejjxQN34GFp1srqlZLYeQr9+q7NE254OPu69ugGyK4XN
/0O3rlm0l3WmASR5QlU5yphksqLPo8KiAbRNc3evRAt7lbx/5doA/8JOOW9G
H+y8te3Cswa4V+L/6AT6woOLVpDYAG1n510uoz327X0lntMAoX9DwpzRGbEU
mdrmBqgKb3F4hq441W6Y+qcBGuyslBPRvbx5TwKmG+Dym47t79Fc78PrzPgb
4WP8WrMStISFq9B+sUZoOrOxpg6tvNpAW1q+ES4873boRJ/4tvPOnHIj9FAP
HR1E32VMULJON8J2u/ZErnI8X06HNvWYN0Jn1OMhQfSV/HA9EbdGSIyo01iJ
1ucZ9jwQ2Aj1kf5vJNEHj+x95fi8EVwHUxVl0TsfhdXGpjTCnQ7Vsi1oufa+
+fqCRqhrlXVQQIvKqm3kqW4ECQMLhZ1oHuvg40pdjbCqnYOmip7I6nK/PNYI
dpy/B3aje+Z3xD+iNkGj+cpegq4/cLf6i0gTTFUET+5Bfw5qm52UbYLA8WPi
6uiseqasnHITHM00OL7w+UsJn2P6mk1AG0+MBHTopQZXvzNN4JKoQVFD+yTL
x761RLczHZTR9hPulb3uTdAQZzG/HX1hd9W06L0mOL1p7hkDreu7bv2hqCYo
jOrX3ohWr3A64pyG1tm9XAa9TaTMOaGwCQb95wZXoWXOSbxoqmmCd3nbfixF
C8faVvD9aoJLhr0/aWiOwaJ/yhNNwP67cXoG92NYUXStOU8zaNC4ZYfRHe4W
2k9Fm+GVlo9ZF7qyOM+pdGMzbLn2Lm9hfwsEhaOnVZrBZE/Gxi/oVD3TcvnD
zaB990ZCNjoy4u2EgWEzGGxV3h23EG9bjLRyPJth7FpC7E20lUO6Q39wM/jJ
BLjYoA1zqVHi0c0gphd/4SxaVfv1mGtRM+wT6nfYit78kC3xuq4ZDNfvjRRD
r27TPdTa0wwq1Uo/ONEzllMRqnwt4JpoGlGJ5+XPm8MllmItcKC+cU0Wunk2
khW+qQXOh5198xT9PuCAxpx2C/RdXbHOGH399YPh3JAW4A/nFu7C82o21iM2
GNMCi5hJBz6iT6mq7JfIbIElv71CnqN3lHc88WhoAZE5TZuT6LH+LXthdSus
2i54KAfzRbeC91XrLa3QOvxqVwi6xrX2UeTuVlC6U3XADJ2+yHWAfb4Vkrjd
4oTQtptKHha8bIXTPjWPTmO+6jbt9orKaoWDi6OV5NEnoyiWXl9aYbvn76kp
zHcqK5TVSV8rvE9J7glDc7ITBvM3t8Ghw4cuf8Z8GVLtr5Gf0QZ7fybunMV8
zC0Yvy2yqA1kSuXE89GOGkVrPOvaoIbjz1pvtMGH2dHdk23wlksngRMtE3s1
Kk/lB4S8Mfafwfyf7nxkKvfjD9hz8N/fIqwX695YdEdU/4AOGdFTLuiwwdvf
3bt+gEbFrn462uVCwUs1ajuoiLQ/fIj1R117q27uwXZo9Z+d08/F9ZBalvjh
ezvECn6//Bbr2fQFi+Q2qw6QdDLa24r18rzQ6PUPjh1gtKTMzwNdnOey95lH
Bxje9pWUQgevutuoH4Sf7z6jboz1V/Z7PGdtUgeIvIm53JKG+Ual52TpQAfI
tS73ScH6nbzUmJ1l/hPYdlc/NsUxyfK83q8P7X6CQJHN4CW0s4VNqL3LT+DL
s3YejWWSfZ89N267+xMm90gl8qNbXJ8fT0r4CWo5r+5sfcEkvL9b4mJ6f0KC
osFjY7x/mOSePBp8qRNybw6o6zzG85glKrzKuhMap/ref3iE+5PSXPOfUydw
f1X2lUdHR507leHXCUL55qu48f7TefPSufpXndBfar8v5QE+T9PRcvVQJ7TZ
ZKv34H3KpOGhX7xTF6SY/k1v8cH8MFJbUODXDRkrb+wRxPtfADPbOta3B5ST
Hj4x2YN/ryBbycelFwq2DnKmLGUSIXmtivbHf2Donf98dCaDHIxUjxkOGYAw
heK8F3oMcruksu3GswG4EVV1dOUJBvk8ck50xYsBULqtEH9Xl0H273MNVM4c
gFq55cnXjjCIel+G042GAbgk3qZx5BCDqCqsP7x89V/YVbxBja7GIMwvPONK
L//Clf07Dj5azyDWww8ZpUl/4aVsTvf6dQySvGqd+dmsv6C34bl7pgyDbLEk
7V5f/sLTLtHEBkkGkRdy/vq17y9EL2+WkRNjkHVn/kScoQ+C9WmXkenFDLJy
qPyAZ/YguM39kr82RSeP7+cb9+UPgnZGor/8PzoR3Z7udrxkEDof6S7tmkA7
P0qXbRqES3X9d0+N0YkYl4lE5fQghMuFW+oM0YnEyslxqd1DIHZhh6jDLzrZ
ANIvC4uGIMnooVtKNZ3E/lxWsPnbEESvEZwPrMLPfWgtYXVDwKO3puJqJZ3I
fu1fatEzBPI0DqOtFXQSuvFMHh/3MOx6p3+p5CudhGWsl09fPwwHSwLFlD7S
ydMv7zm4rgyDw/MN+yTT6GS4I9V5yHIYnp7jv6CSSica07EjLTbDwN/CVXwy
hU7GNj/4+eb6MJzpjNZ7kEQnOiEWHy/5DUNiwc6P4q/ohNNwtXdp3DD88p5w
MY+hE31H4amsxGE44chkPI2mk5R7vLYxKcMwFxiuUPYfnZwtHDvvlj0MD/w2
MLdG0UmW7DdC/zIMnOAiKBhBJxYsd0pIzzAUaWVQqI/opHCR/XWPP8Ow8nKU
sGYYrud682HzwWHYHf/YK/ghnXw+dbJj78QwhPpduyYdSidSufSCceoIPH3N
U3L8Pp3U3m73PL1+BKgfpz9O+9OJ6po9bKmLI/DD18zw5A06OXi21s7EbAQm
FNxVPnjTyYlnl3tiLEdAn7G3ZC3aYlXQtw0OI+B5/sG/SU9cvxUtzzb7jgDN
ODHvjTud/BN02LkzfgTGSp5d9XKmE25t3tfOr0fAqds2mgO9NOCZZE7qCCik
NN/3uY77xV9I2/1uBK5HPI6+50QnJ2lL6vaWjsCGpZ+fvnegkzfz8bZHBkYg
pNbu1EU7OilQU/0VPDwCWtQb1zjQ5W7f9avHRuCU11LdKFs66ZoeB725EYha
Y6zfZUMnwpPqi88sZgFH0umHHtYYXzvqvcOFWfC1fqpyI1re4cp4mwgLfP4c
ra63opM9o/daz0uy4NuDJ7I70DZDra8uMVkw/+nsBv6rdOJGt5GI384C8dV3
n3yypBO/q1whfTtZcDV8fZ0HOrJ/o7PlHhYkWrTGTlvQySv53IGk/Sz4oh+o
loPOunL0/NAhFlQmNES4oyt+O2rY6bIgwV77Aw+6eQN/TsZJFrDxfvjdnE5+
mUbQxw1YkHnrOPcT9GzXpxXXL7AgS67daSt6U8fSbnd7FqhPv+t1uoLx+Fuq
0PE6C3S91+UfRdsMMqOs3Vgg0vJ4wyb0m9mjZ419WFD+eWtCtxmd1HMZqxj4
sSC85VnRJ/Q/flvR4wEseFzy1PYFWnXV/dp9oSyI3lLlZY4+J/VfutpjFgSW
7Ok6gvaSTQveEc4Cae93DTvQ0fSPVowoFnTxHTsniS5SrDos94IFFX6STnzo
HtWf8tLxLFB+pCIzfplOePeN8Iq9ZsHnPVlGnWh5LY7fwqks0OF9yahCH9YV
Kl70hgWlbStDPqKtTkvHcL9lwUE5idsZ6ODzW73ncljQWFC8OA6dfnmP0UQ+
C7xGxTaGo2utjqkNfWIB01OuPgQ94WAs3vuFBdkPJ1f4o0Xdbac6yljwvuVe
rw9axce7oek7C16bTWp7oc/638+srmFByedtB9zRHiH/PShrYMGS0X1Vruio
J2m2RS0sAEPG0IILoz4eyW1nQdPvkciFf98dV7Ulq4sFa3rvdi08j5byc1HK
bxYs2jD57hZaLmukL66fBVdat64NQGvmcpREDeF6vN0uGYq2LBKKfTLKAs+W
yaQIdFCZtE/IJMZvg+33eHRq9VYT/xl8/4xHNzPR1U17iA+bBcd7z5Z+Qo91
HJNw5xqFAOOMmBq0SK/xrAPPKFz08F/yC71zyLbZatEoDCytFfyHdpu7H3Z+
2SjQJc0/yuB+PeeOtj+9chRWeAY6qqALFqXr6oqPguKab7nH0dxi1Yv3rR2F
pdW7OP3RG6Q7B1RlR6HMbDs7Hn1QjlWquGkURtVaA0vQATuEb8sqjEJIRI6R
AMZjspqMqZTSKGzXSI1moiv3bdu7atcotF2tcDyJXn5cl82/dxTW2gxXxaJ3
GJi0cWmMgtLil/pVaH1ju5xZzVEITu62nkOHW4c4Deri+3jrHTHA85HnGK33
+yQ+b82mlf7oDvd0hQ6DUXgQUmuVi14XUD1UZTIK6T3N5Rvw/CXFC5tl2o3C
5L4eNQE8zz51+Xu4nEbBYJNYig76LOdV8WOuo9B+Ims0BM1/9kvFwM1ReCvX
Ny6F+eHSEjfFdQ9HIeL54jpdzB9qqhuX2D0ZhVU7rzTGoJdfqe/NjxiF64nX
X0+gPxUyw8/EjoKPxfbi/zAfSTn+4nyQPQqfOtYkC2I+m4wOae3IGQWxB5s3
X0VXfIcsesEo8O7IcqpAu298eqW0ZBSkIxwcwjAfNrfqVHI0j0Ky/ff5XfZY
//a+jbCZHYVo7WstrZhfLWxMnfIoYxAh2DCpj/lXPUL4mAB1DFR10pvq0SMT
ltzxgmPQsM+3vwHztc4raYt2iTGYkdymNOSK51XIf6fOnjHIZp7ptvWik3a1
ncLh+8dAo9RqCT/WhyzzX/19h8bgWkTfeAzatAgib+mOwbotmqxWrC+FTmPU
3AtjwBmXE3rhFsbbD8OaTb5jcO4Au6nwLsarhlqE6V18ngJL7BrWJ8u01Zcj
g8Ygkpk8sy6ATs74tEwLPxoD4eumTwID8bzKn5aZjhuDtKZ4hl0wnUw5nLAt
+ToGesZnl/phfXQU1FpiKjgO8S9UAjqwHg86yjc9FxqHNEmptZ9e4H518MU0
rhgH9+dBanEvsf5klOw4LDEOmxP5p67F0Yni6QPnFBjjIDqraiWZiO/3Yk8S
x7Fx+GTOaZ6bTie2qju1noeOQ/an78sXf6ITilWo573H49BvFJ8hUITnNXI4
wyt8HBQ+XrglUIz1gDNh9YUX4+CRF5m75AuddJasGpR9Mw7Nh7JM15VhvdWb
CU6rGYd27r43t2ow3q3y6ouEJ6CkolNUGu9D05H7TPqDJyDz4kye+yIG2T2p
FrL14QQ8UyGzLQIM4q2jVOj0ZAKei8sc2YX3M965jTLc0ROQrezEmFvKICsM
lnSuzpiAiFHl5EARvB8ubzbWqZuAVJeS3R3SDGLqZ22ctmoSgkpu7iPKDFJp
8/S8U/QkTGxXkA00ZxBlDZn5tv/+weEMsTbqNwb5ul85noRPQTk1qfOEKPbb
aU+UOxOn4cbyPQKxh5nEfOaMfGPKNOw31zMy1mYS5n4J8YqMaeBN97+0WodJ
PjRGz77LmQbTHq+g+0ewH2En5t8vmwYNiRDmdV3sj3Xy9u/pn4bPr2wlduhj
f/qn81iU/AyMO67Isb7AJCvWbjY/lzADbWlrRjKuYz8S4n8yIWkG7jFueV90
ZhJ+zn71sbQZeHpIwne5C5NQfiaI330/A0MrcnrtXJlk4Lnst8yyGXjL/WxO
zoNJisTWMgUHZ0A6djTb+SaT2AuLTeRsm4XoT5Iy8YFMMuTt3ElTmoWAiMwP
+7EfMB9prDi2axbEBWwzOtHnKx/F/d47C4u0fdPFgpnkcNCK08v0ZuHPnQdd
N0KYZC2/0Adzp1nwVZlxVMD+o5qD98aqD7NwwjTy3VLsXwaTnpw7WjAL0gbn
l4ah+Qw27bpdNAt/D3e8EfuPSUi6zthY+Sxc5Kjqlo7Gfsrk4aXKtlmI5wmo
lMV+yP+TjNZt9iycDUsxEIrH/umW2vJx9TlIr/rjfioF32/r9+FNGnNwgjvG
oxjt2nb+m4nWHJguhw/bUrG/VPTxrTw+B3rhuwf4sX+T6in9l3hxDvpCtIXT
05lk9oB+m4kv+quAUEsmk2TyXout/DqH75fZFJrDJD1u3n/zvs2Bbpb+UBda
dOTe9qSqOYj6fPfItg9M4tb0uvBO0xwUl1sOlqP3ver5od43BzHXBZ5PYT9a
rWWwMpN3HhQ1JXyZBdgvF5idixGYh+cJGTL26B3bnV7eXzoPix5YU7PRT1eH
KliJzgPfmdPhKtgfG//9dkRWbh6+eCzlUy5kkuGgPX5PNOaBNbcrQbgI+2mu
o99va81D1aC7vyb6hNM5Eccj87Aze2uqN/qtkesL3VPz8NlHrOAv2pOZWbDo
8jzM0rXGPmA/n/riE8+0+TzQ/9l0D6I7Rat1eq3m4eVruxVS2P8f4BhqLXKc
h6SAw8pe6MXVclPuvvMQFqJ3U+kL7t8BJWJ5dx4clh9zuIC2e7//tkHQPMS9
K4gNQtdHm6xQCpuHjUdPfulER1wL3zr8ch48nv6b9i5h4n3x1fUfCfNwYAm9
Ow5NOfsuvzxpHiIMni/6hr64r147IXMeaK+jlq/4yiSbVyw1NymeB8q7q4vC
0ctScl6//DoPt6uZd/PQ0wcvD/V+mwff4bq1HegStzx76/p5uPiMHidVyiQp
IubZ6c3zINb9OBjQYakrpsd/zMPBBN1QQ/TFbktPt9/zwKW35U8YWstDtDC/
H/dPQlA1Hb1NtIiba3ge7Da+jytHUw6L373zbx7EadTyeXRExtfQMD42HFx5
cr9+GZP4aDs0NAmy4SX/fRNLtOVvKbE1wmz40FD82BOtIn49MkaMDTfyPx+J
QUtnru3skWBDgqZ5ZQaa98j3dfJr2RAXnHXlE7r+xoZXqZvYcNOJq6cdnbu6
emCUwYb4vK6SAfSLLHeG0nY26AluLvqH9j+60c5lJxtESioaFuahdn9q3+Sq
ssHfIJ9rMfq0j9ckZQ8b7JVY/5+HEonNKvv2s+FT49kXC/NQ2bcNbrcPsSEm
f1x0YR66WPdmfqk2G3zt37xcmIeO99M5F+uyYfPt+5oL89DWW837jp1kQ1KQ
L8/CPPSTpO/tUAP8fhuDWnehX73bWtpwjg1+czFfF+ah94+3CYhfYAPtbVHF
wjz0+l+/I+cusyFVcLB/Yd5pdHt7yH8WbEh+LyG9MA89IN1R223NhrAbJ60W
Pt+S479Szp4NdsywmoV56HI9JQOL62zID2s/ujAPnRnsDE92Y8Ple4o9C/PQ
Tr+g9hEvNnycefZAEf1VRkVG8RYbAopWnmaiUz/8unj9Dht+NyXvkEc/Onk/
LieQDUcUzDavRXsMq/6Zv8+GB9+1VMTRpnd7N6uHsaHijcl5YfThdaHWt56y
4fRw1nNetEIepJc8Z0Nh2PHxOdwPMf3+sUUx+Pc/7bvIQnOwwpSOxLFh/dNH
/b8W5uH+6i4hiWz4ttfAvxGdlf+ELfqGDfQWy+U56IjT+9XPvmXDXvgx92oh
vkaHfSI/4Ppf4KQ8RevKHuTfUMwGDek0HYeFefnH0cNXvmI8XjZ9ZoyWOhN5
7/U3NgQWSXJoo4eCJpYr1GN8mlBFpdEDwxKFW5rZIPTGzHAR+o+uhrXcDzbk
fmlpGsP47hZ5/HVNDxtSxLWuFy/MP58re/BOsGFw+5D2wvlppJhs4ppmQ0iP
hc4edJ3J3ca5OTawjhb4rkObPbj6ZIqTQto5L0T24vk0OZU3OshPIcd5f1y7
jDb209UcEKAQlT3GO/ajz7/riepbTCH+SZlbZdCG4kt0uoUpZKOPYU0T5gf9
dqP4JjEKqWDFfAa09mUOwyJ5Con3vnSvB/PV4ccPMz5uppCtln3D2WjNrxv5
8+kUws9XFOiHPrhJN/vdNgoxT1N1kUWrD0ULpahQCOW/gLVnMR/udNr3+Ykm
hTBdE7qjPjGJUnzj6keHKaSTQ2vZJfSOJstroToUwtII9JJHK+x6KHVPl0JC
YjpWpmG+prN/ufgYUMg+vYskE/P52tu3GdbmFOJlZZj6JB/PY/12DxNLCuFa
waN9YuH/y9Z3lutZUciLtvcKi9HnilTNVe0o5MTmwx2eeVgfOFgv+FwoJKX9
bq4B1hdht7NiL+5QiP4avc+D75mE03YrtSmeQkYqOmRCsJ4dK/hxvPwVhVxf
3xu0Ax21JCA6/zWFbA54rNP8hkl2J/dAbCqFKK45USqJdul/5nLtLYVo8k1+
iMb6yDKlDQuWUMgoD63dD+trp0FLs/pvCjlQ2JfdiPVYQO1U3Pk+Cnl8ZSjr
HFpRsuaaRz+F0BUsprrimMSvq1Tg/RA+r7hfcyCWSRiW73dv/Uch6VOHGWNY
393cn0RL8nGQmWdiLj/xfrAi6pT5rDwHUagS2rDjMe7Pr5qpTCsO0sm1ruyP
D5O4bwpyTbHhIJkHnl45hk63PTgXb8dBNLqX387G+434/AdKuCMHUcmw3nPj
Bt4/RGJ5bnhwEE4X9SIhLyYJPXh9hU4QBxHcvsFvFd6XOhJXb+1J4iDTIpFH
Km0w/9iZmon85SCBkeA9b8AkOlnPNEUcOcmHwbX9l2XxebPmblwTnESmxkmY
9DHIfw3eb6yucZGOZ8VtnLcZZNpM7bzzDBfhtnCeLVvHIJo58sRhjosI2b9z
cFzLIM8ERaVs2VzEqvHfF2kZBlFNZ7WbcXGToYy0WRdJBvGYiTPSX8RNljh5
lSmJMQhXkLCRkjg3UfxsKtm6hEEEMn4bjqtwk50Jm643zmD/Rq1TG1HlJj8a
W+5ETWO/d6pwzd/d3CTH5134lSnsd2bD27rVuYmAUFHp/ASdBO/XNazV5CZ+
htpXFFnYvzV+OJthwE2snj7Jqu2lkzVz98/YunCTlTdKgrrqsd/t1H73yI2b
yMV8asiqoxP7L3wr8zy4Cc9LM2f/Wjopve9dzX+Tm4heFCnfWY39yQbbQy/8
ucnhtGu1Md+w/z1yVKkhnJu8cn/06AP2DzeiFy9Ty+cm+lUGxRxv8H1vl9pc
+MhNXmemRnNm0EmjpW/FnU/cJICrlELFfoSuNH+n/gs3kb3QtHdxKp20lP2l
2FRyk/Ili6gKr+lk+3j5YPRPbrKdd9j8M/Y/PRr+pbzcVGIldlBq9SM6MdE6
L7WeRsXzMNmli/1Tm46i4x5eKpkm11X8H9JJrV67tIsAlVStuhBDCcV+7oKC
c/9yKkneXuQ2j/1XhGeLbMV6KlnnSeHRwP5N9Gaq+x9ZKil9JHb2EfZ3ob63
amjyVOL6RORY3x06uRvI8AQ6lVR3vVsT4kcn15/drE/dQSWdWVYnJ7E/PJG9
6dYDDSopuRP+ayn2k5XvKS0ph6hkaGXmPVfsP7Xy6pjlWlTimTnS/dsT+9li
z1buo1Qiuubyg2IPOmHW1Cg46lPJp62lQg/d6ERgyLVT/wqVeO28I3YL+10/
1tGdDhZUckW9K58fzTWxPuj+VSqRGPuyKgT75enZ78qltlSy69fBvy8d6aSX
f939XS5UkuZxQboT++tPG8pBwp9KEiPvbkzCflwzqF1TJJBKjG9sjTmBrhxn
6S2+RyUHtuyMnLOhkx9FqyznQ6gk++0byRPofyaXH/94SiUDLzS0lmH/71Hq
ElMfTiV8XLUdn63ohLotKLniOZXIFCrPuKKFOTKL8qKpRG1vev6fq3SyOZJz
5PkrKonq/BPUbEkn6TSR2bDXVGK2oUP3KVrZaiPPvWQq4WSURpxBH1A7usYz
nUp8N1l97bSgk28vLsg5vcH1V454FY8+IeCkYJ1FJep7EpfZoI1bIg4ZvaeS
7VK7PbjQveppJ059oJJGhc1eC/NJq1dFRkfycP3flvFHoN2c+x2gkEqWbP/5
XhUdtlI5WrKUSn44G/sHXaGT1Z6Hk1aWU8khzp8Nl9AxPUZvl1RQyV0f62SC
Ts30rWBXUcnqPq3pf2Z0orTmadNkDZVcO9Ru3YDO80nqHqrD/YoUsMlGlx2v
nW5vwvV+n7LUDa2b85va2EIlc3xGaefRjTIzSyvbqGTHRfG2A2iju4tXl7RT
iUnV3AP6wjxyRFq24CfGW/Oa+pVoy9OK2952UQmv//0YTvRowUG11F9UQr16
dXbwMp24yJ09GP+bSmoCijpa0ZRg6+NRfRjvTvFHy9G+kzfOPe6nkiPKGw/n
ogWNwq4E/8X1NNarSUGHfk6w9xvC7zOn3BODFqPnenqNUEl9eKfPE/R/Dyvv
Xh+lkm86p1OCF+aDc10PbcZx/2NiTe+gky9ORplNUsl8QlXcTbRiOf/r81NU
8nO03cET/UFBIlt/hkqe36/77oZWf7a18OgclZxcnpm5MJ/8yrn/20E2lTgG
esoufH7UXL+RcNBIVtD29R7o+iqLrp1cNCImX53sjTZU9hxkUmlkeOREke/C
PDMqZEqOh0Za/2WbBqLNeWO5pflopLpqLOQhuozTL3DvIhrZtGiIEYXePHdF
5JIgjdQ/3/X89cL8clIr0m8JjRSalLe9Rw+NbJFLFKKRbLH7g6UL7zOwJO3b
MhqxuO5UubC+6T0jysMraCRM3OLmMHrZz5pCYVEa4QnR46Hh/ti3ZGopiuHz
TkmcXYOuq3tUe2o1jaxseOW9MI/eUels6CJBI0VmP5yOLcy3i9Ss82VohPN7
bl0A+nS+5L+f62jEaH69WhL6/TsOb25ZGpkaT7L/jnZPLg45tIlGhJU9j6/C
+PwRHyduuYVGYvXtpxfilcTceRHEoBHuvg4bczTnY+2sGgX8vseMywrRF0IY
MKFIw3y+NGUEXRQgVCK6k0YcP141lsHz4etd12SoSiMdQbpb76B/u2abeO2m
kSOsizr56IOOT/qjCY38lN6lPIleZGE493sfjdjNbHWyxPMYfOKXlJ02jYio
VAZY4vke0fmSEHqERnqoYUvT0LqHErZlH6MRpl2v0SR6xe6r+2b1aCQpcdjo
DuaPp7Ljl33P0cjvHM3WQswvM9INw/Hn8flTkLEC89HZ1e+cy0xo5PRnnuPm
aEkhd/+ll2lk0XH/flHMXy+muVOeWtPIjOVJB3/Md9TxHqVcWxpxedJ5ewB9
aaikoP0ajTxeTz1/xI5ONnYHVK+7TiP76g4aiV3DeP62fCLZi0YUeacDijGf
ZketU/t0n0YkXHuVbDAfr2Pvc/34gEb80wMEfqGDDU3f5T+kEa3ICNMzznRi
Jhar+OEJjTSObIk57ILnKVSWnvkfjRjmVOzeg/ne7ba8ZFwaro/M6Tt2WC96
f2kavsygkaEyM3M2Wm+fxbOYTBqZ5W76Eoj1hc7xemXUOxrpW/1iPPkGnbS7
bFn65CON6B0UEuTCeqRuxeTwr6IR+Q+tcSNYv5LLj8KdGhop93bmC8P6Jr7J
1v12HY1484+07cL6N/Y7bepmE424MVpb/QPo5KWxAsvtJ40E0fZLqd2jE169
HV1WI3i+3IvXd2M9rdilWqwrxEPUVVPXwX9YH986zBxYxkNU7KdMBaLpREMx
ZeuuFTyk3vDgeDO6gC7zfO0qHvLi0s9pV6znGdK8TmNSPES2RDrgWxydPOap
lQtj8hCzHT+WJSdjPNZYBDQd4SFlH/I7zuXSidTRl4XfjvGQ4YxV2ify6KS1
/Me/j8d5yANO1wHNfDo5+fmY6atTPGS6/0XBro8Yj++Udrsa8ZAgiXsvNhXj
ekVyDa+25iFLhGp99+L95Z/5s+Png3jI+pqWlsM/6OSeSwyPZzAPcXisUubR
Ticb7ibmRITwkO7lefNpHbj+CTlrW8J4yAXGt82ru/C8/24Z1YvkITaVLA/2
b8zHF1eHaqXykFAhzs8UvH91GEbU7qjmIVxLTvztojFIydFIPUERXsJjr9HV
qMAgJsqqcXGhvOS10PBUQjCDXPn7bbw1jJfsuiCtdDaEQWz+M9on/ISXVMDM
1OJQBvHku/nTLYKXCEwY8To+YpDwpq/iurG8xPNYhaDmcwapdz4VPJvNS+jr
z/TyvMb76Xs752MtvGRxxPON5V8Y5JgVd4lvGy/5HUMW+39lEH2ZMJEP7bzk
T9R+Rc0yBrl8913Ghm5ewswf3fO1gkGwtxmcGeAl37/QxUrrGCRvOtAkdp6X
tCa/+V3bxSDFyZJpLRQ+0rTajBX2i0HKTdLYS7n4yOr32mtO/2aQltLacFce
PsKrsrqs7Q+D/Hsq3nB0KR/Z25Wt2TvCIGydpPW+wnzkiM+QWOIog9C4wD5n
OR9JjGBMXx1nkOUWJkIbVvERw7BtbaP/GERccszojDgfCWEntGZNM/Cefis5
eA0fWTId0uk8yyDyt1fOFUvyke60LwOq8wyydVeC1ow0H+nSlplisxnkf5va
SLs=
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQzbyf69xj00I7BjAwcAjKkbw1Y9J8exh/4qeYzdMm
rYfzrY96cTkVH4DzC6r8EjcXnIDzc3ek9jEpX4Dzr7zw5FyedAXO79L/xrAt
8gacX6h9YuqBpXfg/F/J2evu5j2A85P2hgVMSHsE5yd/vHLgQMcTOL/HYHv+
srZncD7Tge3mLVUv4HxBLe9z92e8gvM95jst/jDpDZwv/v6MW/32d3D+rOO7
GJkzP8D5NrKO/xVSPsL52g8EntSWfILz164Qytha9BnOr7kXe1m77QvCfzYW
3vOmfEX4b75L0usJ3+D8CwWzEsoXfYfzLd2V/t1d+APOP+lqucJhzk84f+nG
mZaPVv+C80WVdbLiVv6G8y8xcjRJ7vkD52/lKF524eRfOF9HVCAr6eg/OP99
3zcR42v/4Xzl9nb9/CwGBxj/UdTtW07PEXyPp5d/bs1jhPMrilIzxN4i+H7b
ZnuJlTHB+e/+ZNUwf0PwF15v3JJXzAzn/8qwTaj8jeDL/p0YXVjFAuc/c+8+
xcHCCucfVjtjL9eN4GdxLGNR5GSD87cvULE9PBHBP2dtczRIkB3O/5E1Ozih
D8E/ETA/lFeMA85PsrRZvnwKgu+1q6gy8DaCb2i90vu3IiecDwA5r9sq
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwV13k4VF0YAPCZO5a5Q4YZa0pRKEtSikrOm6SolBQqW6ikDRWRKJWEfFIJ
2QvtskSklOyVlC1r1jEzyp4ty3f6y/N77szxOvfdKDqe3nOYoFAo6VQK5d9P
WiGjqmuNu8HCzFYhCkUclHnvNijc3oU8FAylb1PFYeqllnNjhD0qdTdSVqGJ
Q4+ky0ROxGkU6xYDO4TEocn4alFKhD9S2/ftUJSoONTZR6jGRfyHQqujJrTk
xGHPCbmmqIgExJ7cULF/lTjcGrbJioxIR8e7akICnMVhQ4kpw/DMe2T1SSo4
66s4uPmYHcpyK0e7/WsKfVZKwMnXh8OIJdWoQvOkf3GwBNRyTcg0x1qk/KaO
PdMjAcFaY5Sc/T+QrsZ9h9OrWeCuXn73fUoLUjhtcvv2RRZ0H+6+lJjTgt6m
p6Ql+rHAMpFy4lJZC/rd7sp47s+C9VLrDIHXgna/E8z/eJkFxNzj/kKNVjTd
Yp/HvcaCiO8hWwuzWtHpGpsJ8TAWZHrvmnz7oQ0tcbji/yOOBVNOx1+0nmpH
fxsmYnTesMBBYuR8gWc7OnQ9T0uggAUl73w23/drRyl75svXYIfLBf+wDmtH
Lkqjo6fesUD16yOi9nk7usaPSo//wIK96zmWlb/a0Rf/l1JtZSx4IX5oLse1
AykrcvY117BA8h234q5HBzKV+eRwt5YF3sfd7pz16UAdbnYFZnUsMCr1X74q
uANls1udC+tZ0Hwh3uL54w60tcLGM6qRBfTe5rQH3A6kelT43PKfLHB8a7k7
/Egn2tHSnlPCY8GqHFmW3OlO9NJcaqcXH99HelNNklcnEn/OF1vWx4LkRDur
rKBOdE49XfL6LxZ0XjliV/+kE4UuWLFkwwA+z9TzxIKBThSbvknxwih2w92g
R15dSFN5tfX+WXx+tZWp9qUu9JXzUnAQm6iQE80P6kKfw6Z/XJvD5+fH/fcp
ugtt2GUx+ILChs64lMj+N13oyH7n1jGCDY7Orx7qULrR/u3Mm7bCbHAaqn3/
PqgbCdXraF1jssHBJ9zqdXg3Km8MU5zAtqHt6E+P6kY+SoHmruJssJT6KJ/w
qBvd8mg+tkOCDdvWZXheLO9GPDVJb2E2G1Zcvqmxnt6Ddl35M2ktzQY1hslH
bfEeNDe1Na8QW/W2wIHlsj1ok8ONbGUZNixOuXBddlkPaps9YzeAza441jm2
tQd5Xl550VuODRPixlFZ13uQpLbKN5cFbBiNpmo9/a8HyeWMb/6IPaT0tiT5
Xg96fXL90IKFbODr6IzcSutBr7Lzp75gt1ormbmV9aDi+UZlKovYUJQ4S9MU
5iAxVWGdLEU2vFueH7OUyUFLB/ibqUpseJN5TnuBDAfxl4+EmmFnF/+yE1Hl
oOnLSys52GncpjyeMQe17J7tn7eUDaErc0+nBnKQgeqX72tV2FC5qoFzLoyD
piLGl3hh09eM226J5KD1d/9k52BfXae7ozuFgwxHtSJXq7LhgmHuMqUS/Hwz
de/SZWx4bdSQMPSZg9xN1JLtsMeMx6U/1HJQ55tMrShsj+26gg7dHNSu+5RO
LmeD697cjjhaLzJsLHnZgf3IssH6pEgvouw8OyGlxgaO9fhXfXYv2ukr52+C
fchW912zUi8qVJAxeYFtfSQ3Rs6wF+2Zjqg6pc6GredzLe5e6kVlV97f/aSB
4/VpqHQO6kWedL+yEewi3/FNOuG9KOjEFV15TTYYXNZdWZPQixqOwfej2GuD
c0UlCnuR2tnrQ+PYZ0MbrrSX9iJeX6Dk/BVsyAwbn0qv6kUjikHnNmBr3tbl
mbX1ogMqbkMXsJfG5paEzvQihj6tegTbMb5B30aQi1aJ6XcytdiQmDiepT6P
i2ii+qvUsRek6CZXLuAip5deIfbYB9Ks5GKWctHN1tQ757GjHnuFH9PgoujN
V5vDsdkvcv3o+lz0s3iVUiH27pcNfxo2c5FS44RiHXZY5viJtO1c5CBrZc/H
ZuTqHjQ+yEXHhcsjWCtxvudZfZdy4qIWpW9BytiBb7xMely5KALsC3Sxife5
uld9uKjWarJ5P/aTeazUmQAuKnK/JHcce8/BE5JeIVx0dpDicQF76lFpwOBt
LmIZePYEYz8YWzx0LJaLZgVazkRj7zC6YN/1kIvatVYsTMMevVX3xeY5FyXz
XDqysI00g5/sesdFxWM38iuxf/l0y1aUctHujmNfa7HvlBtcN/zKRdI3lOda
sfWlo/+8aeAiuwP5JhzsHqcRpzXtXPSaqpL+GzssY+f3F1wumjl+RGsUe+1c
GiwbwueVeldOYrftINKTJrlIwc/u0uy/vz/GZqE8wUMKm9jmhDauf25OyB0G
D1nMROoLYtevkZiax+YhRgfXUBjb78pxl+vyPNRygO5Mx1b9VlJPWcpD6XJ/
Ev65WmHxFh8NHsoUTR/79/nzJ3yyRnR4yMlprYsQ9uL8WsWTG3noxs2QURp2
ubBWOGcLD+luSL9PwXbbd2PW3oyHvtgk207j+GQfdJ1otOShP0pH1o9jvx/c
2LzHnocezP7VHsI+ZhBl8vkoD8kkHTbiY7NCh3O3uPFQ09+H7p3Y+Y07VArP
89A7KMhrxHZUTbujd5mHfnY8X1CNzThHpWXe4KHEW74xJdiZRQfd1SN46Jmh
+up87APiOT8fxvDQsOpbzvN/+WEnbqbwAD/PXvMqEfvpU9eCe0/xfcVGxUdg
750sVpPI5qHU77zkK9jTxouigwt4KC1Es+jMv3zorDl38QsPTUfGm5v/ywet
Fd1jdTx0N6LugwF27MWgPW5tPHTIibVTHfu37EYtpwEeehWdlU399353pXK3
SfDRm0n9igc4v9fGUayK5Pgo6aIJKxi7jX+gZIMSH90KDPM8ja0VyExesZqP
NDe3h+tiVxecPyi5j4+eaF+Z9xbX53lGTcVNWz7iclZpx2IvttbUEz7CR9Yt
tm4+2G4jHZJTnnz0KW37Jh1sCbXtVT+j+MgvJWFFHO4PHOEEifJEPto0EdLl
hZ3fM7z35SM+CtGo/GaO7ZwU03zpNR/Z3T90gIb9WpbPVfzBR6wm0YW2uB/d
HNuowWjnI3vNe3Ha2I61t04P9/KRO+ujlSC2SPi6saJxPhoi1L2f4P5mJ3yD
5izTh6o0PN37cP9b3dNivGNRH3JzNX6fh03/uDJYR7UPlQhJmlzHzvT7IS6o
24esGn/QF2MLjqkqpFr2oSe8k4bbcL991l2qx73bh77uDH18Bvfzy0Xzfavj
+lC2rlP8GmzLxFOFr1P6kOx+dtUY7v8UG2njG6/60Opq/TZPbIuawxZqdX0o
dPzkx5PKuB98EDh1QvIXklbNTF+7BPebBMMHgxG/0KaL7aFrFNhwvby6NeD+
L1Rd9/1lA55vpUN2slIPfyFXg68D57G3GF24ue7VL0QaWxS+xvPRkJflFdDw
Cwnm3krTlMf1v1p5h+SC30jGXSTnF563K8uE/+im/Eaa0meS3uP5fnrwrlbl
89/I9q6pgzH2C7mlrjY5v1FIj7jBJ7wPaJ6An5fKfqOyW+OW38XwfJfwrqjg
/UauzvOJelHcvw/y4w6u6EeqgSO2WXQ2yAx8NvbP7UfF14Q2lOH9JOpW4SFe
YT/6uuJ5x2psWZ1MX4vyfhS8d0l2At5nZL3vZao29qMnBkqtZ2dYMJ/mqFA9
1Y82XhjdLPWXBQoy438WGwwgj6+TN1aMsUAFKaYUFQ8gKasB9WK8X8WU5VNp
xwYRqyxWNRDvd4PtL70HTgwiydfC0Z/x/rd1KnWo2Q0/L91nw8Ie1bjdkX1+
EGlEmjXe/8YCs4jjH44EDaILuQ8yUqvwfmW74HJl2iC6rMenxZaz4PjwRUoE
ZxCtVm3wEsL7qP7CTXOLnYdQ4ooU155EFmyzqfVwdBlCD+vfBvYn4H30/lHO
gxNDqLwmo3ssHn9fLuyLyrkhtGS30VFBvP/GSDXf1wgcQimJlWFy0SyYmHdO
T+/REDq6rzRF4RYLsmcfue/6NYS4B5KG4i6xQL1dvPvi2WE0evtw7GVbFjx/
xHJ55TGC5v5G2fRLssC3zbZGPXAUncwmN7DeSoC7vt72+Dt/UOiuNx+m7CRg
KsHIsS98DA0svzqSRpWAarcYB6/kcVRe2RcrHyUO67YqzbYmTSDhQYsc9mpx
qNiy7hHETqLyDy3T/vFMSMmIXtf5dApVJ7OsU8rEQGqJhqvd478onL53QkBA
DL5T6QFyBdMo/DrVpVVvHryin0mtrphBAyZbJWsvioKGlLirY8kssmNppu9r
FYGBsDHJ1fVzKLHY6LvTJhH4NahQpNk0h+Tz7DKMkAjw92w9vaxtDqnx/N+q
bBSBbumoioWcOXRKaNCuX08EmuLX+dHH5pC28qK6kJUi4Gj1bqSfQYFTrZcJ
ymIR2HmUalusRoF1f+cNVs8xYMn161qnXSlQU5F5c+VHBnjU6/g5nqBA8ZLH
b499YMB75c7P+05R4NPdOo2HhQywK9Z31fegwI5v/pULChgQQx1+SPpQQPv4
d7GFrxjA8rWZ//AGBeKiNsgeSGMA4a4t2PiIArnNzwUqQhlg/r7N4vMTCnxQ
v8FRC2FAIjM0ufAZBSxNL0mG3WCAwQsOSn1JAUCmltaBDPDpu+9z5jWO5/Of
C9P+DBg+LDQ4r5wCAZO/Hlw5w4DOA81Nhr0UUMykTPx3kAGiG63SHHgUSFUK
8p/ez4A1i2rO+PVR4B5qu+9qzYCgrkrR/AEK6Eq9vrN9HwO0TuQbaE9QoPvs
3tuLdzHA92J08iKSCt+MdiyV2cwAqUQr12k1KlCy7/it08DxBdSsna9JBZFH
xu6Nagxwcd5F09OiQszxScELyxlQsGxr7JnVVNhvzpP+qMIAx4y1VfwNVCgK
CO84osiAF0VSqxp3UGFKwvXkjDQDtvXUTL46hc9/fL7ThcaAi+phF9LdqPDp
ZnOJOcGATPdtM488qLBdgbJIn8oA+dkCSqwnFZ6Gxa6WmiOhXzpVOMAPx1vl
8fvHFAl3tp2XMgujQnIvryV1mIT2pwu0Oc+p0Cb9w9GuiwSp4frMn+lUWPU5
xsezkwRTvVs6jRlU0I/rZIZ3kJBVLKj3+RUVvL51ZJX9JCGwtd8g8y0VBtue
9m5rIUGD+WGH3xcq5Hulad6uI+G8x2EX6d9UCBqtid5WQULQ9v6j6weocD+E
deRyOQn3lnodtRuiQujU/Kk3ZSTk1AcdSf2D70/ouM/aUhJG1j9zXjtLhYfl
0p3wkYRTtBEHSyYBT7Ye9X36loSLLRccfCQIUKSmtlGwQ18JOMSzCdBvnhSx
LiDh6VFpe44MAWdrkspF3pDA/bTO1nMxAXXrFnwNek2C051L+yO1CYDCfXqN
WSR4nCT3568mwMbC7dB27ADjCOu2NQSMNx61LswkIXHigZXKegIiU26+fJZB
QptN2b4cQwJyIsbmxaWT8HvN7n1NRgQkZxs8WYg9Lda4d9aYAJ2lkVKJL0iQ
/8C3MN5OQMdm4sCT5yRYK4vtqbcgcN7FxdU+JcFlNtJ8ah8BrW6rcpywvRoW
mStYE1Dh3xs/+oSEyBvau4/YEGDfrt0hj13ze6/ZmDP+fGmSxqVHJJjl3DeV
9iSgCRgTCSn4vBHHOanzBJgu800wx76yUi1byofA/8cptQpgv37yeqGUHwH0
D5bybg9JUEqoG2QHEqDx91DK/gck6LfEprCDCHi2yosii20l53yAHUyAbJHZ
cEMyvu/bwx9ZYQR4+V2NscEeu868JxFJQN72jNnzSSSIl9Rvl4giYKI3QMII
W52Ip0jEEHD5VcgbcWwHXw1X8XgCkkrO1b1IJMEnb0RBPJGAUJ/TWy5h3x3L
r2EmE+C85dsOC+xKN5ONzFQCriVPKs4mkND9XHxY7BEBht51A3XYc/yGVLEn
BFT1b96Xjq1z+Ii42AsCPv2c5RzBNkvWLJn3kgBvd1v2FuxjP0e952US4FHl
0bAUO37/lS7RHAI6czpUePH4fiJNo0RfE7BAzTTzC3ZNjcRO0XwCFutdr8vC
7hdvpIoWEKBnmRB+H5tulpgj8o6AhttRXVexlUKOHhd5T8DtmPNVp7E3lq9Y
LFJEwLIXRuY22NaCY7WMYpyfz6gnTLE9DN/eYJTi+OZlK6zHDvW/asAoJ8Cy
y/6YOnZawfYRspKA7U30HQrYRZOsR+RnfN96maUs7Ja1TTZkFY73p10jHXvs
TJIEWU2A2DaJqxRsiQyXUvp3AoyDPpVOxuF67de6QK8l4J7Zf0mj2Mbq41r0
egIGumwlh7AdXN51C/8gwEpdb9EA9oWUa9HCTQSMJikU9WNHdu4wE24hQMhe
Yubf85eLJGnCbQRw2eLVw9iVNs25Qu3494vO3zCO3ROdfEKokwBSc4XBDDal
4ZiiUDd+n2OmjQI4vvmS2vWCHJyvAadExbB1zCeCBbm4nq9GNshi7worRIJ8
AmxN369Xxnb9FDgq8IuAygLumtXYV+lmjwX6CXhvK1phiB2/RcpOYJCAWBPV
UQvsvIAWlsAwro+1a3KP/Ht/066+tDECJIalBW9h77fevnxynACfwGqpR9jF
Wer1/ZMEhMVFvHiPHe36S6tphoBN1rLnx7AFSj+3fJ0joJ/19REb588pxec3
Sqg0cPY7e2gVttGPk10vBWkwFnzS9Sx2+mqz8FRhGoTtyci/hz3/vxUbY0ka
/JYpjijAHtwyEHl9Hg0821Y1MXC+389yM7WTokFMjEpJHrYQ03zcQoYGT5Tq
9/Cw3Vy1H5rI0YCdRHOZj+vJWHF4RmchDXxoj5ddxh4OO5MhokwDf6cC6iFc
n7Z8CzuqKg3mr5mpiMUu36IjMr4Mx+dlIdeEHTc96typQcPzQHDnv/rf5uop
m6dDg4CoCiFX3B+ySixLXqylgZ2zoFAmtoKirsdDPRpMPawP+Ys90jD+6T99
GliGD6vdTvl3/97+R4xoMNPJeFWbSgKZtF/DxpgGwa8HOMvSSDg7va7RfBsN
7kd+j/fDNsmaWrVxBw36i/CKiPvZ6GJfDnsv/n6RQ2/iYxLsfW1uk5Y0eL+n
w5iK+19lgz7MWdFAXTZD3Qk7IWwmmn+QBsb8n1fVcf80nfbb+cEJx1/xzaPq
GQlJDZezT52hQYLGTRXblyRwSlb+DDtHAyHeRrl2bI3sn2S6Fw22cBi1zri/
54RvtB+4QANFHaekM7j/fzaZJN2u0qCLXxOZmk3CxBs3e/e7NFi11bjiUB4J
Bk8WBd+6RwPHYqY6NR/326iq7IxoGjy7dmhPMrbYOQ3GcBx+n6a9gzw8j5as
4GZ7pNLgppyjS9g73J8S7Rlnc2lQbPJAWqMYz+swsTV38nA+rLia34vd6PvW
PvsNDQpMGhenlJDgvF/+1WghDaoySR1lPD+9WQ3258ppEHUs+NT6ShIeXjV7
5dlIw/3gAZFXTcKUy0YH77800DhHEoJ4fpu+UYNzMzSQmZnV5WLfnye72H2O
BvVv0wc+t+P+nzn804UmAEL+h7pi8D7g9zfN3lpEAIz3l9Vt45BAC2PZ68oL
gGWVW9av3ySIZvXa/lkvAIsHb6TsmSXBRrBu45C+AKw8WBh/GO8jz62KFv42
EIDRmUEJHwoDzKZjW7sN8feD9Q6n4X0mfMse21pTATD68i2XLcwAyR8FNlkH
BMDct+TrKnEGLJy5ddDdRwC+e4R+DlqC96POnXn3fAVARl7qXM9SBpwtI2Xe
+QnAZOXjqs14v6q8dfk744oA/Bg6dFsQ71+eKu4mD0ME4G5ri1XcCgZU79qt
2xArAHX57e4L1zMgIFmMvbFQAJ41NY/b7GEAZ2tIJV1AEE4c8F32/jre17Y7
LFYWEgTxZSsPXcT7aKvZGs9NdEHov2yySB/vq7X7fir6iAqC+s/85e/CGFDk
tNq7T1IQvr7uPFZ7lwFx/s2qVcqCcHzzumUmDxmwN1f92u2tgqBDeSq2u4gB
H1U+I4UQQTAXXZn7ihABV3qqgCIpBKmHcwXO3xCB3MSlGz/eEoIVgUtoIlqi
ULVBv2SPhDBI/+eYa9MoChOu9y0cwoThkky3lW/oPCjfnbBvnjQdjpa5fDPb
LwaO6/TT0u7QYc5VMnvlIiYc+/3lT0skHcQ/Jxx8ocQEtyR7I1Y0HaTvxBtr
qDDBn7zS4RtHB3Qtu3OZJhNiGyvk96TSoaDUTUp5AxPqva3Cp3PpEJzp5LnM
igmm+R7e5s10ePfh2jOL/5hgfkqgPLCVDndaTTMaIphgrRQpXfCTDhO+exsO
RjLhaHBelko3HaK7+wKc45hw9QCl/+8vOuy6p7re6ykT3k3ddEydpUNyY5Re
UhkTSl4symimkDCeN1Wt8okJnx0z5sRpJBxo9vJ+VsWE5sra2AvCeC49Pz+W
W8eEiRj5ht3iuI/rXgv42sWEObPnyoEsEhi/My7u62WCEA2dfSOJ617G6VIz
nwmSxx0lVORwnagJR/UOMUF+0aj9QXkSgqH2yck/TFCqufYifCHeG5Y0vR+Z
YILadZmZkkUknOYINnpPM0F7w+PtfxVJKL1vNDw3x4T/AY0cqc8=
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQzbyf69xj00I7BjAQcAjKkbw1Y9J8exh/4qeYzdMm
rYfzrY96cTkVH4DzC6r8EjcXnIDzc3ek9jEpX4Dzr7zw5FyedAXO79L/xrAt
8gacX6h9YuqBpXfg/F/J2evu5j2A85P2hgVMSHsE5yd/vHLgQMcTOL/HYHv+
srZncD7Tge3mLVUv4HxBLe9z92e8gvM95jst/jDpDZwv/v6MW/32d3D+rOO7
GJkzP8D5NrKO/xVSPsL52g8EntSWfILz164Qytha9BnOr7kXe1m77QvCfzYW
3vOmfEX4b75L0usJ3+D8CwWzEsoXfYfzLd2V/t1d+APOP+lqucJhzk84f+nG
mZaPVv+C80WVdbLiVv6G8y8xcjRJ7vkD52/lKF524eRfOF9HVCAr6eg/OP99
3zcR42v/4Xzl9nb9/CwGBxj/UdTtW07PEXyPp5d/bs1jhPMrilIzxN4i+H7b
ZnuJlTHB+e/+ZNUwf0PwF15v3JJXzAzn/8qwTaj8jeDL/p0YXVjFAuc/c+8+
xcHCCucfVjtjL9eN4GdxLGNR5GSD87cvULE9PBHBP2dtczRIkB3O/5E1Ozih
D8E/ETA/lFeMA85PsrRZvnwKgu+1q6gy8DaCb2i90vu3IiecDwDQCtSq
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwt2Hk4lGsfB3BbGjpCUdbKKEkOQsj2e6gk20HSYlcI2R1RlmQvCSGJVCTL
QbaECElI0qFCiSQUaTBmnmfmwXu/7/X+Ndfnmpln7vX7u++RcfWzduPi4ODg
5uTg+N/rc/6+b/sD9A+cbRLg4KDBrh8tOttu/gXki1xFOW4asB4rnx1OdwKd
reamZrw0+C5yDn+S7gfJnrYJ2X/QYMQotv1hehQshVbQVcRp8N4pfXde+g1w
sbsa5qJKA+vz4iPZ6flQk1Qy+PwsDdIW7Wuy0ishW0lnq0c3DXRemvAbBrVC
Otcfrp8eLID/RQuXGv8uWB3Zv0Xn/CL4PHVL4ZLtB4M9FzwtlZdgcOYo3yPX
QTDbbkL9e20JriozOJ6cGoL7H7lNS5rpELC3K7P14WcQ2qajcSV+GVhnvCtG
fcfh185gu6jDDHBttrVMdZ+AVIFhV5cFBpxZGGxtTZwEEfnGUblCJiSr1PsV
xU9BS970nMZBHLha6zVjL85AkpGRotpHHIQVTPvGsn/CvHf8Xi1fAozzDQto
6XNQJhcnc2eBgK2/e42i6uehYiDHgf9vFuS8auTk9qSBhcqkiMdPFuhKG6zt
OLsAQ9c1rpBmbNg7LjQZEbwIsYXqQbllbLCY3tEeEor6vfcFY/IfNvjPq9zz
C1+EwcOS7YoVbKglLe1dYhdhzP+jcuNjNuiKpw0eyliE9BYzt946NphZC7/c
ULsIWTENcn3P2XC+Q7jo9tIiqLPPXjQaYEN58aZzdYFLwFT5hfHibIh9/9yA
+8ISJI6zCjUJNthz+UhaXVoCdqTW3nMsNvDbv+qbi1kCWuBsXifJBnfB8P07
M5egXfa1eBgnCTtCvnPdrF+Cg4MRJ2v5Scg4+DTPn1yCKjlnhxgpEsK/OAzs
jadDn3HD1ig9EuhH9PLcrtIhvuDK5yB9Es5XSXnkp9ChIrm40wNIsIv9xNp0
iw72Gzr5zQ1I0FY4RWU9ooOhmJ+lwGESiL9tArq66aAbNdV+1oyEEAFTQTeB
ZQi3Y/zre5qE+RCF4bvCy5A6ckXW2I4E93G+giHRZciQ9Ly1w54E25ouDbNt
y6CSwvujz4GE/aeMHNWUl0EfJvbJuKD2FRqUc1otw6FKTfNcDxICdLVM72Ys
g66CvdFcEAkcvhlRN7KXQb5gSi0vmISUfFrN5dxlSJz94mT+NwmlXCVSZwqX
YVRpPrAshISJLvH53bXL0P/bMdYxjASb4+zUqoFlkAv2Nr0XSYKGb8uHjk0M
iGgsk01PJKEjX2LDky0MOHBD8rVCEgnW70LgkQQDZLobKtuRfdWVi5OoDODP
slehXSXhESs/zEKVAZXmuhsNr5MglhAtNWTFALmhVPW2NBJY+YdcZ1MZoFvk
8lsxhwR9pl76vkwG2OyT+F2PHG2h2X7hNgMun75BMbxDAmVlD5XnAQPWKSYm
HsslQfS04IRUDQNGpwqavO+SoCIy4mLxngHUa9pT/g9ICPIeSMsYZgDvCcOI
X8hP2nvbRkYZUNHl/6dnAQl6Ac9lPKYY4Oi0bdihkASTvsKvUUwGxB/sttct
IsEt0c+lSpwJS0fZAn0lJBSPnUtjSjOBy8pXTbeUhDkN1zY9KhOqI68ElCAH
freR6VFgQpmyn2Z0GQmXDbW/TugwYfxxzI9d5STkkDwuIo5MeFUuPX7wMQn9
/jnOFx4wQTU5b+pdHQkKqULs4CIm+MyK10s/ISGmMj4zsJQJFV92N59D1pgP
7PGpZkL3xHdPEjnP21T9bDsT/N54HZZ4SoKXO7neaoIJUd86OFQa0XzFBT6w
mGJC5zojeT9k6YczumY/mVDL3BxXjtz/bTDgyCITUv+N/7K7iQRNl/JPelw4
CI05Cm1+RgKPvWOlAhWHheS68y+aSXC8NHhUXg6Hz0/Np5eR63NMJncp4MCT
zMra3YJ+f1hDXEYVh3sf4zITkd/ZCsZsNUTvZwgKGjxH/QuJkxY1wiF8H7HP
Bzk2k12/yQSHXOnxpGxkrcHpOQFrHM7vujM0h3zXqtWWxxUH1o2IhWutJOD+
Gguc7jhMTlGeVSFbp/5zbc0TBwn7iKYPyOveZreyAnA4HCZ2alsb2r9mAQoL
0ej78iMbC5E7vac75uNwONrhf/kF8vZrDk5zSTiIhYzJTSD/2300YzoNB58k
vU3S7SQcOEJdHb2Pg5R8j2sSsnpBT+Krhzjwyj1bvY+stBa4uaoEh/mLTh8b
kKn1L+Rjq3Dwjq7Vn0aW2ny+xqcO5XL4mTck8hY/Ef0TDTj0O7VkC78gYcNu
t2MKbTioLgd+10LmjRH4svklDpbmPe6myBxjdedWunC48qlrpwMyPYs3sr8f
hxSPettI5PnFCkrjIA42ng97riPPWJy4WTCExrtE41Iu8ihvcXHIOA6hXpBe
jzzkaqnmPIlDtnkd/gL53xa8+egMDo77Xt95i9wrcd9YbQ6H0jOXL40gd4Yc
HZCi4SCoP3hrErn13wUHXjoOvbs6ab+QG5VyZn4zcei7djyegVx71TBomI1D
zVz0yVXkyqmfK+1rOHT0m3is60D5Y3gz8R9uAlZeV1ZvQC68q7M5az0BPJGP
tYWR77K+5UVtIGBfutmaKHK2bbK8pyABV5/HcEggp1er11hvJqCt67i+NHLy
xlE93a0E6IS3P92OHO8V17VLkgC+2m4/GeTozj+PCW4nYPa49xkqcjj1wyhO
JcDy2KOb/3VIZOS5CTkCbEsiOP5r/xG5pdcKBPQ4z5fsQPbSeBtRp0SAXApx
Yxvy2fQLlHxVAjKs8qslkR3nt99M1CBg/sOYsBjySZMu6UBtAhqPN5VvRj5W
5F9sp0+AkrBq/EZkCy5xtcOGBCifPHSHgmzs2NasZITaE7c4x4ls2OhpLGZC
wOCq7iUWGj/dLZsGOC0IKNXYabSIrBHY6DBrRUBgabH5D2SVPteZweMEXPzW
kzaGvCu+ZuWRAwEzPLNvu5F3TNglprmg52v/7G5GltDn2XzJjQDOt0kcVcgb
GTbyFj4EPFMpl81EplivVGsGEKBfrCoUj8xV8VBP5m8C6AN2B0KQmW4Ma3o4
Ae7SeQY2yIttd0dHLxPAf7B+hyHynPSRc69iCahWDNNVRh5/fysiJ5mAE5/x
PeuRuw8fKMZyCVhV5B8tR/sh9FWkUtQ9AoIadl29iSx/tKO2uZAAxTJ3q1Dk
eLO/2rTL0fNDnZUA+dAxtxH1FgIcbHyo7Wi/0gdLnYPaCajQ+HXvHnKBLW2q
qhO1N7PgQCQy1+lLS0pvCQi+2tyggdzqnPbHnnECtDfO03NRXvhPfEj3mCSA
2ON5OBh5+1kp8aIZNF/flR+bIEd6PNoli85Np1fLBukoj3R9m/WluVgQVlB7
Sh+5/tIPf+GdLFAgZ22LUB66rygx/5JngVlCgbkf8pao4IgURRZ0io46aiIH
X1lL2rCfBRIbpvo7UL6qJokWrDNiQVtM29Igyt+KLIP3hAcyxU2rpwGtL7EE
O63zLDh1Rms4Flkgp/driD8L/jAdzNBHPp93Yn4plAXz2WH2lSj/FQp91s8n
seDbLYpSfD0JD6tuH5goY0GJ9fgXCqovXmw7haFKFjz12PCmsRatn8PbJPtq
WNBrPbnkjfxs6AHZ0MSCCf6a2dc1JAyslT1Pe82Ci+YWsVeqSeC0aDlsMMuC
/ssMh55KEhx+TljdU2CD9SGX4Q5UH6nqDw2zlNgQKpg67YA8E+GhlqzKBsrC
NmVGMeq/8JxIqDYbpv1CvHYiX9Na/viXCRsSrNrSL6B62xC/3nHNkw1N6lmV
OKrXorKKXo4lbDjBp2nqjup/avo125JyNoCT5vtP6HzAzzVrSK9ig5fdYogl
MsfXEsmrjWzoudDKqXkbrce7u9/UvWZDtsHIfiIL1UMJWRWBeTa8+k2VsU5H
7dkkwWhSRePm4W1pi843v6PDJng1Ubtbg6YqEtB4LQz1WemQMCyencmL7Nx/
69H0QfR5SzeoiSPBLEX01ObjKDd3eLZzxpAgyy/8zOsCygGH9WlBEShfOSlX
xNE8r/JfLysNQHldftvREq2r0JxakZ/+JPCd3quTgPb9HD51Tx4Zq7ag03tR
nfl6n1rgi9aDa6Z7/ygJF+dne697o/F6QTVNWCPhfdVY1wE3tB/i9ESWDVfg
rtiXtrkTJNRRgor6u1eg8ReTt12bhKnw6F8tb1aA3+mx1acD6Py1cEO9/N0K
/BMdPbakhfJw+J/2pOEVSO582EFF/T5UOvXF8McKBOpffnJBDbXf9PTWOsoq
CD1fOLS6lwRaikHi7SOr8NqmPTASnZ8VRYW8XF+uAn1GzMOCzYbfKQwRtQ9r
sEmTccYXzZtsQoKynxcHtsVK8P0GKzZMnP40YjjNgdWIY+aJv1lg/H2AqPPl
xBpke6/jYSwIDXQ7t+UXJ7atvKe0mpMFFk/umGwJ4cL+lIqrsQxGOUt6hXMz
uLAe1bsr0VM4uldF1/oGcWMqQpjxMDo3sM7pOYexuTFW3i2zshImSK+k2QVc
5MGyHJPOLHEzYerItR4Kzzrs+oMT89nGDHgh1wvbrq3DmoyNem4lLYMXpYhH
ho8XM92j8PDjOzrU39up9yKNF4tMDpk+uQ7dE3R0X1oLr8fkMz+HHDFcAtzr
zjHnlPWYZ9PQhamoReiyzD8usIWCBcvnfzxeugCuB3QfPcqgYPtDDG6f/EoD
z19vlj9nUbCPV37nDo7SwP++06FNtynY28YnNyxHaBDFF/M1PI+ChZIPDhoP
0CB3uFvSuoiCFWoHzWm8pMGHsBOpZD0FU6OyIoRLaGDSGBhm9YmCyXOIRjf7
08DKl6crfpSC6ch/ntP0ocFJataWZ2MU7MGqpWU1uud5XG2okZukYMpRtmtF
rjSIPc0xz56jYLM+NutSbWjQwrruWrRKwf6s1v7lrEWDlxXbqz5x8GEP3IXp
I+o06HWtWhPi5sP05L8ybPbR4FPPYO6l9XxY+9PIBWMFGuA5kh8thfgwMw+N
dhUpGqxZlO+K38SH9YycelwqRgNebghuEuHD4v7Mzd0pSgMRb1dhOXE+zMoh
1V9sIw0kt9Od7CT5MOLx65Pp/DSgDsRVpErzYdzvtLA/1tNAIWHrysvtfNjP
UKnd8ej+v0+nxJQtw4dp////gf8AbKln0A==
"]]}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJxTTMoPSmViYGAwAWIQzbyf69xj00I7BjD4YB+UI3lrxqT59jD+xE8xm6dN
Wg/nWx/14nIqPgDnF1T5JW4uOAHn5+5I7WNSvgDnX3nhybk86Qqc36X/jWFb
5A04v1D7xNQDS+/A+b+Ss9fdzXsA5yftDQuYkPYIzk/+eOXAgY4ncH6Pwfb8
ZW3P4HymA9vNW6pewPmCWt7n7s94Bed7zHda/GHSGzhf/P0Zt/rt7+D8Wcd3
MTJnfoDzbWQd/yukfITztR8IPKkt+QTnr10hlLG16DOcX3Mv9rJ22xeE/2ws
vOdN+Yrw33yXpNcTvsH5FwpmJZQv+g7nW7or/bu78Aecf9LVcoXDnJ9w/tKN
My0frf4F54sq62TFrfwN519i5GiS3PMHzt/KUbzswsm/cL6OqEBW0tF/cP77
vm8ixtf+w/nK7e36+VkMDjD+o6jbt5yeI/geTy//3JrHCOdXFKVmiL1F8P22
zfYSK2OC89/9yaph/obgL7zeuCWvmBnO/5Vhm1D5G8GX/TsxurCKBc5/5t59
ioOFFc4/rHbGXq4bwc/iWMaiyMkG529foGJ7eCKCf87a5miQIDuc/yNrdnBC
H4J/ImB+KK8YB5yfZGmzfPkUBN9rV1Fl4G0E39B6pfdvRU44HwBgPQIF
"]]}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
ImageSize->{523., Automatic},
PlotRange->NCache[{{0, Pi}, {0, 20}}, {{0, 3.141592653589793}, {0, 20}}],
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02], Automatic}]], "Output",
CellChangeTimes->{
3.7216852251008897`*^9, {3.7216855222808895`*^9, 3.7216855318904896`*^9}, {
3.72168579450089*^9, 3.72168583569969*^9}, {3.721685889205289*^9,
3.7216859029326735`*^9}, {3.7216860250595927`*^9,
3.7216860585668893`*^9}, {3.7216861064099426`*^9,
3.7216861343019123`*^9}, {3.721686165969303*^9, 3.7216861941111617`*^9}, {
3.7216862791919255`*^9, 3.7216863249458456`*^9}, {3.721687846724058*^9,
3.721687855382058*^9}, {3.7216880122868586`*^9, 3.7216880285264587`*^9}}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.7216801361002283`*^9, 3.7216801375510283`*^9}, {
3.721680642538628*^9, 3.721680660821828*^9}, {3.721680761874692*^9,
3.72168077185818*^9}, 3.721680805287266*^9}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.721680809171467*^9, 3.721680809187066*^9}}]
},
WindowSize->{1264, 889},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"8.0 for Microsoft Windows (64-bit) (February 23, 2011)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 4092, 115, 252, "Input"],
Cell[4674, 139, 32134, 538, 358, "Output"]
}, Open ]],
Cell[36823, 680, 217, 3, 31, "Input"],
Cell[37043, 685, 92, 1, 31, "Input"]
}
]
*)
(* End of internal cache information *)

Binary file not shown.

View File

@ -0,0 +1,353 @@
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 13104, 343]
NotebookOptionsPosition[ 12194, 318]
NotebookOutlinePosition[ 12572, 334]
CellTagsIndexPosition[ 12529, 331]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"H", "[",
RowBox[{"\[Zeta]_", ",", "n_"}], "]"}], ":=", " ",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^", "n"}], " ",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"2", "^", "n"}], " ",
RowBox[{"n", "!"}], " ",
RowBox[{"\[Sqrt]", "\[Pi]"}]}], ")"}], "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "/", "2"}], ")"}]}], " ",
RowBox[{"E", "^",
RowBox[{"(",
RowBox[{"\[Zeta]", "^", "2"}], ")"}]}], " ",
RowBox[{"D", "[",
RowBox[{
RowBox[{"E", "^",
RowBox[{"(",
RowBox[{"-",
RowBox[{"\[Zeta]", "^", "2"}]}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"\[Zeta]", ",", "n"}], "}"}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Psi]", "[",
RowBox[{"x_", ",", "n_"}], "]"}], ":=",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}],
SuperscriptBox["x", "2"]}]],
RowBox[{"H", "[",
RowBox[{"x", ",", "n"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Psi]", "[",
RowBox[{"x", ",", "n"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{"%", ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "6"}], ",", "6"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<x\>\"", ",", "\"\<\[Psi]\>\""}], "}"}]}]}], "]"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<\[Psi]\>\"", ",", "16", ",", "Bold"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "\"\<Energy\>\""}], "}"}], ",", "0", ",",
"10"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.721686911190549*^9, 3.721686913879924*^9}, {
3.7216869616955223`*^9,
3.721686961896429*^9}},ExpressionUUID->"4ca179a4-27d3-4c34-ae58-\
8b94da183330"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`n$$ = 0., Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{
Hold[
Style["\[Psi]", 16, Bold]], Manipulate`Dump`ThisIsNotAControl}, {{
Hold[$CellContext`n$$], 1, "energy"}, 0, 10}}, Typeset`size$$ = {
540., {173., 180.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`n$757670$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm, "Variables" :> {$CellContext`n$$ = 1},
"ControllerVariables" :> {
Hold[$CellContext`n$$, $CellContext`n$757670$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :>
Plot[(-2)^$CellContext`n$$ E^(Rational[1, 2] $CellContext`x^2)
Pi^Rational[1, 4] $CellContext`x^(-$CellContext`n$$) (
2^$CellContext`n$$ Factorial[$CellContext`n$$])^Rational[-1, 2]
HypergeometricPFQRegularized[{
Rational[1, 2], 1}, {
1 + Rational[1, 2] (-1 - $CellContext`n$$), 1 +
Rational[-1,
2] $CellContext`n$$}, -$CellContext`x^2], {$CellContext`x, -6,
6}, AxesLabel -> {"x", "\[Psi]"}], "Specifications" :> {
Style["\[Psi]", 16, Bold], {{$CellContext`n$$, 1, "energy"}, 0, 10}},
"Options" :> {}, "DefaultOptions" :> {}],
ImageSizeCache->{612., {268., 277.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{
3.721686914280433*^9},ExpressionUUID->"9b3d54d1-47ed-479c-8632-\
0bd2936168ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"\[Psi]", "[",
RowBox[{"x", ",", "n"}], "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
SuperscriptBox[
RowBox[{"Abs", "[", "%", "]"}], "2"], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "6"}], ",", "6"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<x\>\"", ",",
"\"\<|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)\>\""}], "}"}]}]}],
"]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)\>\"", ",", "16", ",",
"Bold"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",", "2", ",", "\"\<Energy\>\""}], "}"}], ",", "0", ",",
"10"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.7216869496547737`*^9,
3.721686965762636*^9}},ExpressionUUID->"810f6902-f7b5-477f-b48e-\
3c81937d6083"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`n$$ = 0., Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{
Hold[
Style["|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)", 16, Bold]],
Manipulate`Dump`ThisIsNotAControl}, {{
Hold[$CellContext`n$$], 2, "Energy"}, 0, 10}}, Typeset`size$$ = {
540., {177., 184.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`n$764818$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm, "Variables" :> {$CellContext`n$$ = 2},
"ControllerVariables" :> {
Hold[$CellContext`n$$, $CellContext`n$764818$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :>
Plot[Abs[(-2)^$CellContext`n$$ E^(Rational[1, 2] $CellContext`x^2)
Pi^Rational[1, 4] $CellContext`x^(-$CellContext`n$$) (
2^$CellContext`n$$ Factorial[$CellContext`n$$])^Rational[-1, 2]
HypergeometricPFQRegularized[{
Rational[1, 2], 1}, {
1 + Rational[1, 2] (-1 - $CellContext`n$$), 1 +
Rational[-1,
2] $CellContext`n$$}, -$CellContext`x^2]]^2, {$CellContext`x, \
-6, 6}, AxesLabel -> {"x", "|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)"}],
"Specifications" :> {
Style[
"|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)", 16,
Bold], {{$CellContext`n$$, 2, "Energy"}, 0, 10}}, "Options" :> {},
"DefaultOptions" :> {}],
ImageSizeCache->{612., {278., 287.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{{3.7216869547850924`*^9,
3.7216869663324747`*^9}},ExpressionUUID->"2fe19ef6-740d-46c6-a73e-\
dbf82142124e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"\[Psi]", "[",
RowBox[{"x", ",", "n"}], "]"}], "\[Times]",
RowBox[{"\[Psi]", "[",
RowBox[{"y", ",", "n"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Manipulate", "[",
RowBox[{
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{
RowBox[{"Abs", "[", "%", "]"}], "^", "2"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "6"}], ",", "6"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "6"}], ",", "6"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<x\>\"", ",", "\"\<y\>\"", ",",
"\"\<|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)\>\""}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotPoints", "\[Rule]", "50"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",", "10", ",", "\"\<Energy\>\""}], "}"}], ",", "0", ",",
"10"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.721687038642207*^9, 3.7216871545911503`*^9}, {
3.7216871858360157`*^9,
3.7216871867746077`*^9}},ExpressionUUID->"30bedbf7-3291-4d2a-a81a-\
c18d3b6ec891"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`n$$ = 10, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`n$$], 10, "Energy"}, 0, 10}}, Typeset`size$$ = {
540., {193., 202.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`n$870100$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm, "Variables" :> {$CellContext`n$$ = 10},
"ControllerVariables" :> {
Hold[$CellContext`n$$, $CellContext`n$870100$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :>
Plot3D[Abs[(-1)^(2 $CellContext`n$$) 2^$CellContext`n$$
E^(Rational[1, 2] $CellContext`x^2 +
Rational[1, 2] $CellContext`y^2)
Pi^Rational[
1, 2] $CellContext`x^(-$CellContext`n$$) \
$CellContext`y^(-$CellContext`n$$) Factorial[$CellContext`n$$]^(-1)
HypergeometricPFQRegularized[{
Rational[1, 2], 1}, {
1 + Rational[1, 2] (-1 - $CellContext`n$$), 1 +
Rational[-1, 2] $CellContext`n$$}, -$CellContext`x^2]
HypergeometricPFQRegularized[{
Rational[1, 2], 1}, {
1 + Rational[1, 2] (-1 - $CellContext`n$$), 1 +
Rational[-1,
2] $CellContext`n$$}, -$CellContext`y^2]]^2, {$CellContext`x, \
-6, 6}, {$CellContext`y, -6, 6},
AxesLabel -> {
"x", "y", "|\[Psi]\!\(\*SuperscriptBox[\(|\), \(2\)]\)"}, PlotRange ->
All, PlotPoints -> 50],
"Specifications" :> {{{$CellContext`n$$, 10, "Energy"}, 0, 10}},
"Options" :> {}, "DefaultOptions" :> {}],
ImageSizeCache->{612., {257., 266.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{{3.7216870765625362`*^9, 3.7216871038097744`*^9}, {
3.7216871405282593`*^9, 3.721687155276568*^9},
3.721687187423189*^9},ExpressionUUID->"aad3fb46-5ba0-4c07-9cd1-\
f69642993cb6"]
}, Open ]]
},
WindowSize->{1500, 917},
WindowMargins->{{-8, Automatic}, {Automatic, -8}},
Magnification:>1.5 Inherited,
FrontEndVersion->"11.2 for Microsoft Windows (64-bit) (September 10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 2035, 65, 151, "Input",ExpressionUUID->"4ca179a4-27d3-4c34-ae58-8b94da183330"],
Cell[2618, 89, 2222, 45, 606, "Output",ExpressionUUID->"9b3d54d1-47ed-479c-8632-0bd2936168ee"]
}, Open ]],
Cell[CellGroupData[{
Cell[4877, 139, 992, 30, 78, "Input",ExpressionUUID->"810f6902-f7b5-477f-b48e-3c81937d6083"],
Cell[5872, 171, 2407, 49, 593, "Output",ExpressionUUID->"2fe19ef6-740d-46c6-a73e-dbf82142124e"]
}, Open ]],
Cell[CellGroupData[{
Cell[8316, 225, 1208, 34, 112, "Input",ExpressionUUID->"30bedbf7-3291-4d2a-a81a-c18d3b6ec891"],
Cell[9527, 261, 2651, 54, 551, "Output",ExpressionUUID->"aad3fb46-5ba0-4c07-9cd1-f69642993cb6"]
}, Open ]]
}
]
*)
(* End of internal cache information *)

View File

@ -18,6 +18,11 @@ double a = 4*pi*ep_0*hbar*hbar/m/e/e;
// kappa = sqrt(-2*m*E/hbar)
// kappa = m * e^2 / (4 * pi * ep_0 * hbar^2)
int factorial(int n)
{
return (n == 1 || n == 0) ? 1 : factorial(n - 1) * n;
}
double kappa(double n)
{
double result = m * e^2 / (4 * pi * ep_0 * hbar^2);
@ -43,24 +48,26 @@ double v(double n, double l, double rho)
double R(double n, double l,
double r)
{
double rho = r/a*n;
double rho = r*a/n;
double result = 1/r
* pow(rho,l+1)
* exp(-rho)
* v(n,l,rho);
}
normalize()
double Y(double l, double m,
double theta, double phi);
double psi(double n, double l, double m,
double r, double theta, double phi)
= R(n,l,r) * Y(l,m,theta,phi);
{
norm(n,l) * R(n,l,r) * Y(l,m,theta,phi);
}
double norm(double n, double l)
{
double result_squared = pow((2*a/n),3) * factorial(n-l-1) / (2*n) / pow(factorial(n+1),3);
return sqrt(result_squared);
}
int main(int argc, char const *argv[])

View File

@ -1,3 +1,20 @@
PHY 520: Group Project Written Documentation
Steven Wallbrown, Henry Colburn, Bruce He, Otho Ulrich
We present descriptions of our models in three parts. In this document, the infinite square well and 1/r potential models are presented. The simple harmonic oscillator is described in word document, accompanying this submission. In each case, a model was built in mathematica that parallels the developments in "Introduction to Quantum Mechanics" [Griffiths] and Dr. Chris Crawford's course notes for the PHY 520 course at UK, 2017.
The states were easy to model without normalization. We found that normalizing the states was a difficult consideration. We were pleased to see the qualitative behaviour we expected, at least, and look forward to developing similar models more fully. The simple harmonic oscillator is plotted in 1d and 2d, and the infinite square well and 1/r potential solutions are plotted in 1d. Mathematica programs are included in this submission.
Modeling the infinite square well potential
─────────────
The concept behind the simulation created is that of the infinite square well potential of a one-dimensional wave. The basics behind the idea is that a particle trapped in an area bordered by infinite potential must be composed of waves whose nodes correspond to the distance from one infinite potential barrier to another. The waves must be zero at the boundaries but are not required to have their derivatives be zero since there is no exponential decay of the wave, due to the infinite potential. Thus, the classical equation, sin(nπx/a) (where a is the well width and n is an integer) works for this situation where as the full quantum equation is not neccesary. This gives rise to the quantization of the energy levels so only discrete values are allowed. The program in Mathematica is designed so that up to three different waves can be plotted of different energy levels. The Y axis is the energy levels of the waves and the x axis is the width of the well. The program demonstrates the relationship between the number of nodes of a wave (entered in as n1, n2, and n3) and the energy levels associated with those waves. The simulation also draws attention to the spreading out of each successive wave from its predecessor in terms of separation energy, e.g. to go from n=5 to n=6 requires less energy input than n=100 to n=101. Within each wave function being plotted there is a horizontal line that represents the energy level of the wave that is on top of it. This is for a clearer representation of the energy level of the wave. The plotting range was also modified within each function so as to guarantee the plot would be large enough to fit up to the highest energy wave. With continued playing, the relationship between energy increases and node variation would become apparent to a user.
Modeling the 1/r potential - Hydrogen Atom
─────────────
To model a quantum particle in a radial potential, we addressed the derivation of the wave function parallel with the development in Griffiths, pg. 145, and in Dr. Crawford's course notes, and some various online sources.
The potential V(r) = 1/r in spherical coordinates describes the system as having constants of motion in the angular coordinates theta and phi, thus conserving angular momentum. Still, it admits an effective potential that includes a centrifugal factor,
@ -46,9 +63,9 @@ The complete solution is then constructed assuming a power series v(ρ),
The recursion relationship for the cⱼ coefficients is given by
⎧ 2(j + l + 1) - ρ₀ ⎫
cⱼ₊₁ = ⎨─────────────────⎬ cⱼ,
⎩(j + 1)(j + 2l + 2)⎭
⎧ 2(j + l + 1) - ρ₀ ⎫
cⱼ₊₁ = ⎨───────────────────⎬ cⱼ,
⎩(j + 1)(j + 2l + 2)⎭
where c₀ is normalized by total probability equal to one.
@ -92,9 +109,9 @@ The model we've developed is nearly capable of handling the associated LaGuerre
Substituting our new information back into the recursion relationship gives us the recursion in terms of the quantum numbers,
⎧ 2(j + l + 1 - n) ⎫
cⱼ₊₁ = ⎨────────────────⎬ cⱼ.
⎩(j + 1)(j + 2l + 2)⎭
⎧ 2(j + l + 1 - n) ⎫
cⱼ₊₁ = ⎨───────────────────⎬ cⱼ.
⎩(j + 1)(j + 2l + 2)⎭
This is sufficient information to model the radial component of the wave function, except for normalizing the coefficient c₀. This is done using the expression of probability conservation
@ -102,19 +119,31 @@ This is sufficient information to model the radial component of the wave functio
∫ │Rₙₗ│² r² dr = 1.
o
This is difficult to model numerically in the general case, and while interesting, the more practical approach is probably to normalize any states we're interested in by hand. The normalization of c₀ is different for each set of values {n,l}.
We want to simulate the hydrogen atom, where V(r) ≠ -1/r, but instead V(r) = -e²/(4πε₀) 1/r. This changes some of our parameters, i.e.,
A model has (nearly) been written in c++ to compute the wavefunction resultant from this potential. The data is output to tab-separated data tables in the format
ρ = κr = r/an and ρ₀ = m e²/(2π ε₀ ħ² κ),
r R₁₀ R₂₀ R₃₀ ...
where a now represents the Bohr Radius,
Still deciding how to output the different values of l.
a = 5.29 × 10⁻² nm.
The rest of the development is essentially the same.
In general, the normalization is given by
⎛ (2/na)³ (n-l-1)!⎞ 1/2
⎜ ────────────── ⎟
⎝ 2n [(n+l)!]³ ⎠.
We will notate this normalization as α. If we also notate the generalized Laguerre polynomials of x as L[q,p](x), then our model is
α exp(-r/na) (2r/na)ˡ L[n-l-1,2l+1](2r/na) Yₗᵐ(θ,ϕ).
We have not plotted this, but here Yₗᵐ refers to the spherical harmonics, which have the form (to within a normalization constant)
Yₗᵐ(θ,ϕ) = exp(ιmϕ) Pₗᵐ (cosθ),
where Pₗᵐ(x) are the Legendre Polynomials in x.
This model is implemented in mathematica, and will be presented to the Physics 520 class on Dec. 8, 2017.

3855
project/writeup.mth.ps Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

15
scratch.motes Normal file
View File

@ -0,0 +1,15 @@
Schrodinger Equation
ι ħ ∂/∂t ψ(𝐫,t) = Ĥ ψ(𝐫,t)
ψ(x,t) = A exp(ι(kx - (ħk²/2m)t))
ξᵖ = ξ⁰ = 1
where L is the set of Laguerre polynomials,