\relax \providecommand\hyper@newdestlabel[2]{} \abx@aux@sortscheme{nty} \abx@aux@refcontext{nty/global/} \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \providecommand\HyField@AuxAddToCoFields[2]{} \abx@aux@cite{TANGLEDTALEPHASESPACE} \abx@aux@segm{0}{0}{TANGLEDTALEPHASESPACE} \abx@aux@cite{CHAOSAT50} \abx@aux@segm{0}{0}{CHAOSAT50} \abx@aux@cite{CHAOSDYNAMICS} \abx@aux@segm{0}{0}{CHAOSDYNAMICS} \providecommand \oddpage@label [2]{} \@writefile{toc}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } \@writefile{lof}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } \@writefile{lot}{\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax } \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {1}Chaos}{1}{section.1}} \newlabel{sec:chaos}{{1}{1}{Chaos}{section.1}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {2}Phase Space and Poincaré Sections}{1}{section.2}} \newlabel{sec:phasespace}{{2}{1}{Phase Space and Poincaré Sections}{section.2}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Computer-generated model of a periodic function in phase space. A pendulum's angular coordinate would correspond to $\theta =x$. The motion is predictable and orbits a single point.\relax }}{2}{figure.caption.1}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{fig:model_periodic}{{1}{2}{Computer-generated model of a periodic function in phase space. A pendulum's angular coordinate would correspond to $\theta =x$. The motion is predictable and orbits a single point.\relax }{figure.caption.1}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {3}Modeling Chaos in a Driven Pendulum}{3}{section.3}} \newlabel{sec:modeling}{{3}{3}{Modeling Chaos in a Driven Pendulum}{section.3}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {4}Chaos compared against Randomsdfness}{3}{section.4}} \newlabel{sec:reverbmap}{{4}{3}{Chaos compared against Randomsdfness}{section.4}{}} \@writefile{toc}{\defcounter {refsection}{0}\relax }\@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{3}{section.5}} \newlabel{sec:discussion}{{5}{3}{Discussion}{section.5}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Computer-generated model of a driven pendulum with no damping. Arguments: $\theta =x, f=1, I=1, \omega =0.5, \alpha =0, k={\begingroup \omega _0^2\endgroup \over I}=1.5, \phi =0$, 180 time steps.\relax }}{4}{figure.caption.3}} \newlabel{fig:model_no_drag}{{2}{4}{Computer-generated model of a driven pendulum with no damping. Arguments: $\theta =x, f=1, I=1, \omega =0.5, \alpha =0, k=\frac {\omega _0^2}{I}=1.5, \phi =0$, 180 time steps.\relax }{figure.caption.3}{}} \@writefile{lof}{\defcounter {refsection}{0}\relax }\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Computer-generated model of a driven pendulum with no damping. Arguments: $\theta =x, f=1, I=1, \omega =0.5, \alpha =0, k={\begingroup \omega _0^2\endgroup \over I}=1.5, \phi =0$, 180 time steps.\relax }}{5}{figure.caption.4}} \newlabel{fig:chaotic_b_time}{{3}{5}{Computer-generated model of a driven pendulum with no damping. Arguments: $\theta =x, f=1, I=1, \omega =0.5, \alpha =0, k=\frac {\omega _0^2}{I}=1.5, \phi =0$, 180 time steps.\relax }{figure.caption.4}{}} \abx@aux@refcontextdefaultsdone \abx@aux@defaultrefcontext{0}{CHAOSDYNAMICS}{nty/global/} \abx@aux@defaultrefcontext{0}{CHAOSAT50}{nty/global/} \abx@aux@defaultrefcontext{0}{TANGLEDTALEPHASESPACE}{nty/global/}