phy-4660/chaos/report/report.aux
2017-02-12 19:05:36 -05:00

52 lines
4.4 KiB
TeX

\relax
\providecommand\hyper@newdestlabel[2]{}
\abx@aux@sortscheme{nty}
\abx@aux@refcontext{nty/global/}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\abx@aux@cite{TANGLEDTALEPHASESPACE}
\abx@aux@segm{0}{0}{TANGLEDTALEPHASESPACE}
\abx@aux@cite{CHAOSAT50}
\abx@aux@segm{0}{0}{CHAOSAT50}
\abx@aux@cite{CHAOSDYNAMICS}
\abx@aux@segm{0}{0}{CHAOSDYNAMICS}
\providecommand \oddpage@label [2]{}
\@writefile{toc}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
\@writefile{lof}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
\@writefile{lot}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax }
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Chaos}{1}{section.1}}
\newlabel{sec:chaos}{{1}{1}{Chaos}{section.1}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Phase Space and Poincaré Sections}{1}{section.2}}
\newlabel{sec:phasespace}{{2}{1}{Phase Space and Poincaré Sections}{section.2}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Computer-generated model of a periodic function in phase space. A pendulum's angular coordinate would correspond to $\theta =x$. The motion is predictable and orbits a single point.\relax }}{2}{figure.caption.1}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:model_periodic}{{1}{2}{Computer-generated model of a periodic function in phase space. A pendulum's angular coordinate would correspond to $\theta =x$. The motion is predictable and orbits a single point.\relax }{figure.caption.1}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Modeling Chaos in a Driven Pendulum}{3}{section.3}}
\newlabel{sec:modeling}{{3}{3}{Modeling Chaos in a Driven Pendulum}{section.3}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}Chaos compared against Randomsdfness}{3}{section.4}}
\newlabel{sec:reverbmap}{{4}{3}{Chaos compared against Randomsdfness}{section.4}{}}
\@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{3}{section.5}}
\newlabel{sec:discussion}{{5}{3}{Discussion}{section.5}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Computer-generated model of a driven pendulum with no damping. Arguments: $\theta =x, f=1, I=1, \omega =0.5, \alpha =0, k={\begingroup \omega _0^2\endgroup \over I}=1.5, \phi =0$, 180 time steps.\relax }}{4}{figure.caption.3}}
\newlabel{fig:model_no_drag}{{2}{4}{Computer-generated model of a driven pendulum with no damping. Arguments: $\theta =x, f=1, I=1, \omega =0.5, \alpha =0, k=\frac {\omega _0^2}{I}=1.5, \phi =0$, 180 time steps.\relax }{figure.caption.3}{}}
\@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Computer-generated model of a driven pendulum with no damping. Arguments: $\theta =x, f=1, I=1, \omega =0.5, \alpha =0, k={\begingroup \omega _0^2\endgroup \over I}=1.5, \phi =0$, 180 time steps.\relax }}{5}{figure.caption.4}}
\newlabel{fig:chaotic_b_time}{{3}{5}{Computer-generated model of a driven pendulum with no damping. Arguments: $\theta =x, f=1, I=1, \omega =0.5, \alpha =0, k=\frac {\omega _0^2}{I}=1.5, \phi =0$, 180 time steps.\relax }{figure.caption.4}{}}
\abx@aux@refcontextdefaultsdone
\abx@aux@defaultrefcontext{0}{CHAOSDYNAMICS}{nty/global/}
\abx@aux@defaultrefcontext{0}{CHAOSAT50}{nty/global/}
\abx@aux@defaultrefcontext{0}{TANGLEDTALEPHASESPACE}{nty/global/}