phy-520/project/HydrogenAtomRadialFunctions.nb
2020-12-23 16:28:58 -05:00

1771 lines
70 KiB
Mathematica

(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 69857, 1761]
NotebookOptionsPosition[ 66295, 1652]
NotebookOutlinePosition[ 67902, 1703]
CellTagsIndexPosition[ 67574, 1691]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Hydrogen Atom Radial Functions", "DemoTitle",
CellChangeTimes->{
3.35696210375764*^9, {3.4715271465910597`*^9, 3.4715271538240757`*^9}, {
3.471532669979856*^9, 3.471532672252945*^9}}],
Cell["", "InitializationSection"],
Cell[CellGroupData[{
Cell["", "ManipulateSection"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"L", "\[GreaterEqual]", "n"}], ",",
RowBox[{"L", "=",
RowBox[{"n", "-", "1"}]}]}], "]"}], ";", "\[IndentingNewLine]",
RowBox[{"label", "=",
RowBox[{"Which", "[",
RowBox[{
RowBox[{"L", "\[Equal]", "0"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<s\>\"", ",", "Italic"}], "]"}], ",",
RowBox[{"L", "\[Equal]", "1"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<p\>\"", ",", "Italic"}], "]"}], ",",
RowBox[{"L", "\[Equal]", "2"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<d\>\"", ",", "Italic"}], "]"}], ",",
RowBox[{"L", "\[Equal]", "3"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<f\>\"", ",", "Italic"}], "]"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"p1", "=",
RowBox[{"Quiet", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"r", "^", "2"}], " ",
RowBox[{
RowBox[{"R", "[",
RowBox[{"n", ",", "L", ",", "r"}], "]"}], "^", "2"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",",
RowBox[{"rmax", "[",
RowBox[{"[", "n", "]"}], "]"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"rmax", "[",
RowBox[{"[", "n", "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"yrange", "[",
RowBox[{"[", "n", "]"}], "]"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"Filling", "\[Rule]", "Axis"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"n", ",", "1"}], "]"}], "]"}]}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"16", ",", "Gray"}], "]"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
RowBox[{"NumberForm", "[",
RowBox[{"n", ",", "1"}], "]"}], ",", "label"}], "}"}], "]"}],
",", "18", ",",
RowBox[{"Darker", "[", "Blue", "]"}]}], "]"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]", "label1"}]}], "]"}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"av", "=",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{"Thick", ",", "Dashed", ",", "Blue", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"rav", "[",
RowBox[{"n", ",", "L"}], "]"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"rav", "[",
RowBox[{"n", ",", "L"}], "]"}], ",",
RowBox[{"yrange", "[",
RowBox[{"[", "n", "]"}], "]"}]}], "}"}]}], "}"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Text", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{"\"\<\[LeftAngleBracket]\>\"", ",",
RowBox[{"Style", "[",
RowBox[{"\"\<r\>\"", ",", "Italic"}], "]"}], ",",
"\"\<\!\(\*SubscriptBox[\(\[RightAngleBracket]\), \(n, \\\ \
l\)]\)\>\""}], "}"}], "]"}], ",", "18"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"1.48", " ",
RowBox[{"rav", "[",
RowBox[{"n", ",", "L"}], "]"}]}], ",", " ",
RowBox[{".8", " ",
RowBox[{"yrange", "[",
RowBox[{"[", "n", "]"}], "]"}]}]}], " ", "}"}]}], "]"}]}],
"}"}], "]"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Pane", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{"L", "<", "n"}], ",",
RowBox[{"GraphicsRow", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Show", "[",
RowBox[{"p1", ",", "av"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Plot", "[", " ",
RowBox[{
RowBox[{"R", "[",
RowBox[{"n", ",", "L", ",", "r"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",",
RowBox[{"rmax", "[",
RowBox[{"[", "n", "]"}], "]"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Ticks", "\[Rule]",
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"n", ",", "2"}], "]"}], "]"}]}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"16", ",", "Gray"}], "]"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}], ",",
RowBox[{"AxesLabel", "\[Rule]", "label2"}]}], "]"}]}], "}"}],
",",
RowBox[{"ImageSize", "\[Rule]",
RowBox[{"{",
RowBox[{"600", ",", "300"}], "}"}]}]}], "]"}], ","}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"ImageSize", "\[Rule]",
RowBox[{"{",
RowBox[{"600", ",", "300"}], "}"}]}]}], "\[IndentingNewLine]",
"]"}]}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "\"\<quantum numbers n\>\""}], "}"}], ",",
RowBox[{"Range", "[", "4", "]"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"L", ",", "0", ",",
RowBox[{"Style", "[",
RowBox[{"\"\<l\>\"", ",", "Italic"}], "]"}]}], "}"}], ",",
RowBox[{"Range", "[",
RowBox[{"0", ",",
RowBox[{"n", "-", "1"}]}], "]"}]}], "}"}], ",", "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"ControlType", "\[Rule]", "SetterBar"}], ",",
RowBox[{"TrackedSymbols", "\[RuleDelayed]",
RowBox[{"{",
RowBox[{"n", ",", "L"}], "}"}]}], ",", "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"Initialization", "\[RuleDelayed]",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"F", "[",
RowBox[{"n_", ",", "L_", ",", "x_"}], "]"}], ":=",
RowBox[{
SuperscriptBox["x", "L"], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "x"}], "/", "2"}]], " ",
RowBox[{"Factorial", "[",
RowBox[{"n", "+", "L"}], "]"}], " ",
RowBox[{"LaguerreL", "[",
RowBox[{
RowBox[{"n", "-", "L", "-", "1"}], ",",
RowBox[{
RowBox[{"2", " ", "L"}], "+", "1"}], ",", "x"}], "]"}]}]}], ";",
"\n",
RowBox[{
RowBox[{"R", "[",
RowBox[{"n_", ",", "L_", ",", "r_"}], "]"}], ":=",
RowBox[{
RowBox[{"a", "^",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "/", "2"}], ")"}]}], " ",
RowBox[{"2", "/",
RowBox[{"(",
RowBox[{"n", "^", "2"}], ")"}]}], " ",
SqrtBox[
FractionBox[
RowBox[{"Factorial", "[",
RowBox[{"n", "-", "1", "-", "L"}], "]"}],
RowBox[{
RowBox[{"(",
RowBox[{"Factorial", "[",
RowBox[{"n", "+", "L"}], "]"}], ")"}], "^", "3"}]]], " ",
RowBox[{"F", "[",
RowBox[{"n", ",", "L", ",",
RowBox[{"2", " ",
RowBox[{"r", "/",
RowBox[{"(",
RowBox[{"n", " ", "a"}], ")"}]}]}]}], "]"}]}]}], ";", "\n",
RowBox[{
RowBox[{"rav", "[",
RowBox[{"np_", ",", "Lp_"}], "]"}], ":=",
RowBox[{
RowBox[{"np", "^", "2"}], " ",
RowBox[{"(",
RowBox[{"1.", "+",
RowBox[{"0.5", " ",
RowBox[{"(",
RowBox[{"1.", "-",
RowBox[{"Lp", " ",
RowBox[{
RowBox[{"(",
RowBox[{"Lp", "+", "1."}], ")"}], "/",
RowBox[{"(",
RowBox[{"np", "^", "2"}], ")"}]}]}]}], ")"}]}]}], ")"}]}]}],
";", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"a", "=", "1"}], ";", " ",
RowBox[{"(*",
RowBox[{
"plots", " ", "in", " ", "units", " ", "of", " ", "Bohr", " ",
"radius"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"rmax", "=",
RowBox[{"{",
RowBox[{"5", ",", "15", ",", "30", ",", "50", ",", "70"}], "}"}]}],
";",
RowBox[{"yrange", "=",
RowBox[{"{",
RowBox[{".55", ",", ".2", ",", ".12", ",", ".07"}], "}"}]}], ";",
"\n",
RowBox[{"ticksmat", "=",
RowBox[{"ConstantArray", "[",
RowBox[{"0.", ",",
RowBox[{"{",
RowBox[{"5", ",", "2"}], "}"}]}], "]"}]}], ";", "\n",
RowBox[{
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"1", ",", "1"}], "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "4"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0.25", ",", "0.5"}], "}"}]}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"1", ",", "2"}], "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "2", ",", "4"}], "}"}], ",", "Automatic"}],
"}"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"2", ",", "1"}], "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "6", ",", "12"}], "}"}], ",",
RowBox[{"{",
RowBox[{".05", ",", ".15"}], "}"}]}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"2", ",", "2"}], "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "6", ",", "12"}], "}"}], ",", "Automatic"}],
"}"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"3", ",", "1"}], "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "10", ",", "20"}], "}"}], ",",
RowBox[{"{",
RowBox[{".05", ",", ".1"}], "}"}]}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"3", ",", "2"}], "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "10", ",", "20"}], "}"}], ",", "Automatic"}],
"}"}]}], ";", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"4", ",", "1"}], "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "20", ",", "40"}], "}"}], ",",
RowBox[{"{",
RowBox[{".03", ",", ".06"}], "}"}]}], "}"}]}], ";",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ticksmat", "[",
RowBox[{"[",
RowBox[{"4", ",", "2"}], "]"}], "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "20", ",", "40"}], "}"}], ",", "Automatic"}],
"}"}]}], ";", "\[IndentingNewLine]",
RowBox[{"label1", "=",
RowBox[{"{",
RowBox[{
RowBox[{"Text", "[",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<r\>\"", ",", "Italic"}], "]"}], ",",
"\"\< / \>\"", ",",
SubscriptBox[
RowBox[{"Style", "[",
RowBox[{"\"\<a\>\"", ",", "Italic"}], "]"}], "0"]}], "}"}],
"]"}], ",", "18"}], "]"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Text", "[",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
SuperscriptBox[
RowBox[{"Style", "[",
RowBox[{"\"\<r\>\"", ",", "Italic"}], "]"}], "2"], ",",
"\"\< \>\"", ",",
SubscriptBox[
RowBox[{"Style", "[",
RowBox[{"\"\<R\>\"", ",", "Italic"}], "]"}],
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<n\>\"", ",", "Italic"}], "]"}], ",",
"\"\<, \>\"", ",",
RowBox[{"Style", "[",
RowBox[{"\"\<l\>\"", ",", "Italic"}], "]"}]}], "}"}],
"]"}]], ",", "\"\<(\>\"", ",",
RowBox[{"Style", "[",
RowBox[{"\"\<r\>\"", ",", "Italic"}], "]"}], ",",
SuperscriptBox["\"\<)\>\"", "2"]}], "}"}], "]"}], ",", "18"}],
"]"}], "]"}]}], "}"}]}], ";", "\[IndentingNewLine]",
RowBox[{"label2", "=",
RowBox[{"{",
RowBox[{
RowBox[{"Text", "[",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<r\>\"", ",", "Italic"}], "]"}], ",",
"\"\< / \>\"", ",",
SubscriptBox[
RowBox[{"Style", "[",
RowBox[{"\"\<a\>\"", ",", "Italic"}], "]"}], "0"]}], "}"}],
"]"}], ",", "18"}], "]"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Text", "[",
RowBox[{"Style", "[",
RowBox[{
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
SubscriptBox[
RowBox[{"Style", "[",
RowBox[{"\"\<R\>\"", ",", "Italic"}], "]"}],
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<n\>\"", ",", "Italic"}], "]"}], ",",
"\"\<, \>\"", ",",
RowBox[{"Style", "[",
RowBox[{"\"\<l\>\"", ",", "Italic"}], "]"}]}], "}"}],
"]"}]], ",", "\"\<(\>\"", ",",
RowBox[{"Style", "[",
RowBox[{"\"\<r\>\"", ",", "Italic"}], "]"}], ",",
"\"\<)\>\""}], "}"}], "]"}], ",", "18"}], "]"}], "]"}]}],
"}"}]}]}], ")"}]}]}], "]"}]], "Input",
CellChangeTimes->{
3.35696210375764*^9, 3.471526924617481*^9, {3.471527111398872*^9,
3.471527117625607*^9}, {3.47152997856595*^9, 3.471529985005755*^9}, {
3.471530052340499*^9, 3.471530119298229*^9}, {3.471530171273527*^9,
3.471530319950478*^9}, {3.471530353511845*^9, 3.4715306626950417`*^9}, {
3.471530982964464*^9, 3.4715309897443323`*^9}, {3.47153106789889*^9,
3.471531223893441*^9}, {3.4715312672944736`*^9, 3.471531760485228*^9}, {
3.4715318628526773`*^9, 3.471531887180256*^9}, {3.471532039832296*^9,
3.471532069033556*^9}, 3.471532119344625*^9, {3.471532197440914*^9,
3.471532244134674*^9}, {3.4715322825387497`*^9, 3.471532300872241*^9}, {
3.4717882707032714`*^9, 3.471788349861041*^9}, {3.4717884060339947`*^9,
3.4717885299426236`*^9}, {3.4717886036940393`*^9, 3.471788619163087*^9}, {
3.471789060952819*^9, 3.471789162689147*^9}, {3.4717898531867795`*^9,
3.47178987196839*^9}, {3.4717899084690905`*^9, 3.4717899685483694`*^9}, {
3.4718141467571373`*^9, 3.471814147707396*^9}, {3.471814188629743*^9,
3.4718141896591454`*^9}, 3.4718144248196363`*^9, 3.471814533902822*^9, {
3.471814571997334*^9, 3.4718146004058743`*^9}, {3.568654089867972*^9,
3.5686540919203253`*^9}, 3.5686541519240837`*^9, {3.568654329129099*^9,
3.56865433618979*^9}, 3.5686543787766027`*^9, {3.5695164939194813`*^9,
3.569516518948078*^9}, {3.56951655408696*^9, 3.569516594057761*^9}, {
3.56951663065516*^9, 3.5695166383026333`*^9}, 3.569516675326889*^9,
3.569516711227161*^9, {3.569516748126124*^9, 3.569516750128183*^9}, {
3.5695168153739853`*^9, 3.56951682823663*^9}, {3.5695168638294363`*^9,
3.569516935710598*^9}, 3.569517588843873*^9, {3.569518651538414*^9,
3.569518673939867*^9}, 3.569523441562607*^9, 3.569523482456785*^9}],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`L$$ = 0, $CellContext`n$$ = 1,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`n$$], 1, "quantum numbers n"}, {1, 2, 3, 4}}, {{
Hold[$CellContext`L$$], 0,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}}, Typeset`size$$ = {
600., {147., 153.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = False, $CellContext`n$70431$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`L$$ = 0, $CellContext`n$$ = 1},
"ControllerVariables" :> {
Hold[$CellContext`n$$, $CellContext`n$70431$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$},
"Body" :> (
If[$CellContext`L$$ >= $CellContext`n$$, $CellContext`L$$ = \
$CellContext`n$$ - 1]; $CellContext`label = Which[$CellContext`L$$ == 0,
Style["s", Italic], $CellContext`L$$ == 1,
Style["p", Italic], $CellContext`L$$ == 2,
Style["d", Italic], $CellContext`L$$ == 3,
Style["f", Italic]]; $CellContext`p1 = Quiet[
Plot[$CellContext`r^2 $CellContext`R[$CellContext`n$$, \
$CellContext`L$$, $CellContext`r]^2, {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> {{0,
Part[$CellContext`rmax, $CellContext`n$$]}, {0,
Part[$CellContext`yrange, $CellContext`n$$]}}, Filling -> Axis,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 1],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick, PlotLabel ->
Style[
Row[{
NumberForm[$CellContext`n$$, 1], $CellContext`label}], 18,
Darker[Blue]],
AxesLabel -> $CellContext`label1]]; $CellContext`av =
Graphics[{Thick, Dashed, Blue,
Line[{{
$CellContext`rav[$CellContext`n$$, $CellContext`L$$], 0}, {
$CellContext`rav[$CellContext`n$$, $CellContext`L$$],
Part[$CellContext`yrange, $CellContext`n$$]}}],
Text[
Style[
Row[{"\[LeftAngleBracket]",
Style["r", Italic],
"\!\(\*SubscriptBox[\(\[RightAngleBracket]\), \(n, \\ \
l\)]\)"}], 18], {
1.48 $CellContext`rav[$CellContext`n$$, $CellContext`L$$], 0.8
Part[$CellContext`yrange, $CellContext`n$$]}]}]; Pane[
If[$CellContext`L$$ < $CellContext`n$$,
GraphicsRow[{
Show[$CellContext`p1, $CellContext`av],
Plot[
$CellContext`R[$CellContext`n$$, $CellContext`L$$, \
$CellContext`r], {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> All,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 2],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick,
AxesLabel -> $CellContext`label2]}, ImageSize -> {600, 300}],
Null], ImageSize -> {600, 300}]),
"Specifications" :> {{{$CellContext`n$$, 1, "quantum numbers n"}, {1,
2, 3, 4}}, {{$CellContext`L$$, 0,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}},
"Options" :> {
ControlType -> SetterBar,
TrackedSymbols :> {$CellContext`n$$, $CellContext`L$$}},
"DefaultOptions" :> {ControllerLinking -> True}],
ImageSizeCache->{643., {201., 206.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
Initialization:>(($CellContext`F[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`x,
Blank[]]] := $CellContext`x^$CellContext`L E^((-$CellContext`x)/2)
Factorial[$CellContext`n + $CellContext`L]
LaguerreL[$CellContext`n - $CellContext`L - 1, 2 $CellContext`L +
1, $CellContext`x]; $CellContext`R[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`r,
Blank[]]] := $CellContext`a^((-3)/2) (
2/$CellContext`n^2) (Factorial[$CellContext`n - 1 - $CellContext`L]/
Factorial[$CellContext`n + $CellContext`L]^3)^
Rational[1, 2] $CellContext`F[$CellContext`n, $CellContext`L,
2 ($CellContext`r/($CellContext`n $CellContext`a))]; \
$CellContext`rav[
Pattern[$CellContext`np,
Blank[]],
Pattern[$CellContext`Lp,
Blank[]]] := $CellContext`np^2 (1. +
0.5 (1. - $CellContext`Lp (($CellContext`Lp +
1.)/$CellContext`np^2))); $CellContext`a =
1; $CellContext`rmax = {5, 15, 30, 50, 70}; $CellContext`yrange = {
0.55, 0.2, 0.12, 0.07}; $CellContext`ticksmat =
ConstantArray[0., {5, 2}];
Part[$CellContext`ticksmat, 1, 1] = {{0, 2, 4}, {0.25, 0.5}};
Part[$CellContext`ticksmat, 1, 2] = {{0, 2, 4}, Automatic};
Part[$CellContext`ticksmat, 2, 1] = {{0, 6, 12}, {0.05, 0.15}};
Part[$CellContext`ticksmat, 2, 2] = {{0, 6, 12}, Automatic};
Part[$CellContext`ticksmat, 3, 1] = {{0, 10, 20}, {0.05, 0.1}};
Part[$CellContext`ticksmat, 3, 2] = {{0, 10, 20}, Automatic};
Part[$CellContext`ticksmat, 4, 1] = {{0, 20, 40}, {0.03, 0.06}};
Part[$CellContext`ticksmat, 4, 2] = {{0, 20, 40},
Automatic}; $CellContext`label1 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{Style["r", Italic]^2, " ",
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"^2}], 18]]}; $CellContext`label2 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"}], 18]]}); Typeset`initDone$$ = True),
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{3.569523769814023*^9},
CellID->1940978731]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["", "ManipulateCaptionSection"],
Cell[TextData[{
"The eigenfunctions in spherical coordinates for the hydrogen atom are ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["\[Phi]",
RowBox[{"n", ",",
RowBox[{"\[ScriptL]", ".", "m"}]}]], "(",
RowBox[{"r", ",", "\[Theta]", ",", "\[CurlyPhi]"}], ")"}], "=",
RowBox[{
RowBox[{
SubscriptBox["R",
RowBox[{"n", ",", "\[ScriptL]"}]], "(", "r", ")"}],
RowBox[{
SubsuperscriptBox["Y", "\[ScriptL]", "m"], "(",
RowBox[{"\[Theta]", ",", "\[CurlyPhi]"}], ")"}]}]}], TraditionalForm]],
"InlineMath"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["R",
RowBox[{"n", ",", "\[ScriptL]"}]], "(", "r", ")"}], TraditionalForm]],
"InlineMath"],
" and ",
Cell[BoxData[
FormBox[
RowBox[{
SubsuperscriptBox["Y", "\[ScriptL]", "m"], "(",
RowBox[{"\[Theta]", ",", "\[CurlyPhi]"}], ")"}], TraditionalForm]],
"InlineMath"],
" are the solutions to the radial and angular parts of the \
Schr\[ODoubleDot]dinger equation, respectively, and ",
Cell[BoxData[
FormBox["n", TraditionalForm]], "InlineMath"],
", ",
Cell[BoxData[
FormBox["\[ScriptL]", TraditionalForm]], "InlineMath"],
", and ",
Cell[BoxData[
FormBox["m", TraditionalForm]], "InlineMath"],
" are the principal, orbital, and magnetic quantum numbers with allowed \
values ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"n", "=", "0"}], ",", "1", ",", "2", ",", "\[Ellipsis]", ",",
RowBox[{"n", "-", "1"}], ","}], TraditionalForm]], "InlineMath"],
" ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"\[ScriptL]", "=", "0"}], ",", "1", ",", "2", ",", "\[Ellipsis]",
",",
RowBox[{"n", "-", "1"}]}], TraditionalForm]], "InlineMath"],
", and ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{"m", "=", "0"}], ",",
RowBox[{"\[PlusMinus]", "1"}], ",",
RowBox[{"\[PlusMinus]", "2"}], ",", "\[Ellipsis]", ",",
RowBox[{"\[PlusMinus]", "\[ScriptL]"}]}], TraditionalForm]], "InlineMath"],
". The ",
Cell[BoxData[
FormBox[
RowBox[{
SubsuperscriptBox["Y", "\[ScriptL]", "m"], "(",
RowBox[{"\[Theta]", ",", "\[CurlyPhi]"}], ")"}], TraditionalForm]],
"InlineMath"],
" are the spherical harmonics and the radial functions are ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox["R",
RowBox[{"n", ",", "\[ScriptL]"}]], "(", "r", ")"}], "=",
RowBox[{
SqrtBox[
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "1", "-", "\[ScriptL]"}], ")"}], "!"}],
RowBox[{"2", " ",
SuperscriptBox[
RowBox[{"n", " ", "[",
RowBox[{
RowBox[{"(",
RowBox[{"n", "+", "\[ScriptL]"}], ")"}], "!"}], "]"}], "3"]}]]],
SuperscriptBox[
RowBox[{"(",
FractionBox["2",
RowBox[{"n", " ",
SubscriptBox["a", "0"]}]], ")"}],
RowBox[{"\[ScriptL]", "+",
RowBox[{"3", "/", "2"}]}]],
SuperscriptBox["r", "\[ScriptL]"],
SuperscriptBox["e",
RowBox[{
RowBox[{
RowBox[{"-", "r"}], "/", "n"}], " ",
SubscriptBox["a", "0"]}]],
RowBox[{
SubsuperscriptBox["L",
RowBox[{"n", "+", "\[ScriptL]"}],
RowBox[{
RowBox[{"2", " ", "\[ScriptL]"}], "+", "1"}]], "(",
RowBox[{"2", " ",
RowBox[{"r", "/", "n"}], " ",
SubscriptBox["a", "0"]}], ")"}]}]}], TraditionalForm]], "InlineMath"],
", where ",
Cell[BoxData[
FormBox[
RowBox[{
SubsuperscriptBox["L", "p", "a"], "(", "x", ")"}], TraditionalForm]],
"InlineMath"],
" is the ",
Cell[BoxData[
FormBox[
SuperscriptBox["p", "th"], TraditionalForm]], "InlineMath"],
"-order associated Laguerre polynomial and ",
Cell[BoxData[
FormBox[
SubscriptBox["a", "0"], TraditionalForm]], "InlineMath"],
" is the Bohr radius. The left graphic shows the radial probability density ",
Cell[BoxData[
FormBox[
RowBox[{
SuperscriptBox["r", "2"], "|",
RowBox[{
SubscriptBox["R",
RowBox[{"n", ",", "\[ScriptL]"}]], "(", "r", ")"}],
SuperscriptBox["|", "2"]}], TraditionalForm]], "InlineMath"],
" and the expectation value ",
Cell[BoxData[
FormBox[
RowBox[{
RowBox[{
SubscriptBox[
RowBox[{"\[LeftAngleBracket]", "r", "\[RightAngleBracket]"}],
RowBox[{"n", ",", "\[ScriptL]"}]], "\[Congruent]",
RowBox[{"\[LeftAngleBracket]",
RowBox[{
SubscriptBox["\[Phi]",
RowBox[{"n", ",",
RowBox[{"\[ScriptL]", ".", "m"}]}]], "|", "r", "|",
SubscriptBox["\[Phi]",
RowBox[{"n", ",",
RowBox[{"\[ScriptL]", ".", "m"}]}]]}], "\[RightAngleBracket]"}]}],
"=",
RowBox[{
SuperscriptBox["n", "2"],
RowBox[{
SubscriptBox["a", "0"], "[",
RowBox[{"1", "+",
RowBox[{
FractionBox["1", "2"],
RowBox[{"(",
RowBox[{"1", "-",
FractionBox[
RowBox[{"\[ScriptL]", "(",
RowBox[{"\[ScriptL]", "+", "1"}], ")"}],
SuperscriptBox["n", "2"]]}], ")"}]}]}], "]"}]}]}],
TraditionalForm]], "InlineMath"],
", and the right graphic shows the radial function."
}], "ManipulateCaption",
CellChangeTimes->{
3.35696210375764*^9, {3.471529068929021*^9, 3.4715293165026093`*^9}, {
3.4715293831639*^9, 3.471529437061977*^9}, {3.4715295487840357`*^9,
3.47152981401045*^9}, {3.47152985069398*^9, 3.4715298662521133`*^9}, {
3.471789183048913*^9, 3.471789183048913*^9}, {3.471789525117981*^9,
3.4717895308993416`*^9}, {3.4717895892285867`*^9,
3.4717898109047174`*^9}, {3.471814078224716*^9, 3.4718140791921043`*^9}, {
3.4718889185129423`*^9, 3.471888972939502*^9}},
CellID->47933019]
}, Open ]],
Cell[CellGroupData[{
Cell["", "ThumbnailSection"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`L$$ = 2, $CellContext`n$$ = 3,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`n$$], 3, "quantum numbers n"}, {1, 2, 3, 4}}, {{
Hold[$CellContext`L$$], 2,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}}, Typeset`size$$ = {
600., {147., 153.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = False, $CellContext`n$69255$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`L$$ = 2, $CellContext`n$$ = 3},
"ControllerVariables" :> {
Hold[$CellContext`n$$, $CellContext`n$69255$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$},
"Body" :> (
If[$CellContext`L$$ >= $CellContext`n$$, $CellContext`L$$ = \
$CellContext`n$$ - 1]; $CellContext`label = Which[$CellContext`L$$ == 0,
Style["s", Italic], $CellContext`L$$ == 1,
Style["p", Italic], $CellContext`L$$ == 2,
Style["d", Italic], $CellContext`L$$ == 3,
Style["f", Italic]]; $CellContext`p1 = Quiet[
Plot[$CellContext`r^2 $CellContext`R[$CellContext`n$$, \
$CellContext`L$$, $CellContext`r]^2, {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> {{0,
Part[$CellContext`rmax, $CellContext`n$$]}, {0,
Part[$CellContext`yrange, $CellContext`n$$]}}, Filling -> Axis,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 1],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick, PlotLabel ->
Style[
Row[{
NumberForm[$CellContext`n$$, 1], $CellContext`label}], 18,
Darker[Blue]],
AxesLabel -> $CellContext`label1]]; $CellContext`av =
Graphics[{Thick, Dashed, Blue,
Line[{{
$CellContext`rav[$CellContext`n$$, $CellContext`L$$], 0}, {
$CellContext`rav[$CellContext`n$$, $CellContext`L$$],
Part[$CellContext`yrange, $CellContext`n$$]}}],
Text[
Style[
Row[{"\[LeftAngleBracket]",
Style["r", Italic],
"\!\(\*SubscriptBox[\(\[RightAngleBracket]\), \(n, l\)]\)"}],
18], {1.48 $CellContext`rav[$CellContext`n$$, $CellContext`L$$],
0.8 Part[$CellContext`yrange, $CellContext`n$$]}]}]; Pane[
If[$CellContext`L$$ < $CellContext`n$$,
GraphicsRow[{
Show[$CellContext`p1, $CellContext`av],
Plot[
$CellContext`R[$CellContext`n$$, $CellContext`L$$, \
$CellContext`r], {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> All,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 2],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick,
AxesLabel -> $CellContext`label2]}, ImageSize -> {600, 300}],
Null], ImageSize -> {600, 300}]),
"Specifications" :> {{{$CellContext`n$$, 3, "quantum numbers n"}, {1,
2, 3, 4}}, {{$CellContext`L$$, 2,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}},
"Options" :> {
ControlType -> SetterBar,
TrackedSymbols :> {$CellContext`n$$, $CellContext`L$$}},
"DefaultOptions" :> {ControllerLinking -> True}],
ImageSizeCache->{643., {202., 207.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
Initialization:>(($CellContext`F[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`x,
Blank[]]] := (($CellContext`x^$CellContext`L
E^((-$CellContext`x)/2)) Factorial[$CellContext`n + $CellContext`L])
LaguerreL[$CellContext`n - $CellContext`L - 1, 2 $CellContext`L +
1, $CellContext`x]; $CellContext`R[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`r,
Blank[]]] := (($CellContext`a^((-3)/2) (2/$CellContext`n^2)) (
Factorial[$CellContext`n - 1 - $CellContext`L]/
Factorial[$CellContext`n + $CellContext`L]^3)^
Rational[1, 2]) $CellContext`F[$CellContext`n, $CellContext`L,
2 ($CellContext`r/($CellContext`n $CellContext`a))]; \
$CellContext`rav[
Pattern[$CellContext`np,
Blank[]],
Pattern[$CellContext`Lp,
Blank[]]] := $CellContext`np^2 (1. +
0.5 (1. - $CellContext`Lp (($CellContext`Lp +
1.)/$CellContext`np^2))); $CellContext`a =
1; $CellContext`rmax = {5, 15, 30, 50, 70}; $CellContext`yrange = {
0.55, 0.2, 0.12, 0.07}; $CellContext`ticksmat =
ConstantArray[0., {5, 2}];
Part[$CellContext`ticksmat, 1, 1] = {{0, 2, 4}, {0.25, 0.5}};
Part[$CellContext`ticksmat, 1, 2] = {{0, 2, 4}, Automatic};
Part[$CellContext`ticksmat, 2, 1] = {{0, 6, 12}, {0.05, 0.15}};
Part[$CellContext`ticksmat, 2, 2] = {{0, 6, 12}, Automatic};
Part[$CellContext`ticksmat, 3, 1] = {{0, 10, 20}, {0.05, 0.1}};
Part[$CellContext`ticksmat, 3, 2] = {{0, 10, 20}, Automatic};
Part[$CellContext`ticksmat, 4, 1] = {{0, 20, 40}, {0.03, 0.06}};
Part[$CellContext`ticksmat, 4, 2] = {{0, 20, 40},
Automatic}; $CellContext`label1 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{Style["r", Italic]^2, " ",
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"^2}], 18]]}; $CellContext`label2 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"}], 18]]}); Typeset`initDone$$ = True),
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellID->1957055702]
}, Open ]],
Cell[CellGroupData[{
Cell["", "SnapshotsSection"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`L$$ = 1, $CellContext`n$$ = 3,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`n$$], 3, "quantum numbers n"}, {1, 2, 3, 4}}, {{
Hold[$CellContext`L$$], 1,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}}, Typeset`size$$ = {
600., {147., 153.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = False, $CellContext`n$69306$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`L$$ = 1, $CellContext`n$$ = 3},
"ControllerVariables" :> {
Hold[$CellContext`n$$, $CellContext`n$69306$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$},
"Body" :> (
If[$CellContext`L$$ >= $CellContext`n$$, $CellContext`L$$ = \
$CellContext`n$$ - 1]; $CellContext`label = Which[$CellContext`L$$ == 0,
Style["s", Italic], $CellContext`L$$ == 1,
Style["p", Italic], $CellContext`L$$ == 2,
Style["d", Italic], $CellContext`L$$ == 3,
Style["f", Italic]]; $CellContext`p1 = Quiet[
Plot[$CellContext`r^2 $CellContext`R[$CellContext`n$$, \
$CellContext`L$$, $CellContext`r]^2, {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> {{0,
Part[$CellContext`rmax, $CellContext`n$$]}, {0,
Part[$CellContext`yrange, $CellContext`n$$]}}, Filling -> Axis,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 1],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick, PlotLabel ->
Style[
Row[{
NumberForm[$CellContext`n$$, 1], $CellContext`label}], 18,
Darker[Blue]],
AxesLabel -> $CellContext`label1]]; $CellContext`av =
Graphics[{Thick, Dashed, Blue,
Line[{{
$CellContext`rav[$CellContext`n$$, $CellContext`L$$], 0}, {
$CellContext`rav[$CellContext`n$$, $CellContext`L$$],
Part[$CellContext`yrange, $CellContext`n$$]}}],
Text[
Style[
Row[{"\[LeftAngleBracket]",
Style["r", Italic],
"\!\(\*SubscriptBox[\(\[RightAngleBracket]\), \(n, l\)]\)"}],
18], {1.48 $CellContext`rav[$CellContext`n$$, $CellContext`L$$],
0.8 Part[$CellContext`yrange, $CellContext`n$$]}]}]; Pane[
If[$CellContext`L$$ < $CellContext`n$$,
GraphicsRow[{
Show[$CellContext`p1, $CellContext`av],
Plot[
$CellContext`R[$CellContext`n$$, $CellContext`L$$, \
$CellContext`r], {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> All,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 2],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick,
AxesLabel -> $CellContext`label2]}, ImageSize -> {600, 300}],
Null], ImageSize -> {600, 300}]),
"Specifications" :> {{{$CellContext`n$$, 3, "quantum numbers n"}, {1,
2, 3, 4}}, {{$CellContext`L$$, 1,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}},
"Options" :> {
ControlType -> SetterBar,
TrackedSymbols :> {$CellContext`n$$, $CellContext`L$$}},
"DefaultOptions" :> {ControllerLinking -> True}],
ImageSizeCache->{643., {202., 207.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
Initialization:>(($CellContext`F[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`x,
Blank[]]] := (($CellContext`x^$CellContext`L
E^((-$CellContext`x)/2)) Factorial[$CellContext`n + $CellContext`L])
LaguerreL[$CellContext`n - $CellContext`L - 1, 2 $CellContext`L +
1, $CellContext`x]; $CellContext`R[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`r,
Blank[]]] := (($CellContext`a^((-3)/2) (2/$CellContext`n^2)) (
Factorial[$CellContext`n - 1 - $CellContext`L]/
Factorial[$CellContext`n + $CellContext`L]^3)^
Rational[1, 2]) $CellContext`F[$CellContext`n, $CellContext`L,
2 ($CellContext`r/($CellContext`n $CellContext`a))]; \
$CellContext`rav[
Pattern[$CellContext`np,
Blank[]],
Pattern[$CellContext`Lp,
Blank[]]] := $CellContext`np^2 (1. +
0.5 (1. - $CellContext`Lp (($CellContext`Lp +
1.)/$CellContext`np^2))); $CellContext`a =
1; $CellContext`rmax = {5, 15, 30, 50, 70}; $CellContext`yrange = {
0.55, 0.2, 0.12, 0.07}; $CellContext`ticksmat =
ConstantArray[0., {5, 2}];
Part[$CellContext`ticksmat, 1, 1] = {{0, 2, 4}, {0.25, 0.5}};
Part[$CellContext`ticksmat, 1, 2] = {{0, 2, 4}, Automatic};
Part[$CellContext`ticksmat, 2, 1] = {{0, 6, 12}, {0.05, 0.15}};
Part[$CellContext`ticksmat, 2, 2] = {{0, 6, 12}, Automatic};
Part[$CellContext`ticksmat, 3, 1] = {{0, 10, 20}, {0.05, 0.1}};
Part[$CellContext`ticksmat, 3, 2] = {{0, 10, 20}, Automatic};
Part[$CellContext`ticksmat, 4, 1] = {{0, 20, 40}, {0.03, 0.06}};
Part[$CellContext`ticksmat, 4, 2] = {{0, 20, 40},
Automatic}; $CellContext`label1 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{Style["r", Italic]^2, " ",
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"^2}], 18]]}; $CellContext`label2 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"}], 18]]}); Typeset`initDone$$ = True),
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellID->1375646062],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`L$$ = 3, $CellContext`n$$ = 4,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`n$$], 4, "quantum numbers n"}, {1, 2, 3, 4}}, {{
Hold[$CellContext`L$$], 3,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}}, Typeset`size$$ = {
600., {147., 153.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = False, $CellContext`n$69357$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`L$$ = 3, $CellContext`n$$ = 4},
"ControllerVariables" :> {
Hold[$CellContext`n$$, $CellContext`n$69357$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$},
"Body" :> (
If[$CellContext`L$$ >= $CellContext`n$$, $CellContext`L$$ = \
$CellContext`n$$ - 1]; $CellContext`label = Which[$CellContext`L$$ == 0,
Style["s", Italic], $CellContext`L$$ == 1,
Style["p", Italic], $CellContext`L$$ == 2,
Style["d", Italic], $CellContext`L$$ == 3,
Style["f", Italic]]; $CellContext`p1 = Quiet[
Plot[$CellContext`r^2 $CellContext`R[$CellContext`n$$, \
$CellContext`L$$, $CellContext`r]^2, {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> {{0,
Part[$CellContext`rmax, $CellContext`n$$]}, {0,
Part[$CellContext`yrange, $CellContext`n$$]}}, Filling -> Axis,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 1],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick, PlotLabel ->
Style[
Row[{
NumberForm[$CellContext`n$$, 1], $CellContext`label}], 18,
Darker[Blue]],
AxesLabel -> $CellContext`label1]]; $CellContext`av =
Graphics[{Thick, Dashed, Blue,
Line[{{
$CellContext`rav[$CellContext`n$$, $CellContext`L$$], 0}, {
$CellContext`rav[$CellContext`n$$, $CellContext`L$$],
Part[$CellContext`yrange, $CellContext`n$$]}}],
Text[
Style[
Row[{"\[LeftAngleBracket]",
Style["r", Italic],
"\!\(\*SubscriptBox[\(\[RightAngleBracket]\), \(n, l\)]\)"}],
18], {1.48 $CellContext`rav[$CellContext`n$$, $CellContext`L$$],
0.8 Part[$CellContext`yrange, $CellContext`n$$]}]}]; Pane[
If[$CellContext`L$$ < $CellContext`n$$,
GraphicsRow[{
Show[$CellContext`p1, $CellContext`av],
Plot[
$CellContext`R[$CellContext`n$$, $CellContext`L$$, \
$CellContext`r], {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> All,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 2],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick,
AxesLabel -> $CellContext`label2]}, ImageSize -> {600, 300}],
Null], ImageSize -> {600, 300}]),
"Specifications" :> {{{$CellContext`n$$, 4, "quantum numbers n"}, {1,
2, 3, 4}}, {{$CellContext`L$$, 3,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}},
"Options" :> {
ControlType -> SetterBar,
TrackedSymbols :> {$CellContext`n$$, $CellContext`L$$}},
"DefaultOptions" :> {ControllerLinking -> True}],
ImageSizeCache->{643., {202., 207.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
Initialization:>(($CellContext`F[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`x,
Blank[]]] := (($CellContext`x^$CellContext`L
E^((-$CellContext`x)/2)) Factorial[$CellContext`n + $CellContext`L])
LaguerreL[$CellContext`n - $CellContext`L - 1, 2 $CellContext`L +
1, $CellContext`x]; $CellContext`R[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`r,
Blank[]]] := (($CellContext`a^((-3)/2) (2/$CellContext`n^2)) (
Factorial[$CellContext`n - 1 - $CellContext`L]/
Factorial[$CellContext`n + $CellContext`L]^3)^
Rational[1, 2]) $CellContext`F[$CellContext`n, $CellContext`L,
2 ($CellContext`r/($CellContext`n $CellContext`a))]; \
$CellContext`rav[
Pattern[$CellContext`np,
Blank[]],
Pattern[$CellContext`Lp,
Blank[]]] := $CellContext`np^2 (1. +
0.5 (1. - $CellContext`Lp (($CellContext`Lp +
1.)/$CellContext`np^2))); $CellContext`a =
1; $CellContext`rmax = {5, 15, 30, 50, 70}; $CellContext`yrange = {
0.55, 0.2, 0.12, 0.07}; $CellContext`ticksmat =
ConstantArray[0., {5, 2}];
Part[$CellContext`ticksmat, 1, 1] = {{0, 2, 4}, {0.25, 0.5}};
Part[$CellContext`ticksmat, 1, 2] = {{0, 2, 4}, Automatic};
Part[$CellContext`ticksmat, 2, 1] = {{0, 6, 12}, {0.05, 0.15}};
Part[$CellContext`ticksmat, 2, 2] = {{0, 6, 12}, Automatic};
Part[$CellContext`ticksmat, 3, 1] = {{0, 10, 20}, {0.05, 0.1}};
Part[$CellContext`ticksmat, 3, 2] = {{0, 10, 20}, Automatic};
Part[$CellContext`ticksmat, 4, 1] = {{0, 20, 40}, {0.03, 0.06}};
Part[$CellContext`ticksmat, 4, 2] = {{0, 20, 40},
Automatic}; $CellContext`label1 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{Style["r", Italic]^2, " ",
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"^2}], 18]]}; $CellContext`label2 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"}], 18]]}); Typeset`initDone$$ = True),
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellID->674420432],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`L$$ = 2, $CellContext`n$$ = 3,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`n$$], 3, "quantum numbers n"}, {1, 2, 3, 4}}, {{
Hold[$CellContext`L$$], 2,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}}, Typeset`size$$ = {
600., {147., 153.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = False, $CellContext`n$69408$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`L$$ = 2, $CellContext`n$$ = 3},
"ControllerVariables" :> {
Hold[$CellContext`n$$, $CellContext`n$69408$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$},
"Body" :> (
If[$CellContext`L$$ >= $CellContext`n$$, $CellContext`L$$ = \
$CellContext`n$$ - 1]; $CellContext`label = Which[$CellContext`L$$ == 0,
Style["s", Italic], $CellContext`L$$ == 1,
Style["p", Italic], $CellContext`L$$ == 2,
Style["d", Italic], $CellContext`L$$ == 3,
Style["f", Italic]]; $CellContext`p1 = Quiet[
Plot[$CellContext`r^2 $CellContext`R[$CellContext`n$$, \
$CellContext`L$$, $CellContext`r]^2, {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> {{0,
Part[$CellContext`rmax, $CellContext`n$$]}, {0,
Part[$CellContext`yrange, $CellContext`n$$]}}, Filling -> Axis,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 1],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick, PlotLabel ->
Style[
Row[{
NumberForm[$CellContext`n$$, 1], $CellContext`label}], 18,
Darker[Blue]],
AxesLabel -> $CellContext`label1]]; $CellContext`av =
Graphics[{Thick, Dashed, Blue,
Line[{{
$CellContext`rav[$CellContext`n$$, $CellContext`L$$], 0}, {
$CellContext`rav[$CellContext`n$$, $CellContext`L$$],
Part[$CellContext`yrange, $CellContext`n$$]}}],
Text[
Style[
Row[{"\[LeftAngleBracket]",
Style["r", Italic],
"\!\(\*SubscriptBox[\(\[RightAngleBracket]\), \(n, l\)]\)"}],
18], {1.48 $CellContext`rav[$CellContext`n$$, $CellContext`L$$],
0.8 Part[$CellContext`yrange, $CellContext`n$$]}]}]; Pane[
If[$CellContext`L$$ < $CellContext`n$$,
GraphicsRow[{
Show[$CellContext`p1, $CellContext`av],
Plot[
$CellContext`R[$CellContext`n$$, $CellContext`L$$, \
$CellContext`r], {$CellContext`r, 0,
Part[$CellContext`rmax, $CellContext`n$$]}, PlotRange -> All,
Ticks -> Part[$CellContext`ticksmat, $CellContext`n$$, 2],
TicksStyle -> Directive[16, Gray], PlotStyle -> Thick,
AxesLabel -> $CellContext`label2]}, ImageSize -> {600, 300}],
Null], ImageSize -> {600, 300}]),
"Specifications" :> {{{$CellContext`n$$, 3, "quantum numbers n"}, {1,
2, 3, 4}}, {{$CellContext`L$$, 2,
Style["l", Italic]},
Dynamic[
Range[0, $CellContext`n$$ - 1]]}},
"Options" :> {
ControlType -> SetterBar,
TrackedSymbols :> {$CellContext`n$$, $CellContext`L$$}},
"DefaultOptions" :> {ControllerLinking -> True}],
ImageSizeCache->{643., {202., 207.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
Initialization:>(($CellContext`F[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`x,
Blank[]]] := (($CellContext`x^$CellContext`L
E^((-$CellContext`x)/2)) Factorial[$CellContext`n + $CellContext`L])
LaguerreL[$CellContext`n - $CellContext`L - 1, 2 $CellContext`L +
1, $CellContext`x]; $CellContext`R[
Pattern[$CellContext`n,
Blank[]],
Pattern[$CellContext`L,
Blank[]],
Pattern[$CellContext`r,
Blank[]]] := (($CellContext`a^((-3)/2) (2/$CellContext`n^2)) (
Factorial[$CellContext`n - 1 - $CellContext`L]/
Factorial[$CellContext`n + $CellContext`L]^3)^
Rational[1, 2]) $CellContext`F[$CellContext`n, $CellContext`L,
2 ($CellContext`r/($CellContext`n $CellContext`a))]; \
$CellContext`rav[
Pattern[$CellContext`np,
Blank[]],
Pattern[$CellContext`Lp,
Blank[]]] := $CellContext`np^2 (1. +
0.5 (1. - $CellContext`Lp (($CellContext`Lp +
1.)/$CellContext`np^2))); $CellContext`a =
1; $CellContext`rmax = {5, 15, 30, 50, 70}; $CellContext`yrange = {
0.55, 0.2, 0.12, 0.07}; $CellContext`ticksmat =
ConstantArray[0., {5, 2}];
Part[$CellContext`ticksmat, 1, 1] = {{0, 2, 4}, {0.25, 0.5}};
Part[$CellContext`ticksmat, 1, 2] = {{0, 2, 4}, Automatic};
Part[$CellContext`ticksmat, 2, 1] = {{0, 6, 12}, {0.05, 0.15}};
Part[$CellContext`ticksmat, 2, 2] = {{0, 6, 12}, Automatic};
Part[$CellContext`ticksmat, 3, 1] = {{0, 10, 20}, {0.05, 0.1}};
Part[$CellContext`ticksmat, 3, 2] = {{0, 10, 20}, Automatic};
Part[$CellContext`ticksmat, 4, 1] = {{0, 20, 40}, {0.03, 0.06}};
Part[$CellContext`ticksmat, 4, 2] = {{0, 20, 40},
Automatic}; $CellContext`label1 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{Style["r", Italic]^2, " ",
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"^2}], 18]]}; $CellContext`label2 = {
Text[
Style[
Row[{
Style["r", Italic], " / ",
Subscript[
Style["a", Italic], 0]}], 18]],
Text[
Style[
Row[{
Subscript[
Style["R", Italic],
Row[{
Style["n", Italic], ", ",
Style["l", Italic]}]], "(",
Style["r", Italic], ")"}], 18]]}); Typeset`initDone$$ = True),
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellID->565511758]
}, Open ]],
Cell["", "DetailsSection"],
Cell[CellGroupData[{
Cell["", "ControlSuggestionsSection"],
Cell[BoxData[
TooltipBox[
RowBox[{
CheckboxBox[True], Cell[" Resize Images"]}],
"\"Click inside an image to reveal its orange resize frame.\\nDrag any of \
the orange resize handles to resize the image.\"",
TooltipDelay->0.35]], "ControlSuggestions",
CellChangeTimes->{3.35696210375764*^9, 3.471789840374034*^9},
FontFamily->"Verdana",
CellTags->"ResizeImages"],
Cell[BoxData[
TooltipBox[
RowBox[{
CheckboxBox[False], Cell[" Rotate and Zoom in 3D"]}],
RowBox[{
"\"Drag a 3D graphic to rotate it. Starting the drag near the center \
tumbles\\nthe graphic; starting near a corner turns it parallel to the plane \
of the screen.\\nHold down \"",
FrameBox[
"Ctrl", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" (or \"",
FrameBox[
"Cmd", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" on Mac) and drag up and down to zoom.\""}],
TooltipDelay->0.35]], "ControlSuggestions",
FontFamily->"Verdana",
CellTags->"RotateAndZoomIn3D"],
Cell[BoxData[
TooltipBox[
RowBox[{
CheckboxBox[False], Cell[" Drag Locators"]}],
RowBox[{"\"Drag any locator (\"",
GraphicsBox[
LocatorBox[
Scaled[{0.5, 0.5}]], ImageSize -> 20],
"\", etc.) to move it around.\""}],
TooltipDelay->0.35]], "ControlSuggestions",
FontFamily->"Verdana",
CellTags->"DragLocators"],
Cell[BoxData[
TooltipBox[
RowBox[{
CheckboxBox[False], Cell[" Create and Delete Locators"]}],
RowBox[{"\"Insert a new locator in the graphic by holding down the \"",
FrameBox[
"Alt", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]],
"\" key\\nand clicking where you want it to be. Delete a locator by \
clicking it\\nwhile holding down the \"",
FrameBox[
"Alt", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" key.\""}],
TooltipDelay->0.35]], "ControlSuggestions",
FontFamily->"Verdana",
CellTags->"CreateAndDeleteLocators"],
Cell[BoxData[
TooltipBox[
RowBox[{
CheckboxBox[False], Cell[" Slider Zoom"]}],
RowBox[{"\"Hold down the \"",
FrameBox[
"Alt", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]],
"\" key while moving a slider to make fine adjustments in the slider \
value.\\nHold \"",
FrameBox[
"Ctrl", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" and/or \"",
FrameBox[
"Shift", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" at the same time as \"",
FrameBox[
"Alt", Background -> GrayLevel[0.9], FrameMargins -> 2, FrameStyle ->
GrayLevel[0.9]], "\" to make ever finer adjustments.\""}],
TooltipDelay->0.35]], "ControlSuggestions",
FontFamily->"Verdana",
CellTags->"SliderZoom"],
Cell[BoxData[
TooltipBox[
RowBox[{
CheckboxBox[False], Cell[" Gamepad Controls"]}],
"\"Control this Demonstration with a gamepad or other\\nhuman interface \
device connected to your computer.\"",
TooltipDelay->0.35]], "ControlSuggestions",
CellChangeTimes->{3.35696210375764*^9, 3.3895522232313623`*^9},
FontFamily->"Verdana",
CellTags->"GamepadControls"],
Cell[BoxData[
TooltipBox[
RowBox[{
CheckboxBox[False], Cell[" Automatic Animation"]}],
RowBox[{"\"Animate a slider in this Demonstration by clicking the\"",
AdjustmentBox[
Cell[
GraphicsData[
"CompressedBitmap",
"eJzzTSzJSM1NLMlMTlRwL0osyMhMLlZwyy8CCjEzMjAwcIKwAgOI/R/IhBKc\n\
/4EAyGAG0f+nTZsGwgysIJIRKsWKLAXGIHFmEpUgLADxWUAkI24jZs+eTaEt\n\
IG+wQKRmzJgBlYf5lhEA30OqWA=="], "Graphics", ImageSize -> {9, 9}, ImageMargins ->
0, CellBaseline -> Baseline], BoxBaselineShift -> 0.1839080459770115,
BoxMargins -> {{0., 0.}, {-0.1839080459770115, 0.1839080459770115}}],
"\"button\\nnext to the slider, and then clicking the play button that \
appears.\\nAnimate all controls by selecting \"",
StyleBox["Autorun", FontWeight -> "Bold"], "\" from the\"",
AdjustmentBox[
Cell[
GraphicsData[
"CompressedBitmap",
"eJyNULENwyAQfEySIlMwTVJlCGRFsosokeNtqBmDBagoaZjAI1C8/8GUUUC6\n\
57h7cQ8PvU7Pl17nUav7oj/TPH7V7b2QJAUAXBkKmCPRowxICy64bRvGGNF7\n\
X8CctGoDSN4xhIDGGDhzFXwUh3/ClBKrDQPmnGXtI6u0OOd+tZBVUqy1xSaH\n\
UqiK6pPe4XdEdAz6563tx/gejuORGMxJaz8mdpJn7hc="], "Graphics",
ImageSize -> {10, 10}, ImageMargins -> 0, CellBaseline -> Baseline],
BoxBaselineShift -> 0.1839080459770115,
BoxMargins -> {{0., 0.}, {-0.1839080459770115, 0.1839080459770115}}],
"\"menu.\""}],
TooltipDelay->0.35]], "ControlSuggestions",
FontFamily->"Verdana",
CellTags->"AutomaticAnimation"],
Cell[BoxData[
TooltipBox[
RowBox[{
CheckboxBox[False], Cell[" Bookmark Animation"]}],
RowBox[{
"\"See a prepared animation of this Demonstration by selecting\\n\"",
StyleBox["Animate Bookmarks", FontWeight -> "Bold"], "\" from the\"",
AdjustmentBox[
Cell[
GraphicsData[
"CompressedBitmap",
"eJyNULENwyAQfEySIlMwTVJlCGRFsosokeNtqBmDBagoaZjAI1C8/8GUUUC6\n\
57h7cQ8PvU7Pl17nUav7oj/TPH7V7b2QJAUAXBkKmCPRowxICy64bRvGGNF7\n\
X8CctGoDSN4xhIDGGDhzFXwUh3/ClBKrDQPmnGXtI6u0OOd+tZBVUqy1xSaH\n\
UqiK6pPe4XdEdAz6563tx/gejuORGMxJaz8mdpJn7hc="], "Graphics",
ImageSize -> {10, 10}, ImageMargins -> 0, CellBaseline -> Baseline],
BoxBaselineShift -> 0.1839080459770115,
BoxMargins -> {{0., 0.}, {-0.1839080459770115, 0.1839080459770115}}],
"\"menu.\""}],
TooltipDelay->0.35]], "ControlSuggestions",
FontFamily->"Verdana",
CellTags->"BookmarkAnimation"]
}, Open ]],
Cell["", "SearchTermsSection"],
Cell[CellGroupData[{
Cell["", "RelatedLinksSection"],
Cell[TextData[ButtonBox["Hydrogen Orbitals",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/HydrogenOrbitals/"], None},
ButtonNote->
"http://demonstrations.wolfram.com/HydrogenOrbitals/"]], "RelatedLinks",
CellChangeTimes->{
3.35696210375764*^9, {3.47153250203617*^9, 3.471532538913863*^9}},
CellID->638582384]
}, Open ]],
Cell[CellGroupData[{
Cell["", "AuthorSection"],
Cell[TextData[{
"Contributed by: ",
ButtonBox["Porscha McRobbie",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/author.html?author=Porscha+\
McRobbie"], None},
ButtonNote->
"http://demonstrations.wolfram.com/author.html?author=Porscha+McRobbie"],
" and ",
ButtonBox["Eitan Geva",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://demonstrations.wolfram.com/author.html?author=Eitan+Geva"],
None},
ButtonNote->
"http://demonstrations.wolfram.com/author.html?author=Eitan+Geva"]
}], "Author",
CellChangeTimes->{
3.35696210375764*^9, {3.471527086129807*^9, 3.4715270914863443`*^9}}]
}, Open ]]
}, Open ]]
},
WindowSize->{953, 752},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"9.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (November 20, \
2012)",
StyleDefinitions->FrontEnd`FileName[{"Wolfram"}, "Demonstration.nb",
CharacterEncoding -> "UTF-8"]
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{
"ResizeImages"->{
Cell[59463, 1458, 374, 9, 29, "ControlSuggestions",
CellTags->"ResizeImages"]},
"RotateAndZoomIn3D"->{
Cell[59840, 1469, 678, 16, 29, "ControlSuggestions",
CellTags->"RotateAndZoomIn3D"]},
"DragLocators"->{
Cell[60521, 1487, 340, 11, 29, "ControlSuggestions",
CellTags->"DragLocators"]},
"CreateAndDeleteLocators"->{
Cell[60864, 1500, 637, 15, 29, "ControlSuggestions",
CellTags->"CreateAndDeleteLocators"]},
"SliderZoom"->{
Cell[61504, 1517, 844, 21, 29, "ControlSuggestions",
CellTags->"SliderZoom"]},
"GamepadControls"->{
Cell[62351, 1540, 369, 9, 29, "ControlSuggestions",
CellTags->"GamepadControls"]},
"AutomaticAnimation"->{
Cell[62723, 1551, 1464, 31, 29, "ControlSuggestions",
CellTags->"AutomaticAnimation"]},
"BookmarkAnimation"->{
Cell[64190, 1584, 908, 21, 29, "ControlSuggestions",
CellTags->"BookmarkAnimation"]}
}
*)
(*CellTagsIndex
CellTagsIndex->{
{"ResizeImages", 66675, 1664},
{"RotateAndZoomIn3D", 66784, 1667},
{"DragLocators", 66894, 1670},
{"CreateAndDeleteLocators", 67010, 1673},
{"SliderZoom", 67124, 1676},
{"GamepadControls", 67230, 1679},
{"AutomaticAnimation", 67343, 1682},
{"BookmarkAnimation", 67460, 1685}
}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[567, 22, 195, 3, 76, "DemoTitle"],
Cell[765, 27, 33, 0, 275, "InitializationSection"],
Cell[CellGroupData[{
Cell[823, 31, 29, 0, 201, "ManipulateSection"],
Cell[CellGroupData[{
Cell[877, 35, 17016, 430, 847, "Input"],
Cell[17896, 467, 7116, 157, 419, "Output",
CellID->1940978731]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[25061, 630, 36, 0, 181, "ManipulateCaptionSection"],
Cell[25100, 632, 5729, 175, 148, "ManipulateCaption",
CellID->47933019]
}, Open ]],
Cell[CellGroupData[{
Cell[30866, 812, 28, 0, 179, "ThumbnailSection"],
Cell[30897, 814, 7097, 156, 421, "Output",
CellID->1957055702]
}, Open ]],
Cell[CellGroupData[{
Cell[38031, 975, 28, 0, 149, "SnapshotsSection"],
Cell[38062, 977, 7097, 156, 421, "Output",
CellID->1375646062],
Cell[45162, 1135, 7096, 156, 421, "Output",
CellID->674420432],
Cell[52261, 1293, 7096, 156, 421, "Output",
CellID->565511758]
}, Open ]],
Cell[59372, 1452, 26, 0, 357, "DetailsSection"],
Cell[CellGroupData[{
Cell[59423, 1456, 37, 0, 119, "ControlSuggestionsSection"],
Cell[59463, 1458, 374, 9, 29, "ControlSuggestions",
CellTags->"ResizeImages"],
Cell[59840, 1469, 678, 16, 29, "ControlSuggestions",
CellTags->"RotateAndZoomIn3D"],
Cell[60521, 1487, 340, 11, 29, "ControlSuggestions",
CellTags->"DragLocators"],
Cell[60864, 1500, 637, 15, 29, "ControlSuggestions",
CellTags->"CreateAndDeleteLocators"],
Cell[61504, 1517, 844, 21, 29, "ControlSuggestions",
CellTags->"SliderZoom"],
Cell[62351, 1540, 369, 9, 29, "ControlSuggestions",
CellTags->"GamepadControls"],
Cell[62723, 1551, 1464, 31, 29, "ControlSuggestions",
CellTags->"AutomaticAnimation"],
Cell[64190, 1584, 908, 21, 29, "ControlSuggestions",
CellTags->"BookmarkAnimation"]
}, Open ]],
Cell[65113, 1608, 30, 0, 165, "SearchTermsSection"],
Cell[CellGroupData[{
Cell[65168, 1612, 31, 0, 137, "RelatedLinksSection"],
Cell[65202, 1614, 352, 8, 23, "RelatedLinks",
CellID->638582384]
}, Open ]],
Cell[CellGroupData[{
Cell[65591, 1627, 25, 0, 149, "AuthorSection"],
Cell[65619, 1629, 648, 19, 23, "Author"]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)