mirror of
https://asciireactor.com/otho/phy-4660.git
synced 2024-11-22 11:25:06 +00:00
735 lines
121 KiB
Plaintext
735 lines
121 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Populating the interactive namespace from numpy and matplotlib\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7fa848d60a10>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import sys\n",
|
|
"import getopt\n",
|
|
"sys.path.insert(1,\"/usr/local/science/clag/\")\n",
|
|
"import clag\n",
|
|
"%pylab inline\n",
|
|
"\n",
|
|
"ref_file=\"lc/1367A.lc\"\n",
|
|
"echo_file=\"lc/3471A.lc\"\n",
|
|
"\n",
|
|
"\n",
|
|
"dt = 0.01\n",
|
|
"t1, l1, l1e = np.loadtxt(ref_file).T\n",
|
|
"errorbar(t1, l1, yerr=l1e, fmt='o')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n",
|
|
" 0.16658029, 0.25819945, 0.40020915, 0.62032418])"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n",
|
|
" 0.25819945, 0.40020915, 0.62032418])\n",
|
|
"# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n",
|
|
"nfq = len(fqL) - 1\n",
|
|
"fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n",
|
|
"\n",
|
|
"\n",
|
|
"fqL\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n",
|
|
" 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n",
|
|
" 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n",
|
|
" 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n",
|
|
" 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n",
|
|
" 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n",
|
|
" 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n",
|
|
" 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n",
|
|
" 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n",
|
|
" 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n",
|
|
" 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n",
|
|
" 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n",
|
|
" 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n",
|
|
" 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n",
|
|
" 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n",
|
|
" 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n",
|
|
" 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n",
|
|
"********************\n",
|
|
"0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n",
|
|
"0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n",
|
|
"-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n",
|
|
"p1 = np.ones(nfq)\n",
|
|
"p1, p1e = clag.optimize(P1, p1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\t### errors for param 0 ###\n",
|
|
"+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n",
|
|
"+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n",
|
|
"+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n",
|
|
"+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n",
|
|
"\t### errors for param 1 ###\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n",
|
|
"+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n",
|
|
"+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n",
|
|
"+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n",
|
|
"+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n",
|
|
"\t### errors for param 2 ###\n",
|
|
"+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n",
|
|
"+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n",
|
|
"+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n",
|
|
"+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n",
|
|
"\t### errors for param 3 ###\n",
|
|
"+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n",
|
|
"+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n",
|
|
"+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n",
|
|
"+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n",
|
|
"\t### errors for param 4 ###\n",
|
|
"+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n",
|
|
"+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n",
|
|
"+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n",
|
|
"+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n",
|
|
"+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n",
|
|
"\t### errors for param 5 ###\n",
|
|
"+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n",
|
|
"+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n",
|
|
"+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n",
|
|
"+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n",
|
|
"+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n",
|
|
"+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n",
|
|
"\t### errors for param 6 ###\n",
|
|
"+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n",
|
|
"+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n",
|
|
"+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n",
|
|
"+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n",
|
|
"\t### errors for param 7 ###\n",
|
|
"+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n",
|
|
"+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n",
|
|
"+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n",
|
|
"+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n",
|
|
"+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n",
|
|
"********************\n",
|
|
"0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n",
|
|
"0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"p1, p1e = clag.errors(P1, p1, p1e)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAG7FJREFUeJzt3X9s3Pd93/GnYtHRErfTbJd3tufomtuUo4y0wV0lAlKs\ncm1abEOVdOim8LCoSJQhQUwb4LoJ8FCIM0h5WI2hpWOLHbxFyLZgR2lAMyTA1BZDlcqjKo7lpe1K\n6ZrsxNPS2HdZkmpdkyihY+6P7zGluI9IHnXf+/l8AF/w+L3P5/t5C/qIevG+n+/3C5IkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSbpH/wxYAP4cqAGfBfa3tSJJktQRLgK/CAwBPwZ8HqgA\nb2tjTZIkqQM9DLwJvLfdhUiSpK29pYVj7a1//WYLx5QkSR1uF9Hpht9tdyGSJGl7drdonJeBJ9j8\nVMMj9U2SJDXm9frWVK0ICS8BPwccBV67S5tHHn300ddee+1ub0uSpE18FThIk4NCnCFhF1FA+AAw\nAtzcpO0jr732Gp/5zGcYGhqKsaTmGx8fZ3p6uivHu5djNdq3kfbbabtVm83eb/XfWbM415rf3rkW\n5lxrfvs459r169f50Ic+9BjRp/FdExLOAnmikPAtIFnffwu4HeowNDRENpuNsaTm27t3b0trbuZ4\n93KsRvs20n47bbdqs9n7rf47axbnWvPbO9fCnGvNbx/3XIvLfTEe+/PAW4GPAP9k3fZl4A83tH0E\n+PjHP/5xHnmk+5YlvPvd7+7a8e7lWI32baT9dtpu1eZu7xcKBfL5/LZr6STOtea3d66FOdea3z6u\nufb666/zyiuvALxCkz9J2NXMg92DLLC4uLjYlalb3eX9738/n/vc59pdhvqAc02tUCwWyeVyADmg\n2Mxjt/I+CZIkqYsYEtR3uvXjX3Uf55q6nSFBfccf3GoV55q6nSFBkiQFGRIkSVKQIUGSJAUZEiRJ\nUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQ\nIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFB\nkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIk\nBRkSJElSkCFBkiQFGRIkSVJQnCHhKPB54KvAm8AHYhxLkiQ1WZwh4W3AF4Gx+verMY4lSZKabHeM\nx/7N+iZJkrqQaxIkSVKQIUGSJAUZEiRJUlCcaxIaNj4+zt69e+/Yl8/nyefzbapIkqTOUSgUKBQK\nd+y7detWbOPtiu3Id3oT+Hngc3d5PwssLi4uks1mW1SSJEndr1gsksvlAHJAsZnHjvOThLcDf3Pd\n9+8E3gN8A/hKjONKkqQmiDMkHAR+p/56FfjV+utPAydjHFeSJDVBnCHhC7gwUpKkruV/4pIkKciQ\nIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoJ2t7sAKQ6FQrQB3L4NN2/Cvn2wZ0+0\nL5+PNknS3RkS1JPWh4BiEXK5KDRks+2tS5K6iacbJElSkCFBkiQFGRIkSVKQIUGSJAUZEtSzKpUK\nJ0+e4vjxY8Axjh8/xsmTp6hUKu0uTZK6glc3qOfUajVGR8cplQaoVseAYQDKZSiX57l4cYJMZoXZ\n2WkSiUR7i5WkDmZIUE+p1WocPpznxo2XgQOBFsNUq8NUq9c4ciTP3FzBoCBJd+HpBvWU0dHxTQLC\negcol19idHS8FWVJUlcyJKhnLC8vUyoNsHVAWPMEpdJu1yhI0l0YEtQzpqZm6msQtq9aHWNyciam\niiSpuxkS1DMWFkqsLVLcvmEWFq7HUY4kdT1DgnrGyspOeu3aYT9J6n2GBPWMgYGd9FrdYT9J6n2G\nBPWMgwczwHyDveY5dGgojnIkqesZEtQzJibGSCbPNtQnmTzL6dNPxVSRJHU3Q4J6RiqVIpNZAa5t\ns8cSmcwbpFKpGKuSpO5lSFBPmZ2dJp1+GljaouUS6fQznD//YivKkqSuZEhQT0kkEszNFRgZOUMy\neQK4CqzW310FrpJMnmBk5AxXrswyODjYvmIlqcP57Ab1nEQiwaVLBSqVCpOTM1y+/DzlMqTTcPTo\nEBMTU55ikKRtMCSoZ6VSKc6de4FiEXI5uHABstl2VyVJ3SPu0w1PAcvAd4DfB94b83iSJKlJ4gwJ\nHwR+DZgC3gO8ClwEHo9xTEmS1CRxhoRfAv4tcA74E+AfA18BPhHjmJIkqUniCgn3A1ngtzfs/23g\ncExjSpKkJopr4eLDwH1AbcP+rwHJmMaUfqBQiDaA27dh/3549lnYsyfal89HmyTp7ry6QT3JELA9\nG8PUzZuwb59hSlIkrpDwdeD7QGLD/gTw+t06jY+Ps3fv3jv25fN58v6UkmKxPgSsXSpaKHipqNSp\nCoUChbVkX3fr1q3YxtsV25GjW90tAmPr9l0DPgv88oa2WWBxcXGRrD+dpLZYCwmLi4YEqZsUi0Vy\nuRxADig289hxnm74VeA/EN0f4SrwMeCvA/86xjElNSi6M+VZLl8uAXD8OBw9mmFiYsw7U0p9Ls6Q\ncAF4CJgAHgH+B/B3iS6DlNRmtVqN0dFxSqUBqtUxYBiAchnK5XkuXpwgk1lhdnaaRGLjmUNJ/SDu\nhYu/Xt8kdZBarcbhw3lu3HgZOBBoMUy1Oky1eo0jR/LMzRUMClIf8imQUh8aHR3fJCCsd4By+SVG\nR8dbUZakDmNIkPrM8vIypdIAWweENU9QKu2mUqnEWJWkTmRIkPrM1NRMfQ3C9lWrY0xOzsRUkaRO\nZUiQ+szCQom1RYrbN8zCwvU4ypHUwQwJUp9ZWdlJr1077CepmxkSpD4zMLCTXqs77CepmxkSpD5z\n8GAGmG+w1zyHDg3FUY6kDmZIkPrMxMQYyeTZhvokk2c5ffqpmCqS1KkMCVKfSaVSZDIrRI9S2Y4l\nMpk3vEWz1IcMCVIfmp2dJp1+GljaouUS6fQznD//YivKktRhDAlSH0okEszNFRgZOUMyeYLoGWyr\n9XdXgaskkycYGTnDlSuzDA4Otq9YSW0T97MbJHWoRCLBpUuF+lMgZ7h8+XnKZUin4ejRISYmpjzF\nIPU5Q4LU51KpFOfOvUCxCLkcXLgA2Wy7q5LUCTzdIEmSggwJkiQpyNMNUh8rFKIN4PZt2L8fnn0W\n9uyJ9uXz0SapPxkSpD5mCJC0GU83SJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKk\nIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBD\ngiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCoorJPwycAX4NvBnMY0hSZJiFFdI\nGADOAzMxHV+SJMVsd0zHfa7+9cMxHV+SJMXMNQmSJCkork8SJKnpCoVoA7h9G27ehH37YM+eaF8+\nH22SmqORkPAcMLFFm58AijuuRpI2sT4EFIuQy0WhIZttb11Sr2okJLwE/Mct2ty8h1oYHx9n7969\nd+zL5/Pk/dVAkiQKhQKFtY/T6m7duhXbeI2EhG/Ut9hMT0+T9VcCSZKCQr84F4tFcrlcLOPFtSbh\nHcCD9a/3AT8O7AK+DHwrpjElSVITxRUSJoFfrL9eBb5Y//q3gMsxjSmpD1QqFSYnz3L5cgmA48fh\n6NEMExNjpFKp9hYn9Zi4QsKH8R4JkpqoVqsxOjpOqTRAtToGDANQLkO5PM/FixNkMivMzk6TSCTa\nW6zUI7wEUlLHq9VqHD6c58aNl4EDgRbDVKvDVKvXOHIkz9xcwaAgNYE3U5LU8UZHxzcJCOsdoFx+\nidHR8VaUJfU8Q4Kkjra8vEypNMDWAWHNE5RKu6lUKjFWJfUHQ4KkjjY1NVNfg7B91eoYk5M+X066\nV4YESR1tYaHE2iLF7RtmYeF6HOVIfcWQIKmjrazspNeuHfaTtJ4hQVJHGxjYSa/VHfaTtJ4hQVJH\nO3gwA8w32GueQ4eG4ihH6iuGBEkdbWJijGTybEN9ksmznD79VEwVSf3DkCCpo6VSKTKZFeDaNnss\nkcm84S2apSYwJEjqeLOz06TTTwNLW7RcIp1+hvPnX2xFWVLPMyRI6niJRIK5uQIjI2dIJk8AV4me\nGUf961WSyROMjJzhypVZBgcH21es1EN8doOkrpBIJLh0qVB/CuQMly8/T7kM6TQcPTrExMRUbKcY\nCoVoA7h9G27ehH37YM+eaF8+H21Sr9nV7gLqssDi4uIi2Wy23bVI6gLFIuRysLgIrfyx0a5xpbsp\nFovkcjmAHFBs5rE93SBJkoIMCZK0DZVKhZMnT3H8+DHgGMePH+PkyVM+SEo9zTUJkrSJWq3G6Og4\npdJA/UFT0XMkymUol+e5eHGCTGaF2dlpEolEe4uVmsyQIKlrbFxAuH8/PPtsfAsIa7Uahw/nuXHj\nZcKPqh6mWh2mWr3GkSN55uYKBgX1FEOCpK7R6qsIRkfHNwkI6x2gXH6J0dFxLl0qtKI0qSVckyBJ\nAcvLy5RKA2wdENY8Qam02zUK6imGBEkKmJqaqa9B2L5qdYzJyZmYKpJaz5AgSQELCyXWFilu3zAL\nC9fjKEdqC0OCJAWsrOyk164d9pM6kyFBkgIGBnbSa3WH/aTOZEiQpICDBzPAfIO95jl0aCiOcqS2\nMCRIUsDExBjJ5NmG+iSTZzl9+qmYKpJaz5AgSQGpVIpMZgW4ts0eS2Qyb8T2JEqpHQwJknQXs7PT\npNNPA0tbtFwinX6G8+dfbEVZUssYEiTpLhKJBHNzBUZGzpBMngCuAqv1d1eBqySTJxgZOcOVK7MM\nDg62r1gpBt6WWZI2kUgkuHSpQKVSYXJyhsuXn6dchnQajh4dYmJiylMM6lmGBEnahlQqxblzL1As\nQi4HFy5ANtvuqqR4ebpBkiQF+UmCJG2h1Y+oljqFIUGStmAIUL/ydIMkSQoyJEiSpCBDgiRJCjIk\nSJKkIEOCJEkKMiRIkqQgQ4IkSQqKKySkgE8BN4BvA/8TeA4YiGk8SZLUZHHdTOldwC7gY0QB4d3A\nvwHeDpyKaUxJktREcYWE36pvayrAvwI+gSFBkqSu0Mo1CXuBb7RwPEmSdA9a9eyGNPA08EstGk+S\nutrGh0rdvAn79vlQKbVWo58kPAe8ucW28QnrjwK/CVwAzt1DrZLUN/J5+OQnKzz88Clu3DjGl750\njBs3jvHww6f45CcrBgS1xK4G2z9U3zZzE/hu/fWjwCXg94APb9InCyw++eST7N2794438vk8ef81\nSOojtVqN0dFxSqUBqtUxYHjdu/Mkk2fJZFaYnZ0mkUi0q0y1QaFQoLD2EVPdrVu3ePXVVwFyQLGZ\n4zUaEhrxGFFAWAA+BKxu0jYLLC4uLpLNbvwgQpL6R61W4/DhPDduvAwc2KTlNdLpp5mbKxgU+lyx\nWCSXy0EMISGuhYuPAV8g+lThFJAAkvVNknQXo6Pj2wgIAAcol19idHS8FWWpT8W1cPFniBYrvhP4\n03X7V4H7YhpTkrra8vIypdIAWweENU9QKu2mUqmQSqVirEz9Kq5PEj5dP/Z99a9vWfe9JClgamqm\nvgZh+6rVMSYnZ2KqSP3OZzdIUodYWChx5yLF7RhmYeF6HOVIhgRJ6hQrKzvptWuH/aStGRIkqUMM\n7OgReKs77CdtzZAgSR3i4MEMMN9gr3kOHRqKoxzJkCBJnWJiYoxk8mxDfZLJs5w+/VRMFanfGRIk\nqUOkUikymRXg2jZ7LJHJvOHlj4qNIUGSOsjs7DTp9NPA0hYtl0inn+H8+RdbUZb6lCFBkjpIIpFg\nbq7AyMgZkskTwFX+8q72q8BVkskTjIyc4cqVWQYHB9tXrHpeqx4VLUnapkQiwaVLBSqVCpOTM1y+\n/DzlMqTTcPToEBMTU55iUEsYEiSpQ6VSKc6de4FiEXI5uHABfAaeWsmQIEkdqFCINoDbt2H/fnj2\nWdizJ9qXz0ebFCdDgiR1IEOAOoELFyVJUpAhQZL0A4UCvO99Fd7xjlM88MAx7r//GA88cIx3vOMU\n73tf5QenQNQfPN0gSQKgVqvxyivjlEoD9UdWR0+kXFmBb31rnpWVCV55ZYWf+qlpEolEe4tVSxgS\nJEnUajUOH85z48bLwIFAi2Gq1WGq1WscOZJnbq5gUOgDnm6QJDE6Or5JQFjvAOXyS4yOjreiLLWZ\nIUGS+tzy8jKl0gBbB4Q1T1Aq7aZSqcRYlTqBIUGS+tzU1Ex9DcL2VatjTE7OxFSROoUhQZL63MJC\nibVFits3zMLC9TjKUQcxJEhSn1tZ2UmvXTvsp25iSJCkPjcwsJNeqzvsp25iSJCkPnfwYAaYb7DX\nPIcODcVRjjqIIUGS+tzExBjJ5NmG+iSTZzl9+qmYKlKnMCRIUp9LpVJkMivAtW32WCKTeYNUKhVj\nVeoEhgRJErOz06TTTwNLW7RcIp1+hvPnX2xFWWozQ4IkiUQiwdxcgZGRMySTJ4CrwGr93VXgKsnk\nCUZGznDlyiyDg4PtK1Yt47MbJElAFBQ+9rECn/pUhYGBGb75zef53vfg/vvhwQeH2L9/io9+NIX5\noH8YEiRJP5DPQz6fAl5odynqAJ5ukCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJ\nQYYESZIUZEiQJElBhgRJkhRkSJAkSUFxhYTPATeB7wCvAf8eeCSmsSRJUgziCgm/A/wDYD/wC0Aa\n+I2YxpIkSTGI6ymQ0+tefwX4FeCzwH3A92MaU5IkNVEr1iQ8CPxD4BIGBEmSukacIeFXgL8Avg78\nKPDBGMeSJElN1khIeA54c4stu679C8B7gJ8Fvgv8Z2DXPVcsSZJaopH/tB+qb5u5SRQINnqMaG3C\ne4ErgfezwOKTTz7J3r1773gjn8+Tz+cbKFOSpN5UKBQoFAp37Lt16xavvvoqQA4oNnO8Vv1m/zhR\ngPhJ4NXA+1lgcXFxkWw2G3hbkiSFFItFcrkcxBAS4ri64VB9+2/AnwHvBCaBLwO/F8N4kiQpBnEs\nXPw28PeA/wqUgE8Bf0T0KcIbMYwnSZJiEMcnCX8M/HQMx5UkSS3ksxskSVKQIUGSJAUZEiRJUpAh\nQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUpAhQZIkBRkSJElSUBzPbpAkadsKhWgDuH0b\nbt6Efftgz55oXz4fbWo9Q4Ikqa3Wh4BiEXK5KDRks+2tS55ukCRJd2FIkCRJQYYESZIUZEiQJElB\nhgRJUttVKhVOnjzF8ePHgGMcP36MkydPUalU2l1aX/PqBklS29RqNUZHxymVBqhWx4BhAMplKJfn\nuXhxgkxmhdnZaRKJRHuL7UOGBElSW9RqNQ4fznPjxsvAgUCLYarVYarVaxw5kmdurmBQaDFPN0iS\n2mJ0dHyTgLDeAcrllxgdHW9FWVrHkCBJarnl5WVKpQG2DghrnqBU2u0ahRYzJEiSWm5qaqa+BmH7\nqtUxJidnYqpIIYYESVLLLSyUWFukuH3DLCxcj6Mc3YUhQZLUcisrO+m1a4f9tFOGBElSyw0M7KTX\n6g77aacMCZKkljt4MAPMN9hrnkOHhuIoR3dhSJAktdzExBjJ5NmG+iSTZzl9+qmYKlKIIUGS1HKp\nVIpMZgW4ts0eS2Qyb5BKpWKsShsZEiRJbTE7O006/TSwtEXLJdLpZzh//sVWlKV1DAmSpLZIJBLM\nzRUYGTlDMnkCuAqs1t9dBa6STJ5gZOQMV67MMjg42L5i+5TPbpAktU0ikeDSpQKVSoXJyRkuX36e\nchnSaTh6dIiJiSlPMbSRIUGS1HapVIpz516gWIRcDi5cgGy23VXJ0w2SJCnIkCBJkoIMCZIkKciQ\nIEmSgly4KElqq0Ih2gBu34b9++HZZ2HPnmhfPh9taj1DgiSprQwBncvTDZIkKciQIEmSguIOCW8F\n/gB4E/ixmMeStqWwdvJTiplzTd0u7pDwAvDVmMeQGuIPbrWKc03dLs6Q8HeA9wH/NMYxJElSTOIK\nCQngFeAE8J2YxugIrf5NoZnj3cuxGu3bSPvttN2qTS/+Budca35751qYc6357bt1rsUREnYBnwZ+\nHSjGcPyO4j+m5rfv1n9McXOuNb+9cy3Mudb89t061xq5T8JzwMQWbQ4CR4AHgH+54b1dWw1w/fr1\nBsrpDLdu3aJYbF0WauZ493KsRvs20n47bbdqs9n7rf47axbnWvPbO9fCnGvNbx/nXIvz/84t/+Ne\n56H6tpmbwCxwDFhdt/8+4PvAZ4CPBPo9AiwAjzVQjyRJinyV6Bf115t50EZCwnY9DvzQuu8fA34L\n+AVgHnjtLv0eqW+SJKkxr9PkgNAqKbxPgiRJXadVd1xc3bqJJEmSJEmSJEmSJElSy/0Q8N+BLwJ/\nDDzd3nLUwx4HvgAsAX8I/P22VqNe91ngm8B/anch6lk/B5SALwEfbXMtsXkLsKf++q8AN4AfaV85\n6mFJ/vJKnB8BvkI056Q4/CTRD3FDguKwG/gTotsLPEAUFB5s5ACturrhXr0J3K6/fhuwsu57qZmq\nwB/VX/9vot/yGvpHJTXgd4G/aHcR6lmHiD4VfZ1onv0X4GcbOUC3hASAv0r08e//Al4E/m97y1Ef\n+AmiG475uHNJ3ehR7vz59ac0eGfjbgoJ/wf4ceBHgTHgb7S3HPW4h4B/B3ys3YVI0g7d8z2K4goJ\nR4HPEyWYN4EPBNo8BSwTPUr694H3rnvvGaJFikVgYEO/rxEtLHtPUytWt4pjrr0V+A3gXwBXY6la\n3Siun2vebE53c69z7jXu/OTgcTrkk9G/DUwCP0/0B3v/hvc/CHwXOAm8C/g1otMHj9/leIPAD9df\n/zDROeN3Nbdkdalmz7VdQAH453EUq67W7Lm2ZgQXLirsXufcbqLFio8SXSX4JeCvxV51g0J/sHng\n7IZ914h+cwvJEiXwP6hvoSdJSs2Ya+8lemJpkWjOfRF4ook1qjc0Y65B9PC7rwHfIrqSJtesAtVz\ndjrnjhFd4fBl4B/FVt092PgHu5/o6oSNH5tME51GkHbKuaZWca6p1doy59qxcPFh4D6gtmH/14iu\nUZeaxbmmVnGuqdVaMue66eoGSZLUQu0ICV8nOueb2LA/QXTDB6lZnGtqFeeaWq0lc64dIeF7wCL/\n/12ffga40vpy1MOca2oV55paravn3NuJ7mPwHqLFFuP112uXZRwnumzjI8AQ0WUbf87WlwpJGznX\n1CrONbVaz865EaI/0JtEH4esvT63rs0niG4AcRtY4M4bQEjbNYJzTa0xgnNNrTWCc06SJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJKkL/D+FHZgKBWUWhAAAAABJRU5ErkJg\ngg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7fa86c4d3810>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xscale('log'); ylim(-4,2)\n",
|
|
"errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXt8VPWd//+cXCEJ4eaAQFAwCBK8FSzXrojcVJpURQvZ\n1X7D2i3bdrt1q4S2tt+1v6JbQ7vd7m5/an91SbfWiBdquVRuXhAhEA21WmKNxARJQGa4kwTI7fz+\n+MzJOTNzJpnJnLnm/Xw88oBkLufMmXPO5/15f17v1xsEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAE\nQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEoc80AF0WP/8dw30SBEEQ\nBCGOGQ6MMP3MRwUPN8dypwRBEARBSBz+A6iN9U4IgiAIgpAYZAAngO/GekcEQRAEQbCPtAi+953A\nYKC8h+eM8vwIgiAIghAaxzw/UccRwffeBlwEvhTg8VGjR48+evTo0QjugiAIgiAkLU3A54lBABGp\nzMOVKLHkXT08Z9TRo0d59tlnmTx5coR2Q/DlwQcf5D/+4z9ivRv9Cjnm0UeOefSRYx5dPvzwQ+67\n774xqOx90gQPK4DjwJbenjh58mSmTp0aod0QfBkyZIgc7ygjxzz6yDGPPnLM+xcpEXrPFcBvUGWa\ngiAIgiAkEZEIHhYAecD/ROC9BUEQBEGIMZFYttgOpEbgfQVBEARBiAMikXkQ4pji4uJY70K/Q455\n9JFjHn3kmPcvIlmq2RtTgerq6moR2QiCIAhCCBw4cIBp06YBTAMORHv7knkQBEEQBCEkJHgQBEEQ\nBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEk\nJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQBEEQBCEkJHgQ\nBEEQBCEk0mK9A4IgCMlERYX6aWqCTz+FCxcgMxMuXYKBA+GKK2DMGCguVj+CkIhI8CAIgmAjxcWw\nYIGb0tIyTpz4EydOnOTSpQ46OnK47LJcrr/+esrKSnE6nbHeVUHoMxI8CIIg2IjL5WL27OXU1T0M\nVANP0tExA3Bw+HAX5eX72b17GZWV6yWAEBIW0TwIgiDYyOrVa6mrexx4A3gcmAk4PI+mALOoq3uM\n0tKyWO2iIISNBA+CIAg2UlVVA8wA9H+tmOF5niAkJhI8CIIg2EhHRyoq06D/a0WK53mCkJhI8CAI\ngmAjaWmdgAbo/1rR5XmeICQmEjwIgiDYyPTpBcB+QP/Xiv2e5wlCYiLBgyAIgo2UlZWSn/99YB7w\nfaAS6PI82gXsJT//EcrKSmO1i4IQNhI8CIIg2IjT6aSycj0lJW9wxRUpwDdIS7sBmMWVV95OScnv\npUxTSHjE50EQBMFGlMOkk6amtbS2Qna24TDZ0gLvvw8PPCAOk0JiI8GDIAiCjUhQIPQHZNlCEARB\nEISQkOBBEARBEISQkOBBEAQhglRUwOLFbsaOXUVOzhIyMorIyVnC2LGrWLzYTUVFrPdQEEJHNA+C\nIAg2obfjBrh4EQ4fhlGjXLzzznJaWx8HygAH7e1dtLRUkZm5jAUL1gNSeSEkFpJ5EARBsIniYnjm\nGTfDh6/i0KEl1NYWUV29iNbWNfg3yJopDbKEhEUyD4IgCDZhtOM2sgzNzXcAswK8YgZVVWuit4OC\nYBMSPAiCINiE0Y57pumvaUiDLCHZkGULQRAEmzDacZuRBllC8iHBgyAIgk0Y7bjNSIMsIfmQ4EEQ\nBMEmjHbcZkpRDbL24t0gq1IaZAkJiwQPgiAINmG04zbjBNYDT5OTMx0oYvz4QkpKNkiDLCFhkeBB\nEATBJox23L5tuA+RlXWEadNeZeLEjUyYsIWTJ9fywANOMYkSEpJIVFuMAZ4AbgMGArXAA8CBCGxL\nEAQhbti500l+/nouXSrj9Ok1tLWlkpHRydChBRQUrKekxClNs4SkwO7gYSiwB3gNFTy4gHzgjM3b\nEQRBiDtUR00nsDbWuyIIEcXu4GE1cBiVadD51OZtCIIgCIIQQ+zWPBQB1cCLwHHUUsVXbd6GIAiC\nIAgxxO7g4Srg68BHwCLgSeA/ga/YvB1BEARBEGKE3csWKUAV8APP738GrgX+Efhfqxc8+OCDDBky\nxOtvxcXFFIuqSBAEQRCoqKigwqcs58yZ2EoJAxmu95UGYDvwNdPfvg48AuT5PHcqUF1dXc3UqVNt\n3g1BEIT4wqpd95VXwoAB6m9KbBm7/RMSiwMHDjBt2jSAacSgmtHuzMMe4Bqfv01EBRWCIAj9luJi\nWLDATWlpGbt21VBfn0p7eydz5xZQVlYqZlFCQmF38PBzlAfr91CiyenAP3h+BEEQ+i1W7brr67uo\nr69i9+5l4jYpJBR2CybfBe4CioEPUMsV3wbEQ00QhH6Nd7tufcU4BZhJXd1jlJaWxW7nBCFEImFP\nvQW4HuUuOQV4JgLbEARBSCis23XrzPA8LgiJgfS2EARBiALW7bp1UjyPC0JiIMGDIAhCFLBu163T\n5XlcEBIDCR4EQRCigHW7bp39nscFITGQ4EEQBCEKBG7XXcnAgY9w9GgpRUVIi24hIZDgQRAEIQo4\nnU4qK9dTUrKBK65YBHyOtLQbgO8wYkQ6o0eX8cwzbjGKEhICCR4EQRCiQEUFPPCAk6NHV+F2dwFP\n0tHxPlDJ4cOvUl6+lFmzluF2u2O9q4LQKxI8CIIgRIHiYti4EUaPXsuFC+L3ICQ2djtMCkK/QvoV\nCKGi/BwCBQgzqKpaE83dEYQ+IcGDIISB9CsQQkX8HoRkQIIHQQgD6VcghIrh92AVQIjfg5AYiOZB\nEMJA+hUIoSJ+D0IyIMGDIISB9CsQQqUnv4f8/EcoKyuN3c4JQpBI8CAIYSDr1wIo0ezixW7Gjl1F\nTs4SMjKKyMlZwtixq1i82O1l/LRzp5P8/PXk5W0gO7uQ9PQisrMLycvbQH7+enbulGUuIf6R4EEQ\nwkD6FQgA8+e7qKtbRmPjUlpaNtPevpGWlk00Ni6lrm4ZCxYY3g3FxbBtm5OysrXMmVPOyJGTADh+\n/CP27CmhtNQ/4BCEeEOCB0EIA1m/FqBv2pdQAg5BiDckeBCEMJD1awH6pn0Rsa2QyEjwIAhhoK9f\nDxu2gZQU1a8AVL+C+vp0rrmmTFLQSUxFBRQVweHDoWtfRGwrJDLi8yAIIVBRAeXlbmpqyjh9uoa2\ntlQyMjrJzb2SzMx2Llx4EjUgOOjq6uLUqSpPCno9IEK4ZEM3Cbv66qOE6t0gYlshkZHMgyCEQKB1\n6mPHWrhw4d+QFHT/wuVyMWvWMs6enQLsC/Asa+2LiG2FREaCB0EIkooKuPHGH1NXtwb/IOEEMCvA\nKyUFnawYuoWfAo/gr33ZE1D70pvY9ty5AlnuEuIWWbYQhCCZP9/FiROvA/9p8aikoPsjRpMrB7De\n8/81qPOhg8GDj1JZucPSorysrJTdu5dRV/cw8Drwoed158nJOcH27S8weXK0PokghIZkHgQhSFav\nXkt7+2isgwRJQfdHvHULTmAtsAXYCPyRjo4reOABp2UGwel0snHjfzNo0PeAe4DNnte9RnPzrygs\n/CZut5RrCvGJBA+CECRqlpmBdZBQQKhr3kLi05tu4corO9m40botu3KlXMf580/jvww2S7QyQlwj\nwYMgBImaZQZapy4FHgL2IH4PBqHYNici4ZiEFRdDbq6UawqJiQQPghAkapa5CrAyhfqYtDQ3y5c/\nz/jxhUAR48cXUlKyoV+35U52F8VwTcKkXFNIVCR4EIQgUbPIT1DCuA2AChLUv0+TmrqI2tr/YsKE\nLUycuJEJE7Zw8uTagGve/YFkdVHUMyrXXFNGfX0K8A2UOdgsUlJuZ9iw4JpcSbmmkKhItYUgBImh\njn8MeAI1CHYB+8nPf8STYYjtPsYbRjWCFTOoqloTzd2xjfnzXfzwh8s5depxjGqLLqCK8eO/T2Vl\naVDZpunTC6ip2Y8KrnwRrYwQv0jmQRCCxOl0Ulm5npKSDQGXJpJ9jT9UkjUtb1dGRXqjCImKZB4E\nIUgqKqCiQpXjZWdDdjacPw+bN8OLL8JVV8GoUS7efns5ra3GjLS9vYuWlioyM/ufTbWRlg/etjkR\nsCujovdGuXSpjNOn13TbnQ8dWtC97GFVqSEIsUaCB0EIkuJi75I7t9tNaWkZu3bVcOJEKs3NnXzy\nSQutrbpNtY73jHTdurVR3vPYkaxpebsyKuqc0v0hBCFxkOBBEPqAy+Vi9uzlntS1yjDU13cBC7Ae\nKCGR1/j7irdOZAa+OpGysvWx3cE+kqwZFUEIFtE8CEIfCLzmnUMyrvH3lWB0IolIOP4OgpAMSOZB\nEPpA4DVvmZGaMetEJkyA9HS48ko4eRIeeMB/KShRSNaMiiAEiwQPgtAHAq956zPS5Frj7yuJGhz0\nhggdhf6OBA+C0AcCr3mXAsuAHwMTUK2aDwLtOBxH2bbtVhYvdlNSIoNLIiNCR6G/I8GDIPSBwFUE\nTuBhBg5cxcWLp9G0deiCSk3r4tixKrKykr9kUy1XqP9fvAiHD6vligED1N+SNSPRVyoqoLzcTU1N\nGadP13hlMgoKSiXYFOKOQMquaDAVqK6urmbq1Kkx3A1BCB23282sWYHXvD//+Sk8//zfYb18UUlJ\nyYa4KtmMxGBvLmWtr09l/PhO5s4toKwsOPfF/oR39c4MzI6V+fnfT2hxqRAZDhw4wLRp0wCmAQei\nvX2pthCEPqCveeflbSA7u5D09CKyswvJy1M9DXbv/oRE6pZYXAzPPONm+PBVHDq0hNraIg4dWsLw\n4at45hl3yIGDy+Vi1qxllJcvpb5+M7CR+vpNlJcvZdasZbjdid0Qy26StQeIkLzIsoUg9IHe1rwn\nTUosW+ZAvhX19VXs3r0s5Jmv92Co03/NsnojWXuACMmLZB4EIQIkSrdEvRfH+PFfpq5uDXbNfNVg\nmDiZl1iTrD1AhOTF7uDhUdRCnfnnqM3bEIS4J1FMhObPd1FXt4zW1hRglukRN7AKWAL8G7/5zdaQ\nmnv5D4bm97uTDz/8tN82C7MiUYJNQdCJxLLFX1AevTpy1gv9jkQxETKWFx7HGOxdwHLP34xKkcbG\n4Jt7eZeyhv9+8UKkqkiStQeIkLxEYtmiE3W30H9ORmAbghDX9Cao3LkzPgZLY3lBH+zdwJeB8JYw\nvDMva1GBQ+KLAe0WlupIa24h0YhE5uFqoAm4hLp7fB+oj8B2BCFuiVcTId1P4N13yzh7tobOzs9Q\nA3oB8CrK1Mp3CcNMcOI978zLQZJFDGi3sFRHHCuFRMPu4GEfcD9QC1wO/ADYC0wBTtm8LUEQQmT+\nfBc//OFyTp16HKVBuAOVcSgFbgV+Bfwb4Yr3zINhU9NnaJr9YsBYGCtFqookXoNNQQiE3cHDVtP/\nD6JycHXA/wF+bvO2BCGuiUfXQGPwuwqlQ5iCivlnAaNRg2L4zb3Mg+GUKUuoqdHfz42asdcAqUAH\nn3xyNCTLbv24fvDBv/LZZ294uXi2t3fR0hI5LYWUVAqCItI+D63AByiTf0sefPBBhgwZ4vW34uJi\niiVHJyQ4+iy/sdFIcUd6cOsNY/ArRekQ8lG9OB4DMjGWMOwT7xliQD1gMY4HdNHRsY+6uuCPh35c\njx0bC/wP0fSSkJJKIRZUVFRQ4VOWdObMmRjtTXTIBBpRyxe+TAW06upqTRCSkZKShzWo1ECz+Nmr\nlZQ8HPV9mjix0LP9OzTo8vzfpcHDGlzr+ZtLg3ka7NWg0/OcTg3e1vLz52kulyukbbpcLi0/f54G\nX/G8Z3jHwziu5s/g+9OpFRTc0ZdD1CMFBdHfpiBYUV1draFShDHp72B3tcVPgZuB8SgJ90tADvAb\nm7cjCHFPPBolGSWU5hm0vtZ+Gyrj4ATWAxuAQqAImE9W1iN9qhTR9Q9paQdRWQKz50OR59+XefHF\nPwXl+WAc1+hnARLFv0MQIo3dwcMYoAL4K/AycBF1tzhi83YEIe6JtxR3RQWcPn0VSopkZUpUiiqO\n2gsMRwUUm4DvkZ/voKHhRbZtC12nUVwM27Y5ueqq0ajAYRmwFFA9L9Q27qGtrYkFC3rveWEc1+gb\nK0lJpSAo7A4eilEBRCaQB9yLCiQEod8Rb66B8+e7yMz8E/AwcBlKKGlGzzg8TVradNu9KdTnLSOQ\n50N7+6+D8nwwjmv0swCJ4t8hCJFGGmMlIfGo8u+PxJtr4OrVa2lo+ClKJPko8PfAr1GVFroD5iHy\n849QWfmq7S2g1fGoJnA54iyqqh4P8n32ozIlutjT7OJZSX7+DyPi4ikllYKgkMZYSYjer6CxcSkt\nLZtpb99IS8smGhuXelTt0g45GsRbitvQCjiBXwJvAa+g6xocjhsiOoMuKyslPf004S7lGMf1EGqV\ndAPwRWAhKSnXMWLEOlpbpzB+fAlpaUWkpi4gNfUWUlMXk5ZWRE7OkpD7augNxMaOXUVOzhIyMvr2\nPoKQLEjmIQnpzcjmhhseJTU1S7ISESbeXAP9NRjeM+irry7io48iN6PeudNJRsYI2tvD85DQj+vp\n08ols6srFYfDQUrKjeTk/IIzZ/6JtrbHUYGSG1Ue+hPP7w5aWkIvl43HsltB6K9IqWaE6Lmc7JiW\nnn6Np9TtuKdE73YNFmgOR4E2atQ/aYsWubTnnov1pxDsJh7KDCNdvur//vZsLx7LbnWee07TFi1y\naXl5D2vZ2Xdo6emFWnb2HVpe3sNyLScxyVaqKcQBPav8H6O9/RkMw56lwBZgB5r2AceOFcvSRpIS\nD2WGwS7l9HWZwL881p5y2Xgsu9XxXqZcR3v7JFpaNBob32PHjlt46KFvydKKYDsSPCQhgVX+LuB1\nlEAuUKfD2QnX6VAIjnjQYARbrdBX3Y5/4Bx+uWxFBTQ0EPb7RAp/y3GZEAiRRzQPSUhglf9aVP8C\nB2pGJh79/Qmn00ll5XpKS8vYtWsN9fWpjB/fydy5BZSV9a0bZKgEW63Q1wZURuCsD/TB9+kIVKWU\nm3slFy40BP0+0cbfctz3mM2OmF13LJBqsvhAMg9JSOAZ5rtABv4Og76IR38yUlEBDzzg5OTJtUyY\nsIWJEzcyYcIWTp5cywMPOOMqrR3KMoF5iaO2tgl13usEv1QTKNtx7FgLmnZTD+9TGVNnSSPbEr9L\nK3Yi1WSCCCYjRCABVWrqTJOArGfx3Jgxd4gIyyZE0BY6Rg8O65+JEwu7n3v8+HFP7wxdBDxPgz2e\nfhwun9/1Ph17/fp0BBZF3mF6X99+H3u09PRrQu73YSeGEDb4Y5bIxLN4NZrEWjApyxZJSKDUsGqN\nvAq1LjoWoxWzL/v5wheu5N13l0lpmg1ImV/oGMsPJ/Bu4d0JTKapqZWKCnWu+y9xrPe85jGgjdTU\nk2Rmfh9Ny+TChcyASzWB222nAiNM77vGtC8FpKdfEfWyWzPGMmX4rdQTAWmLHh/IskU/QqVWP0Hd\nBHNQDoN7sBLPORypphuyt42wCCpDw3twS6xjGStzJHWuvop1H4ylpKS4u9PTxhKH3nCrBPgIuAS0\n09nZQWtrLpcupZGWNomzZ8t5/33/pZrAVUr6oKwH5Fs8+7IFeIJx49JiusZuLFNaWY7rJE/Trnjr\nGdNfkeChn+B2u7l4sZX09BVALfBfKIfB3wPzgc+RlXV7t+p99+5P6A/rp9Egnsv8eiNS68u9BSUz\nZ5aSk7MalT3wDbpmcf78k91BlxosfBtu/RoVDP8E+Auwka6uTXR0LGXo0GVs3epm40a8Bv3AVUoF\nxPOgrFewjBqVg8MReEKQLE274q1nTH9Fgockx+12M2vWNxg58maef/5+2tt3oSyJvwj8LfAqQ4Zc\ny6JF2/n1r7dx5Mhatm1zkp0t0b1dJOpMqaICbrzxx9TVrcHurElvQQmApo3Gui8IwMzuoMu64Vag\nUuTA+x3YB6MUeIhoDMp9yfToXUt/9rNfsnDhW+TlvZLUTbviwa9EiC0imIwwTz55XMvKmqfBVzxC\nr8ACI19RH1wbczfCZCEenB37wvHjx7X09IKI7HswordgRZPqveb57Gfox9zlcnmEl3s1+Ewzu6/C\nRC0l5QtaSsoiLTU1coJXb/FnV/f+QqWfwLO/4v099SyCTWZiLZiUzEMSs3//WlpbH0eJzgLN4FTa\n3HcmCLcRz6naSBCp9f1EnSmtXr2W9nbdFwQMTcESoAhYRE3Nx31qONXzUs5VPPvsDj7+uJ5g0tPW\nDbdCz/YY6f/f4nDcgtlsCT6kq2st48e3c+zYMzQ3b+nO0tmpd0hkfUy0kLbogmQebCZw9qD3GZz/\nTFAvces/0b1/yZ89fT9iPVPqa6moypjoM3i9VLEywO/6Z/qjlpp6rZaVtajH7QTOKpjf96FesxP6\n58vOXhR25kEnlqWAiZqlEqJPrDMPsUSCB5vxT3kWBn0jtb5puUwD6OeS3pvAGDQCDYx7+jTYx9rn\noa+pcDXA68ckmIZTgY6b/3YCD5IPa8YSW/ABrJ0NsWI5gIfib9FXYn0+xss+JDoSPEjwYBv+N1D9\nJmjf+nIyYwwayWVC09eZtDoeekBwi9b7zD747fRsyGR+Xz2AvUODQs3huNZygPHP7gRvDuVLLK+F\naAQu8aCriId9SHRiHTyI5iGJ8F9H1tfaSwEru+o93Wpx7/In37XtO/jkk0+TvjNfstr89rVU1NsX\n5CK9awqC305gC/U2n/f19la4+urxlloD33Xw1NQHSElJISXl+6Sk3E5qahGZmYVkZj5LY+MUxo4t\n6da0DB++issu+5Dhw5XWpba2HnUt+F4HS4CHgdYAnzF8oqGPsdZVnARepq5OY+TIyHt5iLZDCAfJ\nPNiM/4zJnPb1Vo/7ruFHKmWfSCSrzW9fZ9Les/nbg8g8BL+dQGnrtLRpEZt5B57tbtHS0iaZ/v6w\nBpsDXAd7tdTU67WnnorMdWCHPsb32KamFmopKfM1h2OupjJI1/gc4+CXm+xCtB3hI5kHwRbcbjfH\njx8FL3W6EzVr3ACsAF4jO9tBXt6NLFz4Jj/72X91z+CMmeAqrI15kr9VtzHrSy4Tmr6a6phn82lp\nRzEaTrmBFtPvOsFvR/cmOHJkLc3NW2hr20hz8xbuu28ekZp5B57tvkFHxzrT30uB7xLIoKqz80n2\n7YvMdWBHJcH8+S7ee28ZjY230tIymc7OM3R1HUbTSj2fJQ/vCpovoyy3o5cFSFTvEyE+kMyDTYTi\n5xAIfbYSyZlfvGPM+vp+HOMRO6oHjGOjz8j/qPmLGR8K+7j1NPMeMWKedsstNX0W2QWe7Vr93bd6\nI3GuA/V9b/F8P1s0VXW1V/NviqdnHHw9MiL/WSXzED6xzjzEEgkebMIYHAKp098OOv3Yn4WTegA1\natQ3NIfjGg3e9hvAEnHpxs5UeFbWXE2JEP3FjDBbczgman0RKfpuxypAmDv3oDZiRN/T64HPbau/\nx/46CK/EVi9zNRto+QqC9X+j/1m9A1rf8+gWLStrrlRd9IIEDxI8hI13FO97Id6upaXdEPSFKDOC\n5Csjs/Pz9HZ+ZGfPj9hxCzeDElrmIbbXwXPPadrcuQe11NTrLYKlvVpubuAsTFaW2Z9Dvw+YAyJ9\nknGL5h1URO+z+mey/D9jIgbq0USCBwkewsbObEEsDXKE+MdalNt7KWU42LWkFvjcNntLmP8Wu+vg\n+PHjWk7OtRb7pf9s1gYNsgosKj2W4uaAwRxImCcZM2P2Wa0zWXK/CQUJHiR4CBs7swWxdkMU4hvv\ncy18lX4wWRGjSmJBWEGyde+KWzWYrEG+5r1M9ZkGs7RYLV1Z9+sw/zzUw6D7Fc07q2BewrDygQl/\nuTMUXC6XVlLysFZQcIeWkRFaDx3zaydOLNQKCu7QSkoe7pf3pVgHD1JtkQTYWRvuXy9fRErKIlJS\nvkd9fTqjRj0Q8RpwIX7xPtdC71zpSzAtv40qiQwIowrGv3fFPM/7/Q+wF6Pb7ELgVjIyCsjMfJ7M\nzOj3T1CeGDkErkj4EJgV4LEyHI4jqN40BcB8lM/LPLz9XvRW4+aqrEKUp8V8srIesf2zPvWUi3Hj\nllFevpSams20tY0n2KoL39fW1m6kpmYT5eVLGTduGU8/3bf28ELiIZkHm4hktkCc4AQzPXs/hJ7x\nCmaZzG7nT2Ob8btEp5aHesoo9rxUOXDgLR69xCbNqLp4SIP5GtyoQYEn4zLJMruSlTUvIl4WgV1w\nez+HZEnVG8k8CGETyS5z4gQnmDGfaw7HZ4Rbq+/tfunr6Phjnn12Bw0NYPgvWDulZmU9wsyZpUF9\nBmOb8eskqrIokwmcUTxPT1mYYcOymD9/J8OG7SIlJQV4BNgGtJCSMoJhw+5g0aJdPPXUbkpKXqGg\noJCJE4soKCikpGQDDQ3rWbnS/uxKYBdcK7yzpn11ShUiQ1qsd0AIn+JiKC7WbXztRV2QgQKEGVRV\nrbF9m0L8Yj7XpkxZQk2NhnUAEZyZlmEW5AKWo5ZByjx/66KjYx8Oxz+gBko9vV6GMjVKBToYPPgo\nH3+8A6czuMHO2Gb8GhVNn15ATc2tqGDpMdSgmYIKlvaRltZER8c+rJcu9rNwYQHr1gV3T1i50v77\nRiD8zaFKgWX4f8b9Huv89T281owYS0UbyTwIPdJfLtiKCli82M3Ysaq/gd73QLQdgbFDa2O4XwbS\nT8ymvf0mDDdL714X8EPuumth0IGD9zbj10m0rKyUESPWonppvIxZi5CaupLp09cxYsQj+GdhKrv7\n1cQj/m6nZr3FF4GpAbOmfXVKFSKDBA9Cj/SXCzYY4Z7gTeDmVsEPYEYA0lNKugyH4wHL7YSyXOG/\nzcg3oeorO3c6ufHG9eTlvUF29oekp6eSnd1JXt5NzJ//OlOnzvE8bs9SZbSCZ+uAUw8If0hJyXya\nm7dYNj+LRtMwITEQwWQC0F9ESv3lc9qJHeZThgCz5zLMq65aZFuJ3lNPuTx27rqFs6/QeE/EBIN9\nIRqmZdHqtqBAAAAgAElEQVQSRocj7pYycm9iLZiMJRI8JAD95YIVZ83YEKueKrpfwMSJ87Xc3Bu1\njIxrtdzcmdrEiYvizjcgGgN7tILncAKhZHN+DZdYBw8imBR6RFfXX7pUxunTa2hrSyUjo5OhQwu6\n06Pm1GKi0l+0HfGGLsBcsWIe5eX7UZoHX+xPSTudTtati55QMBy8K550TgIvU1enMXJkEVlZwxg6\ntICCglJKSkK/JqMljA5H3B1JYbgQOqJ5EHqkuBhKSpwUFJQydGgBGRmdtLWlcvp0DTU1ZZSXJ4eY\nMBm1HdEUgbrdblasWMWUKUuYNKmIKVOWsGLFKtzu4LQiM2eWkpVlrZ/oi64hmfAvUXShKhSWAq+j\naZVh63MkeBYSCVm2SBD6g1FUMmoeovW9GS3h/bcTinZArIet8e8nYv+5Kst2iUesly1iiQQPCUIy\nDqy+JKO2I1rfW384P2KJf9dc+/Uh1t+h3vTsFs3hmBkzfYFoHayJdfAgyxYJTLTS0v3B2S2SLp06\n0fq+9O08++wbRON76w/nRywxShT15Yqh2L3E4L1sdBz4BnAzdi6N9Eagpa8bbqiRMmrBC8k8hEm0\n0tJ2tvzuz0Tr+7KrC2WwyPkRWYys2Fc8mbHILDG4XC5t5syvaw7HNaZtRSeb1NPSV2pqT63J+29m\nSzIPQp+JVt+JZBQTxoJIfV++M7aJExdRV7eGcLtQBoucH5FFz4qlpR1EnTuRMUtyOp1cc002mrYO\nOIF15QtEIpu0f/9aWlv1a+MEqsdJIfA4nZ1dUd0XITgiGTx8FyWX/nkEt9GviVa6WJzd7CES35dV\nm+KzZ0ejeh5E53uT8yOyFBfDtm1OrrpqNHY2CLPCOEfN1Re+DcsKqa09GqGlUXMlyWaUBXk+UgkS\nf0QqePg88DXgfQJPSYQwiVZ5lR02xEJkvi/vGZv+3mn0NsjY+b3J+REdjAyPuR+E3vPiiwwe/M2w\nu2Ea56i+LavBfBMdHb+0VW9gbNeqx4lktuKRSAQPOcCzwFeB0xF4f8FDtNLF0RATxopoeiFE4vuy\nzmb0PMikpX3T1u8tmc+PeMI7wxN+gzArjHNU31bghmWRWRrVz2dztuMoRmM0XySzlUz8BviZ5/9v\nAv8e4HkimAwTKZELn2h6WETi+7IWK8p5kYwYPTn8y4nt6sVhnKMuTfX9uCUi4szA2y3U4Lhn2/o1\nqe/LHr/Pnahl1HYQa8Gk3SwH/oxSagG8gQQPESMaN5NkJ5oBWCS8JPzNfVwafEODazR4W262SUak\njbS8z9HPNJgZ4Nqwt5LG2O4tGjxkcU3Gh+dEPBHr4MHO3hZjgV8AC4A2z98cBF7kBeDBBx9kyJAh\nXn8rLi6mOBkaJkSYlSud3H33ekpLy6iqWkNHRyppaZ1Mn15AWdn6sFOY/YFoefqDfX1CKiqgvNxN\nTU0Zn33WhErpzkatTy9HpZn/FZVyfgxoB44yZMitSdWPpD8S6Z4c3udoDS0tzajxyeo2bv/S6LFj\n99LaWo1//wp9maaLyZMLOXhwiy3bTRQqKiqo8FlDPXPmTIz2xn7uRKmk2k0/XagF2Db8zz7JPAgx\nJ9E8Cp57TtPmzj2opaZe75md6SnePQFmbLJcIfSdaC+NulwuLT39xoS6JmNFrDMPdgomdwLXAjd4\nfm4E3kWJJ29Eqi6EOCSRPArcbjd/+MM3eOutIjo7n0KJ2EagRJG/B7YhTo+Cnfg7T64C7gAW4nB8\nlY8+uhh087Ng2LnTSUbGCBLlmuzP2Bk8NKOksvrPQaAVOOX5XRDijkTxKND9HNavb0HTxuJtmqOn\ndMcj9fCCnaxc6aShYT0zZ/4Wh+MWVMnmFmAHmvYBlZV/x7hxy3j6aXsCiOJiuPfe60mEa7K/E2mH\nST2tIghxSaJ4FBh+DieAQVgHCYmTRRESB2/nSX931NbWx9i3z56STUica7K/E+ngYR7wnQhvQxD6\nTKJ4FHg7/1kFCW6gBamHFyJBNJufJco12d+xs9pCiBJut9tTYVHjU2FRKhUWIVJcDMXFeto/fvF2\n/puMSuvqSxd6lcVq4AeoCosZqLlBF7CP/PwfUFa2Ptq7LSQJ0XKzhcS5Jvs7EjwkGE895eKhh5Z7\nUthlqAu6i5qaKl54YRn//u/h2dP2JxIpCPN2/rsVZTutBwl6SeYs4CbUebEGlaU4T1aWRn7+i1Ki\nKfQZ4/w7gTq/ajCyYJNpamqlooIezy9zifHp0zVepcoFBaWUlMj5KQSHlGqGiMvl0iZMmOspy4tN\nOV6kTWqiRU8tgOPRYMvf+W+LpzTzDg2u1aLhAij0X9T5t0Xzdn40zMcGDbq+13tANN1c+wOxLtWM\nJRI8hIAx2M2L2UCRaANuTySatbe/89/DGtyuwQJP8CB18ULkcLlcWk7OtZ7zz+o829PrNZNo11y8\nE+vgIdKCScEmDLV9DrEqx7Pu4BgZxXWkiaYAzA68RWR/T3r6R2RnO8jLu5Hs7NFIlYUQSXbudKJp\no/EuETYzs9drJtRrLppN64TQkeAhQTAuvNiV4yXagNsT0RSABUNvN0qAbducHDmylubmLbS1baS5\neQtHjqyVungh4hQXw5gxmRjXjLnrZRFQSGPj0R4No0K95ubPd1FXt4zGxqW0tGymvX0jLS2baGxc\nams7cKFvSPCQIBgXXuxMjeJtwA2HeHOWDOdGKXXxQjQwrhkXsAxlGLUZ1RJ8E+fO/bJHw6hQr7nV\nq9dSV2ed6bSzHbjQNyR4SBCMC68UpbT3HSj2RHygiLcBNxzizVkynBul1MUL0cC4Ztaimq/5nquz\ne1y+DPWaS6ZMZzIiwUOCYFx4TlQvgw1AISplOJ+srEciPlDE24AbDvE2Ww/nRllcHHhJY9s2KX8T\n7MHoc/EufTlXvftkeF9zWVmPMHOm9zWXTJnOZESChwTBe7Abjor+NwHfIz/fQUPDixEfKOJtwA2H\neJuty41SiHf0Phe5uRfpy7mqv76kZAMFBYVMnFhEQUEhJSUbaGjw96dJpkxnMiImUQmCPthdulTG\n6dNrvAxW9MEu0jPMeNgHu4i1i52vQVVDQz3qRml1U5YbpRAfOJ1O8vKGUVPTt3PV6XSybl1w19z0\n6QXU1JidVM0kVqYzGZHgIUGI9WAXL/uQDFi7hD4M7EO5RPoiN0ohfojWoD5zZikvvLCM1lZfu/X9\nnmUOsVuPJYFyT9FgKlBdXV3N1Kn9ziBLiCGxtqVesWIV5eVL8b75ulEK9jWev6cAx1EC2XdJTR3H\ngAGIla8Qc9xuN7NmLaOuzn9Qz89/hMrK9bZdR7G+VuOZAwcOMG3aNIBpwIFob1+CB6Ff4T3rn4He\nGwSqyMr6flR6g0yZsoSams34X35u4AkyMraRlzeaI0c+pb19HXAVKttzEGjH4TjK5ZffynXX/V8J\nIoSoY+5RcerUn7hw4STQQUpKDgMG5DJt2vW89JIM7pEm1sGDCCYTALfbzYoVq5gyZQmTJhUxZcoS\nVqxY1aMhi2BNPLhkWosj3agljA/RtAxOnjxOe/szqMBhOaqmfguwA037gGPHisUoR4gJenXPI4+s\nArrQtCfRtPfp7KykpeVV3npraY9+D0JyIMFDnPPUUy7GjVtGeflSamo2U1u7kZqaTZSXx/YC9Q1o\nJk1awNVX38KkSYvjOsCJh9pxfxW5t+lOe3s1Z8+ORukfAtfUi1GOEEviIRAXYocED3FOPF6g/gHN\nr6mt7eLQoZ9QW7s1bgIcK+KhJNLfL8MqQEjz/D/2wY4gWBEPgbgQOyR4iHPi8QL1D2gCzY7jbwYS\nD7Xj/n4ZVt+xvp+xD3YEwYp4CMSF2CHBQ5wTjxeod0DjBt4g3gKcQMSDS6avQRV8hv93rO9n7IMd\nQbAilEBcdFvJhwQPcU48zJR9MQIafa1+KOF024sm8eCSabaTrq8vZ/BgB/7fsd7D5DKU/4MV4v8g\nxI5gA/F41W0J4SHBQ5wTDzNlX4yARl+uyCCcbnvRJJ5sqfWb6tmzU/APEPQeJheB/wPsIZh+AIIQ\nLbwD8eOoScMdwELS0kp48819TJq0mNWrF9PaqvuXxPeyphA84jAZ58Sjy5rhMFeDKi/UA5yXMbQP\nOt7d9laujK07ZTy5ZBrakXxU0OX7HdeSleXmRz/6AwcP/g9VVY/7GOXYZ8YjCKGiB+InT/4rZ868\nAaxD3Q/cdHQsp6FB91L5ItbOqaCWNddEaY8FO5HgIc5ZudLJ3Xev97isrYmLwcMIaPTli1LU4Keh\nbh5WyE3CF6UF0e2p13v+vwYlkuxg8OCjfPzxDs93HPtgRxDM6IH4ihXZlJevw5g0mAXUIKLf5ESC\nhwQglGYy0UAPaK6++nbOntUwUuxFyE0ieLzFsP4BwsiRRZJZEOIeIwgGQ0BtnkToy5zS9C2ZEM2D\n0CecTid33TUPQ4/hBIYRb+LOeCYexbCCECo9C6jBWNa0QkS/iYoED0KfmTmzlKwsc+VCAVIZEDzx\nKIYVhFAJLKAGlYloBVZgJfqNVoWTYD8SPAh9ZuVKJw0N6ykp2UBBQSEjRryPw/H3SGVAcPgHXyDH\nS0g0jCBY93/Rf9czEfcDu4BXUOLJhcB1DBnyXNQrnAT7kK6agq1IC93QkOMlJDpPP+3mO9/RBdQ7\nMNrLjwX+EetKi0pKSjbElZYr0Yh1V00JHgRBEISwcLvdHgH1O6hhxQ3cDui/+9JFQUEhBw9uieZu\nJhWxDh5k2UIQBEEIC2sB9Wik+ip5keBB6DdUVMDixW7Gjl1FTs4SMjKKyMlZwtixq1i82E1FRaz3\nUBASF38Nj1QTJTMSPAj9hvnzXdTVLaOxcSktLZtpb99IS8smGhuXUle3jAULYm+fLQiJiq+AOjf3\nKCqQsEKqiRIdCR6EfsPq1Wupq7NuHV5X9xilpeKxLwjhoBvaHTy4hUOHtpOf/wNi2YROiBwSPAj9\nBu9W4r7EV+twQUh04qkJnWA/Yk8t9Bu87aB9EQGXINhJPDWhE+xHMg+CrcSzKFHsoAVBEOxBggfB\nVuJZlCh20IIgCPYgwYNgK/EsShQ7aEEQBHsQzYNgK97teX2ZQVXVmmjujhd6K3FlB73Gxw56vdhB\nC4IgBIkED4KteIsS3ahAogZIBTppbDyK2+2O2UCtl5IJgiAIfUeWLQRbMUSJeke9pcBmYCOwiXPn\nfsm4cct4+mkxZBIEQUhU7A4evg78GTjr+dkL3GbzNoQ4xhAlrgWstA+zaW19jH37xJBJEAQhUbE7\neDgCrEZ1zJwGvI6ack6xeTtCnGKIEt9FDJkEQRCSE7uDh83AVqAOOAT8ADgPTLd5O0Kcovvb5+Ze\nRAyZBEEQkpNICiZTgXuBTGB3BLcjxBlOp5O8vGHU1GjACXxFkzAZaI3hHgqCIAjhEAnB5HVAM3AR\n+BXwZVQWQuhHKO3Dq1iJJmEpdXVuEU0KgiAkKJHIPPwVuB4YjMo8PA/cAhywevKDDz7IkCFDvP5W\nXFxMcXFxBHZNiBYzZ5by29/eSmfnr1CiSZ0UYBadnU+yb18ZK1dK2aQgCEJPVFRUUOHj7X/mzJkY\n7Y0i0KK0newAGoB/8Pn7VKC6urqaqVOnRmE3hGgzadJiamu3Yn2adVFQUMjBg1uivVuCIAgJz4ED\nB5g2bRqo4gTLyXkkiYbPQ0qUtiPEHZmIaFIQBCH5sHvZ4t+AP6JKNgcBy4G5wGM2b0dIAAzDKOvM\ng3SxFARBSEzszgg4gf9F6R52Ap8HFqP8HoR+hnSxFARBSE7sDh6+CowHBgAjgUXAazZvQ0gQpIul\nIAhCciKNsYSIIV0sBUEQkhMJHoSIIl0sBUEQkg8JHoR+gdvt9mRAanwyIKWSAREEQQgRCR6EpOep\np1w89NByWlsfR1llO4AuamqqeOGFZfz7v69n5UoJIARBEIJF/BeEpGf//rWewMG3PfhMaQ8uCILQ\nByR4EJIe1f5b2oMLgiDYhQQPQtKjnCzF6VKILm63mxXfXMGUOVOYNGcSU+ZMYcU3V+B2+zeEC+W5\nghAPiOZBiCqxEC6K06UQbVwuF7Nvn03d5+pgIbrMhpqmGnbftpvKrZUAlD5ayt6qvdQfqaf9i+0B\nnyuiXiHekOBB6Kbigwoq/qI6t13suMjhs4e5cvCVDEgbAEDxtcUUX9f3bqexEi5On15ATc1+vLt7\n6ojTpWA/q3+0WgUOY01/TAHGQt2FOqbfOp0md5MKGNKBL2L9XOoofbSUdb9cF83dF4RekeBB6Kb4\nOiM4OHDsANN+NY2KpRVMHWVP11Nv4aKOt3AxEi26Z84s5YUXltHa+hhK+5CCcrrc73G6XG/7NoX+\nTdV7VSqL4EszsBcaBjcYAcNbQF6ANxoDVTurIrSXgtB3JHgQvHC73ZQ+Wsqud3fBGbjnj/cw96a5\nlD1aFnbqVAkTA1U2zKCqak1Y7x8IcboMjkhnnvoLbrebjxs/tl4l2wvMxztgcNCTJIdDJw4x9vax\nnP70NG1aGxmODIZeMZSCOwsomV0i34kQEyR4ELrxWqe9HXBAfVc99U31tqy9+gsX3ahgogZI5dCh\nT1mxYlVE9A/idNk7kc489Qf0a6g9pd1aZuPG0DXoj2kEluSch87TnTSOaVRJMwe0d7XT0tRC5q8y\nWXD3gkh9FEHoEam2ELrxWqc12yGMhbrPqbXXcDCEiwAuYBmwFNgMbKSt7c+Uly9l3LhlPP20qMyF\nxKP7GhoNNFo8QQ8a9IABVC9iq+cC7ITOos6IXZOC0Fck8yB0E3CdFmxZe/UWLq4Foq9/sBNJ8wu+\ndF9Dw4AXUUsUYzBkNm2ooEEPGMYCcwI8twnSj6fTntduvTHRQwgxRIKHfkrFBxX8dO9PaTrfRKfW\nSWt7KxdOXuhx7bWDjrC26S1cPEgs9A92Iml+wZejzUfVNZQN3AvsQekbPNkGR7MDrVHzDxjuBd4G\ntoPjgoP0tHQGZA/gQmpkr0lB6CsSPPQzzLPl4VnDaW5vZuiAoexv2q9mO4HtEEgL83QxCxefe+4z\n2toS37gpFIGp/tyq96rooIM00ph+43RbxKhCfDBiwAjOaGeMAGKR6cEuuPrVq+n8U6da2lgKVAK7\n1GNp59MYkDmA5i8105bXRpujDX5LRK9JQegrcub1M6xmy8/e/Sz7N+z3TqX60gTTb5we9vZ14WJV\n1RJqaiJv3BRJU6pQBKbBmAZJAJHYuFwujh492uM1NPvzsyl7tEwFkZWeIHKECiIvXrzI847n1Wtb\ngDeAU0T8mhSEviDBQz/m9MnTsAW+9uuvqbVYwPGRA+1LmiojM6295v8pn7Kt9jWQioZxU6RNqXo0\nAqKOqV+ZyuS/nczhs4c5v/k8xz53LCmMgETrYaBnk/a+s5f6hnraF7bDa/jrFxph0I5BlFWrLJPV\ndz1lzhQVWDYDLwGDUUFpL+8nCLFAgod+isvl4v5l98M5aF3cqoIFB2jnNdgJaVvS6MjtYPzQ8SoN\nv9Xe1Lqdxk2+2QVopaurA5frNK2tT2KXKNN30Nz1+i5VMGLFGMj9MJefLPgJ0341Dedxp7EbLai1\ncDfdGYgXLr6QMMsX5uzV47sf55HXH+Hy7MsBOHz2MOveW9d9nJIlkPBdcqId2i600eRqon1Bu/ou\ns4GrUYO8j9aByyB7SHaP32/juUb1fLMXhP5+b6KKkjTUKewAR5rDct9kOUyIBoEWnaPBVKC6urqa\nqVNFYBZtVnxzBeV7yuEmrFOin0JufS4zVsyI2IzSjiUFl8vF7NnLqat7HBWEuIHlwCrgh8A7BFoa\nKSgo5ODBLcHvq+kG3d7RTv3RevhqgBe0QO4LuQwfOZz6M/WkNqfS+bVOY1Y5n+6AzZzd2fTsJsr+\nuyxmA4FZw1F/pp7xQ8b3aBKmL31Vf60aoPv/ySQa9VpyykMFf3pm4CbgQ2AysBv428Dvc/mmyzn2\n7rGAj2dfmU3rilZ4zvM+FZ5/zefMUFRw4QLagbPgSHWg3al5P9YF6a3pLL1jKf/5k/+UICIJOXDg\nANOmTQOYBhyI9vYl89APcbvd/P7V36tvP5Atbh7k/TWP7fdvj9h+2GHcdO+9az2Bw0xU4PBlVOCw\nFnU3DV+U6TV4zEbdoE8Bl7AWs3lu9ucWnONc3jlwQOezneq5+qwyQM+DGYtncH7ReT9dxPo56xm1\nYhT5efkRC+ZcLhczFs2g4aYGbw3HoXpe/NyLjBwxkhOnTnCx7SIDsgZwWe5ltHW2QQvc9ce7SCUV\n0uD00tMwSr1nMsyKvZanWlBVEgswXCLfQn1fPZk9dcGwzGE9bifdka70Db5eEPo5MxQjiJjt+f+V\noN2k+T+2F9pd7Tz/5vO8fP3LAYOIZPh+hNggwUM/Qx8IzzrO9mqLmwhlYCdO6JbXLlTGIQWlNHsc\n+DF2dNPsHjzMN+iFwA6sxWxWAcIIz3N1h0Er6lGBg0VgceHmC3yy+RNefOnFiM3q//m7/6wCB32Q\n3AMcA85Dy6IWPtn7iRo0M6FtYxvnGs7B3UAefOr4tDuDUnJfCdsrtvOjsh+x4dUNCd8tcse+HVCI\nkQFwYGSNzD9hCo6HjxjO2dfOql/MXhD6ObMD47zajrfNtf6Y7znqcaR8vul53rntHRHxCrYhwUM/\no3sgfIteZ0rRKAMLZ+nC7XbT2HgK9QF006nHUXnkGUABEL4os9v4x3zzhsDmPkfxDxD053rWqy05\nQY8NknjL+0/hCBf1GeeOfTs403YGh+agxdUC38A7Ta4Bt6IO6XwgA1gPXA4sxjvQ8Gg4Gi80cv3c\n6+kY3WE0f/J5Tl1bHbMXz2bvtr19GqCCnTGHMrM2ix8/c33GhQsX0DSNDkeHtxZhN96ZAf0n0PnQ\nCPnv9S44HpA+AO7xvEcj/ueMOfD0tbm2CjB0AghzexP8JpKIV4g+Ejz0M7oHQifqhh5optQI53LP\nsei3iyKmpvfWK3hXQ+zevYzKysBNq4xKioGoO7eegegE9B4apShFo68os5KsrB8GLcrsNv5xo1LC\n2zHEjg5gJ+pKaoHxV4znZOpJzjnOeb+Jbhr0LIEDNqtMkHnQbYZ77jR8JPpqUuU147wVY51c3745\nc+Kbmi9HBQ07PH83Bxr6YLYNOgo6jNdaPacLDjUdYtZts0Ke4VrOmM9Dzc4afnf977jiiitI1VIN\nQWNh75mP7ve8pk4d6zmoIEFDfbcaxgCtBwt6ZsCccfA1hmqDCUMnBBUkTb9xOjWna9TKmx6ELEVp\nIPRzRj8/fJc2fIMIK3wcKSPtKCskNxI8JBHBzEQ78Myi5gDPA9tQRjbm0sxGGLBrAEP/cSjVx6o5\ndeEUQwcM7X6/ir+o7YQbRHjrFXRUNURd3WPcc08Zu3ZZayKM9t4vo7ILesBQAFRj3N3Xo4KKNZ7n\ndDB48FE+/nhH0APW6JzRyvinE8tBkCZUOV0WvPTKS9x/z/3UaDX+gUA2MI7AAZtuXay/zmLQ9fWR\nAELughpwGeZJvAdJ8E/NXwDqgUH4Bxo6egbFKhixIQPhN2NuRp0G86F9aDt1b9ZBA2r2X4j/zHoY\n1HXWcfWMqxk5aiRppNF2oY26qXVGhuVD9bxuQaRZi6AHC3pmYDbe5ZSL8BLB7t0a3Geb+eWZvPC1\nF2j9m1bDQMqFOu8a8Q4UfAMY3yDCihQ40XyCFd9cQdV7Vfy14a89Bqt/bfkrU+ZMEQ2EYIkED0mE\n30z059OY5J5EXW0dHXSwhjUcP3Zc3WSyURKBN4EtqBtUF+pmMgBGXj6SafXT+PnXf86ClxfwrRnf\n4r4N99lqv2zoFayYwYkTgS2qjfbe+ajsgn73LEVNp/cBs1B3V3MAspe77vp9SDfC6TdOp6axRt1Y\n9TS8jifNy63AH+G7O7/LudxzgQOE8TBo+yClbfDpY5DTkUNzY7Pxup7EldTxrdJv8e7774bcBTXg\nMowD70ES/FPzqajgIBX/QAPT+5gHOP05NmUg/GbMvoLCwcCX8G577aPh4EtwNu+s0v50Af+Ld4ZF\nXyLKw+hToR8P8/KEPsg7gE1AJwwaPIhRl41i9k2zQypxXjl3JXe/fbefgdT1f3M9+97dR0NWg3Fe\n+QYwg/EPInw5DyePnaT8Urn6jM/RY7Da5eii5nyNV0YnMy1TggkBkOAhaTl14hQ8D5uGbYJWVHDQ\ngirv0m9A2cASLMsHD3cdprypnJ337fS22LUR/xbdZryrIczaiIsXO2hoOIYxDVyPyhdXoqaBL6Ai\no/8XFUDoI/Q+srJ+EJKHBEDZo2Xsvm03ddT1WJ0yeOBgtt+/HfdtbqYunEojjX4BQv5f89m0TZVj\n7n1Vra3r1QsDBg/gwpYLdC7pVK/rJQW99TdbObvgbEhr1m63W5WYWqW4r0BlovQ0vXmWrf/b6fn7\nZfgHGjq+s2KrDESQ+6vvs1m3UNdQ59/Z3RwM6UGDvl0rDYd5Hy4AHabn+y4P6EtOL+C/PKEvX2kw\nYUxwyxM9EchAyu1288+r/5mXN79M+5J2dVq/7PksSz2f+Q8Y3TytAldzh07wF3j6fj/mjE5eO3WO\nOhFUCt1I8JCEuN1u7l16r7pR3oQSuW1AzZr12dmtGEsVewh4U2+kUT1+v/GQ1fJIRmoG7hbVRntE\n9ggudV7qVSdhtOjuuRrCWxvxMFCMGr3MI9yLeOsbdgJPAD/A4TjD5ZePYPHi6ykrC6yjMB8/fbC6\n2H6Rk66TdGldOHCgOTTrF6XA0GFDu1+bkpICW5TotCOtgytHXsm8GfO6Z6JP/OsTzL59NucWnIM8\naHO0ca7rHByCnG05jB49mvoL9bQ7AnRUTIELbRd6FFia16zdbjffKv2Wqn4Y2G6d4r4FtZRlDjB9\nU/PpqOUVvVQQ/L9C31mx/pxegqEdm3f4/dmvTPZN/Etkfdf7A5U6mjUcOnpgkYZ/lsX82bLx1iKE\nsTzRF5xOJxX/U2Gcm5VVXHRe5ORrJyEFLnNeRur4VNovtNO4qVFVuPi4xPp16PQVePp+P30M9oT+\ngYL+4kIAAB5eSURBVAQPSYZ+sz1z5gwUoYKF36D+r98E7sVYrujy/PhmF8xp3rNQsqgE0uDuTXcz\nb8Y8nnn0GZxOp5dJkL6cEax4L1iLakMbke/Z+ceB3+NdSWHWN3yfgQMvMn78MKZPvykk06mn3nyK\nh1Y+pNadb8AIuvKAX9Fjdcrxz44z67ZZaqArUs/r6OqAJuh8t9Mr1RtQ6T4Rmgc2MztzNmnvpVlr\nJzzbo+fETXepbfcA3FmnPou+hq8Pkq0Ys+h0VFr/98Cdns+td3zUs1cAp/Gfjevog5I+K36JwFkK\n0/52OvxLZ/30GYM9+2Tepu96v2/mw0rDoaMPkPoxMWdafAXF5k6Zr0Fuai55I/NUGt9mB9ZABMpM\nmOkOMHZ6V5jsvmK3yh7o+Hb+PId1RseKAMGe0H+Q4CHJ+Pb3vq1uto0Y9d/ZeM+29FmgPihW4H3T\n0Gdjs1Flh3dBR16H13LG72b9jtn/MhstS03Rth7aGrIWIliLaqWNeBiVWUhB5Wyvxr+SYjhwJ/n5\n1VRWbuzTzXz/i/tV4GAVdHnEpIGqUzraOgKWvjXS6DVT6/YOsMJzY144c6HSWgTwDRiYPpA2ra3X\nUluv8lzzGv5g4GOMAdQsAj0EvAJXjr+SzMxM0hxpTC9Ua921tbXcctctdCzoUIPsHzzHSZ/pDgRm\nQ852lUHpGNHBkc1HvDMeFvtrZaLUfZzMSxJfwliGGIO/aNA382Euj/XVBOgDpH5M9AzLbFS1ha+g\neCBwDYxrGUfVjqq4TNsHCjDypuX5H3+982cXpP0qjQ6twz+jY0WAYE/oP6TEegcE+6ipqeGFjS8Y\nNzo9lZuB9WxrLN4zNd/HG3yeB92DYfst7fz1D3/tfsnT1U+z6LeLKKoo4l+2/ktQ+7typZOGhvWU\nlGxg4sRF5OZ+joyMG8jN/Q55eens21eG2+32aB9+iso45OCtddiAGl2KgEJyc/+pxxLP3qh6r0od\nv734B13ZqIHlCGqAxfPvEeB1VCagh2WEl3a9RFFFERUfVKgbby835rJHy8j/U77l9rJ2Z5F1VZYa\nJHVaUGWkvwOehdpPaxl7+1he2fWKtwZAn3FmAK9i/R1PBO6E66+7no/2fMTBPQdZ98t1OJ1O5syZ\nw5/f/DOD3h6ksjMlwF9RArz/hbSn01g+YDmfHPiEj/Z/RF1VHU0fNDFh6ATv/TUTwESp+zi5MT5D\njmf/P0QFvp+hApiBGEHDaygX0KUoTYN+fuuBhY7vMWnw/P6653XN4HjFQcqTKaT/f+kM/u1glrM8\nbgOHnlg4c2GPx3/cqHHej/veF8zn13Nw6ugpVnxzBW6329b9dLvdrPjmCqbMmcKkOZOYMmeK13Z6\ne1yIDpJ5SBJcLhczFs+gK7fLO33rWwvegiq1M6cjfYVT+mzsLazTli3An8H1iYuTH5wElMPgNbdc\nwzO/eIYjHUeY9qtpQe230+nkiSdWMXv2cs6dexKYQVubg3PnuqitVX4PqanpePs4mLUO5kqKLvLy\nCsO6qXt5OvgGXakoR8W9eDc9cgJLoev5rh4DgtGDR7OxeCMAazLX8Jn2mfeSgf5+l0FuSi5Op5PK\nrZWqFHOrT6+Jt1WVSrcwcwjd4jY9g9DR1UFjUyOp76f6nwe6WPa39CgC/cvWv1g+tPaXa73dME3L\nXh1HOhiQOcDre3A6nezdtlct61DnLyQN0LV1WOYwdZx8lyT0GbOO3sJaX26xKnU0azj0rIXvMTG/\nZxeM2TyGxupAI25i4SX8tTj+G3+3kcL7Co3HzfcFi0qZtq42ypvKwxJP+jUca4Njx49ZWrTvvm03\nG3+7kaL7i8QVMw6Q4CFJWP2j1TSnNRsldPq6sGcwohFj3Xgg3oOc7w3VSnUOxg36EyALtNs0Ouo7\nVOmeA7a/vZ3RBaO5PO9yaA3OcwCs+lOUoYKFVOrqNAYMaEI1S9B9HCLXyrvb08F3sAV1Mz2NdfXJ\nEcjJyOGsdrbXZQTwlH9+XKMCkdkoEeIRz/bOQ21bLZfPvZwf/T8/Yt0v13XrSF762kvdy0Nut5uC\nyQU0bm5UIse7sFwy6czo9E7nm5/Ti26iE+vUdF8MhszBkO96fCDNQHeZrO+ShO9STjZwAyy/bjkD\nBgywLnWkQZ3fuobjNXA0O9AatYBLQwtnBvqQiUcwx9/8+MX2i2q5aUm74X9ho3jS0uxLXyay2s6F\nOmYunsn5xdYW7iLijC4SPCQovhUBDQ0NKjjQA4VbUGK2wcB4VBp3MMa6sXlQNAundqEGSLPq3Fzu\nNhh14U5BrQnry9QdwAXo+FIHjXmNQXsOgFV/Cm/HyYsXXwW+g+HjEL5rZCC8Biv9WPZmR+2ZuX1+\n3ud5vvH5oHoblD1axktTX6L55mbDyVDXoHhmU8ebjvOTb/+Eu3fc3f260ydPs2LNCvZW7aX+SL1S\n1f8jaskgUAZhFN4aAN/970GHkIp187BuszEreuiLEozgz0z3bDmrrufP4LGA/s+t1h0k/USEjjSm\n3zGd0n8q9Z5tB5ENSWR6O/6+j+vH7bmG52hb1Gb9oj66UfqJhltQy0ZWwXkzsBfOp53vcWlQRJzR\nQ4KHBMTLSrcNdcHlogYBvYRuPson/y3UOuVCVIVFHtazNz1lewTS30invbHd+3m6DkI3z6nFKAXV\nhZnz6NOMwPB70PtT+DpOLkH5Ous+Dr6ukecZOVLjgw9eDDtl6TVY6UGXPlBlo9LhO8DxBwfaUI3x\nQz3LCJ5B5p3b3glqIHI6nYwePZra+lrDydDi2DVoDUz9ylQm/+1krsq4isK7C7lw8wVVFeFrWBVo\nMP8CpJSn0FXUZaTzd6l9c5zpeeZ9bcG1fn+u+KCCo2ePRqUvij4b9vI48PkM3a2nAwQO+vsEOv9C\nzYb0J/Tj9srbr9DmCBA8pHiW+0LESzSsT058s6Lg3cl0t8Xjpv0QEWf0EMFkArL6R6tV4LAXla7+\nEmoMvQyjhO5DYCNwFmUl/BaGg6QuKPMV4n2qBrk/b/6zEuqNMz3Phbfo7ghGYySzoM2KMZ40dwAM\nv4caVDbBiv8gPf0B1KgxHBVobAK+R36+w5bAAYzBavnU5aRuT4UsYDPwlOfnWcg+kc2LL78If6fs\nqHUhof7akswSxm8dD8/B+K3jKcksscy8uC661JJPKz3qDnLP5bL9/u3c3HizChzGYnwfoG68Z/AW\nt5kZCBPGTaAks4SCygImMpGCEQWU3FbCwbcPBhRl8hp8+6Fv+71d8XXF3DP3nh7Fd+dyz3WLQ8NF\n9zho+qCJkgH+n6Hp/SYqnqno8/evD5AH9xz0E4cKitE5owOfX12ex0PESzSsT070ZVedZlTg4ECd\n774iTp/96K3tuWAfknlIQKreq1IXkNlNz4kx2M9HRemmlO6gHYMYdeUoarVa//puT5p8cPtgKt+p\n9Fr7fH3o63y65VNv8SUYugoz+o3Ap38BGnx66VPcbrf1una330NPC/AjGTv2Cm6+eQNVVWt8OnD2\nvbrCCqfTyS9+8gt2vbOLYzOOeS0l0ATOd50MGTYk4GsDaRR8GZ0zmjMXz6hfephNnbp0CjDpDJpR\nx9h84+3JWbARZn9+dq8z7y0bt+BudZOVlsXgsYMZ+LWBPPGnJ/jFB78AvI2+ehPfRUK4FuqSh2Af\n3ct5QSzJBYuXGFYXaQdyvdQzDoE0L2Hsh9A3JHhIQI42H1VlZOZMgNkJsAavrn45HTns376fsv8u\no7ax1rCmNq8tHoG7Mu/qvuH7DoJjNo6hSWsyzHPO4+8NoXkes+hf0NzUHLB/geH30JMxfxcDBqSx\nbp11oyw7cbvdzLltjgocrJYSaOD+h+9n4hcn8t2d3+1zt9HpN06n5o81agmiJ92BpnQHpy6dMmye\nB5he48bf+8AUOKZvSafsg8Br977f9e6v7e7Vs6PHShBJ9ycdvQWLfdGGeAUkvvcxX9dL/dYQZttz\nwT4keEhAumesvqVrejbBU/1AF+R05fDJgU9wOp1h3QCumngVTY1NRjfOdrwHPN1AqQ+q7JUrndx9\n93pmz76XQ4d0XYMv4VdSBEO3nuR0D30sxsDQD4dy8J8OhrWtskfLeGnjSzQPbu4xa6Ar/lO1VMPg\nSxdB6jde3fvAnE3yVCeMvWJsRAbzULIsQmLTl0qZ3vC6H+nCXd+saDP+GYcw2p4L9iGahwRk+o3T\njfbNZtMbPZvwd8DfAnNh3q3zvLIJ+pp8wc4CJm6fSMHOgoBr8hUfVHQbPrVMbyH9zXRlvPNl1MzX\nvOatGygdpU/aB6fTycMPv0hW1g9QugbzAnylx3GyNLgDFCJm05mrp1+tFOC+Hg9meqgmCAWn00nV\n9iqy3dmqRO1T/DQo46rHUfaoCuq6TX4cwBfw1q2YvQ/07//vgAUwIH1A2PsqCHZrQ8z3o8Htg/3v\nY3d6ftczDvr5PtDzeDHwBcgfli+BQwywO/PwPZSNziRUYn0vsBqlzRdsonvG2tjcYxqP1+Hbm7wF\nb8GsG5sbX2WmZTJx+ESGDx7OvFXzqHmlhkvVl3BnuknbmEZHYYcKFnQDpefpcdCtPV1LUUWRZYpf\nz0Co7pmR1TXo+NWa6yWPPa+gWFYT+DYMmzi892WN9zreY87/ncMHL3yA+1U3HZ0dOFIdpKam4pzk\n5Lu/+G735+6eqbXVKSGnPgM7j6wDCwmJfj8qe7TM20CsFbUMNwLJOMQpdgcPNwP/BbyDWsl9DFUo\nWIA6HQQb0GesMxbP4PzC85ala/PmzWP7vdsZOnxoyO9ffF0Pa/crjcZXW5du5Rc/+wWbKjapAew0\nalZgdrN8EzWj1oAU6OrsIntnNgsWLAj42aKha9DxqzXX1177IMzq8bgFoPs1K3t/rj5Tm714Noca\nD6l9W4RRyhbAf0LWgYV4x3dZpLGpUXWc1XuO+HYy9WgcItnJVOiZQHNEu7gMVVR2M8rTzcxUoLq6\nupqpU2WdtC/4Wru2XGzBMcJBwZ0FaFkah88e7rUtdl8wd9IElBV1C+Rtz1NWyTehDKvWo4KGxfhV\nLIx7Nz4aC02ZM4WahabOlb9Dpfxb6VGYFUsbXLfbbXTv1PftPLAT0j5LoyO3w/Cf6MXd06q9ejDn\nTF9fJwjBkDctj6bCJmMSYq7e6oKsi1k0HGiI+f0jlhw4cIBp06YBTAMORHv7kQ4eJqCWLK5F1QCY\nkeAhgTAPFvVn6qk/Xc/A9IEAtLS1cKHjAjOHzOTwxsMc/+A4XaM8fR58zY90PoWSASUxKb3TP8ul\nc5fYsWYH2ldNhePbgcmoffa9acVRmlQPHHe9613pcN/X72PBywu8WqQLQqIx6qZRfFb4WcDHL990\nOcfePRbFPYo/Yh08RLLawgH8HFWh6xs4CAmGb0reauY5aPAgbvrqTbhdbvY9sU9VAOjiSYvZw+/b\nf9/rzDhSn+WG1BuYedtMtDTNW9vgqyHR06RNkPduXlwEDhC40uHAsajfQwTBdrw8IHwRM6i4IJLB\nw3+jOiB8IYLbEGJET8HEoGGDSB+STntnu3dfDB/vh7NNZwN6P0QSvQNp8+JmVVpq1jaYS8VeAzpg\nzIgxNA1oovzZ8rgIHAQh2YmEKZVgL5FatvgvoAildTgc4DlTgeq/+f/bu/vYquo7juPvlpZii/Kg\nl6lUA1a7FZ+pImB0MyjBh4lPcXS6WYIxS3zOEjGaLddtccYtk5npEpYpA8PFjImKcSg4H1CRKgXH\nUnRTSkSgtioFiyKl7f74nsM59/S05fbee3p7+3klDe05v3vOvd/8uPd7f48XXMDo0cmr9dXU1FBT\no/7SwezU80+loaXBxg+sxusKCNoOtSXRdl/MvXUui15cBDfR69iG8g3lfDrzU576yVPc+MyNOdkV\n4LY8XHjihYwaMUrjDyQvhI7ryfIKprkskUiQSCQv9d7a2sratWshT7otCrDEYTa2r2NPicMhCxYs\n0JiHPDTlrCk0vNVg3+rdVeL83G6MZljyzRLqNtXZgjMRdGO8/d7b3joOYUt1d9mMlUWrFnHxP8Jn\nhQyksCmhJUUlAIwoGkH8+3ElCzKoZWNRqsEs7Au1b8zDgMh0y8Pj2NIds0le26EV2B8oqwGTeayl\npYUpM6awbfc2+6D+qXNiH/AqthPobLrNwsj2t4rm5mbKJ5fTXtpurSI99KmOf2E8FbdV8MYnb3De\n+PPYvX+3vs2LSM7ItwGTP8OGn70WOF4LLM7wvSSHxWIx6l6p4475d/D0C0/T1dXl7XsxCksc+rF9\nd7rmPzCf9uJ2m0Tcx5LQt8+6neqF1Tx++eM5110hIjKQMr08dSG21mBh4EeJwxDkbqV8xeVX2Ae1\nu0Neb1tQ97F9d7pWv7Pa9oWYSI/bkh+5+shDS0KLiEh32hhLssLfL7/3nL0UP+LMvnBnW/SyhPXO\ntp1Ze14dBR02/6eHHUjZC+vfXE8sFmP7ru1Zex4iIoOZkgfJiuBUzpbrWxh/znjaC9r73Dfi+JHH\nZ+15jS0ZS1NpU/cdSLuA46AyVklVVVXW7i8ikg+UPEgkYrEYp5SfQkNXQ7/2jciExOYEe4/a6917\nZqDAdpheErYduIiI+GlLbonMlLOm2Ae3f3vdwHiDio0VWRtvUHN6DfWL6xm3flz3e2+H0rWl7Dxj\nJ4nNiV6uIiIi2d7bojeaqjnEJC38MhrbCbQZ2+K6rYjyY8sZPmI4FOHN6c7Cug8tLS3Mu2ceK99a\nyYljTmRk0chD91rTtEYbPolIzsu3qZoivTr3zHP5bPVntO1vo6i4iLLhZVw09SI2NWxi2znbktZ9\naNjRwNpZaw9r3YdUdnmMxWLEH4yzcuFKVtyyImkaZk1MyYGISF+UPEgkmpubmX7pdGt1mAsUwMHO\ng+zZsYc1L62xfSbGYktZu5tndcHHpR9zx/w7SDzRe1dCzek1XHzsxUk7TbaPbj+sbalFRCQ1Sh4k\nEvMfmG+JQ8jCUG1FbTAGb4+J6diaEM3AV7Ds+WUwDx596NEek4CGhgamzprKVzO/gkuBAmjsbKTx\no0aWnLGEktEltBe0U9xRDJ3YbpqdcN2L1ynBEBFJkZIHiUTdprru+1u4huMtIDWG0B04l+1Yxruz\n3j3UhdHS0mLr3m+qY/+B/TRubaTr6q7k5ORz4BXouKKDr8u/hn3Qvrzdru10jzR2NtK4o/Gwu0dE\nRESzLSQiBznY8/DcLqyrohwviTgBr7y7dPXZtnR1c3Mz02ZNY9G3i2i4pIGtw7fSdVRX8qqVzcAy\n4ArftQ7j2iIi0jclDxKJIoosSQhzDNCBfaC7SYTfPuBl4HVY+vxSKqdUel0gXwONeLtkArRhXSBH\nBa4Vdm1XlpfFFhHJJ0oeJBKH1ngIMxEK9xZ6q076WyjcRKAKuAEO3HyAPcV7LAlwzx2Bt2olWAtD\nGckJBSHX9it0WkdERKRPSh4kEg/HH6ZiY0Xo4kwVH1Rw5cwrLbnwJwHQc1eDvxtiGN4umWAtDMND\nrhX826/TaR0REZE+KXmQSMRiMdatWkdtSS0TV02EpTBx1URqS2pZt2odCxcstOSilOQWirCuBjcJ\ncM/FSN4l092rwp9QgLcsdpgsLostIpJvlDxIZGKxGE8+9iTLn10OP4blzy7nyceeJBaLHUou5kye\nQ/ELxfAJ1jIR1tXgJgHuufOxVgh3l8xWLHEIbrvtLovtXhu81o8sLostIpJvlDxIzojFYiSeSLBj\n8w5qR9Qyac0khu0d1r2rwU0CDmDnyrBdMrdh0zMLscTBn1AkgOeADihYUUD58+XdWj80TVNE5PCo\nk1dyjttCATD31rks+nRR8voNbrKwFG+HzDK8XTL3YcnCBdhMDHfb7QMwsmskdW/V8c3ob6heWM3y\nW5YnLU8tIiJ9U8uD5LQeB1p+CRPGTmDCexPCz42ZwJwj5jCpYBKVsUomHTOJ2stq2Vq/laqqqgF4\nJSIi+UMtD5LT3LEQ98TvoW5NHQc56O24+YqNUejpnLohRESyQ8mD5Dx/N0aY3s6JiEjmKXmQSAS3\nzK48upJ719wbumV2Pj8HEZF80NN6e1GYDGzYsGEDkydrwJqIiMjhqq+vp7q6GqAaqI/6/howKSIi\nIilR8iAiIiIpUfIgIiIiKVHyICIiIilR8iAiIiIpUfIgIiIiKVHyICIiIilR8iAiIiIpUfIgIiIi\nKVHyICIiIilR8iAiIiIpUfIgIiIiKVHyICIiIilR8iAiIiIpUfIgIiIiKVHyICIiIilR8iAiIiIp\nUfIgIiIiKVHyMMQkEomBfgpDjmIePcU8eor50JKN5OFCYCWwA+gEZmfhHtJP+g8ePcU8eop59BTz\noSUbyUMpsBG41fm7Kwv3EBERkQFSlIVrrnJ+REREJA9pzIOIiIikJBstDynZsmXLQD+FIaW1tZX6\n+vqBfhpDimIePcU8eop5tAb6s7Mgy9fvBK4Cng85dxzwLjA+y89BREQkH+0AzgV2RX3jgWx52IW9\n6OMG8DmIiIgMVrsYgMQBBr7bYsBeuIiIiPRPNpKHMuAU398nAWcBXwDbs3A/ERERGeR+gI116AQ6\nfL8/MYDPSURERERERERERERERERERIauON74BfdnZ6BMFbamQyuwF1gHnBAoMw34F9AG7AZeBUb4\nzm8Luc+DgWuciG2+1Qa0AH8Eivv5unJZnPRiPiHk8e7Ptb5rjAGWONdoBRYDowL3Ucw9mYj5tpDz\nquf9f285HlgKNGHxqic53qB67hcnmphvC7mP6nn/Y14BrACagT3A08C4wDVyrp7HgX87T9T9Odp3\nvgKbUfEQcCb2JnopEPOVmYa9mHuwIFUA1wDDfWUagfsD9ynznR8GbAbWOPeZAXwKPJruC8xBcdKL\neWHgseOAX2CVrtR3nX8C7wPnAVOde/oX9lLMPZmKueq5J0767y2vAu8A5zjn7wcOYjO9XKrnnjjR\nxFz13BMnvZiXAR8Dy4FTgdOwRGI9yQs+5lw9j2O7ZfZkGfC3Pq7xDvBAH2UagTt7OX8pVkGP9R37\nEfANMLKPaw82cdKPedBG4C++v6uwDPhc37HznGPulFvF3JOJmIPquV+c9GP+FXBD4NjnwFznd9Xz\nZHGyH3NQPfeLk17MZ2Kx8sdlNFaHZzh/R1bPU90Y6xRsOcytQAKY6LvOZcD/gJeAz7BEYbbvseOA\nKVgTydtYU9drwPkh95mPVcKNwH0kN6dMw7KmJt+xl4ESoDrF1zMYpBPzoGos0/yr79g07Fvxu75j\n651j031lFPPMxdyleu5JN+YvAHOwJttC5/fh2HsMqJ6HyXbMXarnnnRiXgJ0AQd8x77FEgP3czQn\n6/ks4GqsuWQG1mS1CxiLZTCdWP/JncAZWIXpAC50Hj/VKfM5cBP2hvoHYD9wsu8+dwEXYE0y87C+\nHf+3toWEb/m9H8ue8km6MQ96HPhP4Nh9wIchZT90rgeKeaZjDqrnfpmI+RFYM2wn9ubaivdtDFTP\ng6KIOaie+6Ub82OwGD+Cxb4M+JPzuD87ZQZFPS/FXvjd2P4UncBTgTLPYQNqwLKeTuA3gTLv030A\njd81zuPGOH8vxDKzoHysbEGpxtzvCKzi3R04friVTTHPXMzDqJ57+hPzZ7DBZRcBpwO/xAZkn+ac\nVz3vXTZiHkb13NOfmF8CfIQlFe1YN8d7wGPO+cjqeardFn5fY00fJ2OtCQeBhkCZD7BRneDtYREs\ns8VXJsx651+3daIJ+E6gzBisuayJ/JZqzP2uwz7MFgeON9F9tC7OsSZfGcU8czEPo3ruSTXmVdju\nvfOwb3ObgV9hb6q3OmVUz3uXjZiHUT339Oe9ZbVTPoYNtrwJKMe6QSDCep5O8lACTMKSgnasj+V7\ngTKV2FQdnH93hpT5rq9MmLOdf93k420ss/W/+JlY38+Gw3zug1WqMfebh2WxXwSOr8Om8QQH2IzC\nYg2KeaZjHkb13JNqzN33sY5AmU68Ueiq573LRszDqJ570nlv+RKbyjkDSyTc2RQ5Wc9/j/W9THSe\nzEqsSdadg3qVc/ObsczoNiwg033XuNN5zLVOmV8D+/AGjUzFmnDOco5dj00hWeG7RiE29WS1U24G\n8Ak2TzXfZCLmOOc6sAoS5kVgE8lTe57znVfMMxtz1fNk6cZ8GPaN7XXsTbMC+DkW/1m++6iee6KI\n+TRUz/0y8d4yF6u7FcCNWIvF7wL3ybl6nsBGiX6LVYC/0z1Lmgv8F2uOqQd+GHKd+c4TbQPeJDkw\nZ2OZ027nGluwfrQRgWucgAV+Hxa8BeTnoiKZivmD9N66MxpbVGSP87MYOCpQRjH3pBtz1fNkmYj5\nSc7jdmHvLRvpPo1Q9dwTRcxVz5NlIua/xeL9LdalcVfIfVTPRURERERERERERERERERERERERERE\nREREREREREREREREREREREREREREREREREREZED9H0ARXMzHIkhcAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7fa84670c610>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"t2, l2, l2e = np.loadtxt(echo_file).T\n",
|
|
"errorbar(t1, l1, yerr=l1e, fmt='o')\n",
|
|
"errorbar(t2, l2, yerr=l2e, fmt='o')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 4.362e-01 5.425e+01 inf -- -3.468e+02 -- 1 1 1 1 1 1 1 1\n",
|
|
" 2 7.747e-01 5.347e+01 7.019e+01 -- -2.766e+02 -- 0.58045 0.569962 0.564602 0.563764 0.567626 0.565054 0.565279 0.564008\n",
|
|
" 3 3.447e+00 5.213e+01 6.905e+01 -- -2.076e+02 -- 0.198681 0.140203 0.130333 0.127063 0.134237 0.12998 0.131082 0.127044\n",
|
|
" 4 1.448e+00 4.998e+01 6.682e+01 -- -1.408e+02 -- -0.0825582 -0.283347 -0.300715 -0.310826 -0.299703 -0.304649 -0.30132 -0.310849\n",
|
|
" 5 5.884e-01 4.684e+01 6.330e+01 -- -7.746e+01 -- -0.194194 -0.676998 -0.726162 -0.750752 -0.733583 -0.738758 -0.729946 -0.74976\n",
|
|
" 6 3.739e-01 4.258e+01 5.850e+01 -- -1.895e+01 -- -0.203226 -0.953186 -1.14229 -1.19152 -1.16459 -1.17342 -1.15279 -1.19094\n",
|
|
" 7 2.741e-01 3.740e+01 5.292e+01 -- 3.397e+01 -- -0.205901 -0.9956 -1.54459 -1.63073 -1.58521 -1.61127 -1.5669 -1.63629\n",
|
|
" 8 2.128e-01 3.180e+01 4.679e+01 -- 8.076e+01 -- -0.180502 -0.943953 -1.92935 -2.06126 -1.98071 -2.05288 -1.97074 -2.08385\n",
|
|
" 9 1.675e-01 2.595e+01 3.791e+01 -- 1.187e+02 -- -0.15428 -0.934563 -2.26437 -2.45352 -2.31988 -2.48374 -2.35707 -2.52729\n",
|
|
" 10 1.286e-01 2.002e+01 2.537e+01 -- 1.440e+02 -- -0.13956 -0.939381 -2.49352 -2.71726 -2.56371 -2.84902 -2.70919 -2.95055\n",
|
|
" 11 9.197e-02 1.277e+01 1.299e+01 -- 1.570e+02 -- -0.130332 -0.946187 -2.57446 -2.74449 -2.69402 -3.05697 -3.00449 -3.33007\n",
|
|
" 12 5.076e-02 6.047e+00 5.021e+00 -- 1.621e+02 -- -0.124515 -0.945944 -2.55165 -2.71422 -2.73704 -3.10737 -3.209 -3.63633\n",
|
|
" 13 1.434e-02 1.485e+00 1.060e+00 -- 1.631e+02 -- -0.12047 -0.945369 -2.54157 -2.70197 -2.76441 -3.10602 -3.30159 -3.8209\n",
|
|
" 14 4.769e-03 3.557e-01 7.280e-02 -- 1.632e+02 -- -0.119516 -0.946002 -2.53635 -2.69518 -2.78858 -3.10381 -3.32152 -3.8757\n",
|
|
" 15 2.150e-03 1.530e-01 4.222e-03 -- 1.632e+02 -- -0.119506 -0.945491 -2.53265 -2.69429 -2.80187 -3.10094 -3.32488 -3.87969\n",
|
|
" 16 1.017e-03 7.109e-02 8.430e-04 -- 1.632e+02 -- -0.119394 -0.945124 -2.53033 -2.69448 -2.8079 -3.09858 -3.32603 -3.87983\n",
|
|
" 17 4.817e-04 3.356e-02 1.918e-04 -- 1.632e+02 -- -0.119311 -0.944963 -2.52941 -2.69447 -2.81076 -3.09727 -3.32654 -3.87984\n",
|
|
" 18 2.335e-04 1.618e-02 4.417e-05 -- 1.632e+02 -- -0.119282 -0.944891 -2.52886 -2.69454 -2.81211 -3.09664 -3.32676 -3.87987\n",
|
|
"********************\n",
|
|
"-0.119282 -0.944891 -2.52886 -2.69454 -2.81211 -3.09664 -3.32676 -3.87987\n",
|
|
"0.233661 0.204163 0.319993 0.254151 0.198248 0.179386 0.161786 0.221522\n",
|
|
"0.000372164 0.000983332 0.00164575 -0.000696472 -0.0161795 0.00744155 -0.00415795 -0.000828998\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n",
|
|
"p2 = np.ones(nfq)\n",
|
|
"p2, p2e = clag.optimize(P2, p2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w3OVh5/G3sQVuIMExOe9CDN5aPboyMclI2AYruCJH\ncwkX0l7Sc7RDuKkdjlwRYXQtTLl0rDIySa8p05iC6Y0LTtoLrMxNL3NhBpf0h6g5+UcViV/+sZfc\nSmvswK5LHJOGxEQY3x9fCWTztaWV9rs/36+Z70jafZ7v83h40H70/T7f5wFJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiTN0n8FBoGfAAXg28DlFe2RJEmqCtuB/wi0AFcCTwA54D0V7JMk\nSapCHwDeAj5a6Y5IkqSpnVPGthaMfz1axjYlSVKVm0Nwu+EfK90RSZI0PfPK1M6DwBWc/VbDxeOH\nJEkqzivjR0mVIyQ8AHwKWAO8fIYyF19yySUvv/zymd6WJEln8UNgBSUOClGGhDkEAeE3gA7g4FnK\nXvzyyy/zrW99i5aWlgi7VHrd3d1s2rSpJtubzbmKrVtM+emUnarM2d4v93+zUnGslb68Yy2cY630\n5aMcawcOHODzn//8BwmuxtdMSNgMpAhCwutAfPz1Y8DxsAotLS20trZG2KXSW7BgQVn7XMr2ZnOu\nYusWU346Zacqc7b3y/3frFQca6Uv71gL51grffmox1pU5kZ47ieA84B1wO9NOn4APH9a2YuBL37x\ni1/k4otrb1rC8uXLa7a92Zyr2LrFlJ9O2anKnOn9dDpNKpWadl+qiWOt9OUda+Eca6UvH9VYe+WV\nV9iyZQvAFkp8JWFOKU82C63A0NDQUE2mbtWWT3/603znO9+pdDfUABxrKofh4WHa2toA2oDhUp67\nnOskSJKkGmJIUMOp1cu/qj2ONdU6Q4Iajr+4VS6ONdU6Q4IkSQplSJAkSaEMCZIkKZQhQZIkhTIk\nSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAg\nSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4Ik\nSQoVZUhYAzwB/BB4C/iNCNuSJEklFmVIeA/wLNA1/vPJCNuSJEklNi/Cc//N+CFJkmqQcxIkSVIo\nQ4IkSQplSJAkSaGinJNQtO7ubhYsWHDKa6lUilQqVaEeSZJUPdLpNOl0+pTXjh07Fll7cyI786ne\nAn4T+M4Z3m8FhoaGhmhtbS1TlyRJqn3Dw8O0tbUBtAHDpTx3lFcSzgf+9aSflwIfAX4EHIqwXUmS\nVAJRhoQVwD+Mf38S+NPx778JrI+wXUmSVAJRhoSncWKkJEk1yw9xSZIUypAgSZJCGRIkSVIoQ4Ik\nSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQoV5QZPUsWk08EB\ncPw4HDwIS5bA/PnBa6lUcEiSzsyQoLo0OQQMD0NbWxAaWlsr2y9JqiXebpAkSaEMCapbuVyO9evv\nYu3aG4EbWbv2Rtavv4tcLlfprklSTfB2g+pOoVCgs7ObTKaJfL4LWAVANgvZ7B62b+8hmRyjr28T\nsVissp2VpCpmSFBdKRQKrF6dYmTkQWBZSIlV5POryOf3096eYmAgbVCQpDPwdoPqSmdn91kCwmTL\nyGYfoLOzuxzdkqSaZEhQ3RgdHSWTaWLqgDDhCjKZec5RkKQzMCSobmzc+ND4HITpy+e76O19KKIe\nSVJtMySobgwOZpiYpDh9qxgcPBBFdySp5hkSVDfGxmZSa84M60lS/TMkqG40Nc2k1skZ1pOk+mdI\nUN1YsSIJ7Cmy1h5WrmyJojuSVPMMCaobPT1dxOObi6oTj29mw4bbIuqRJNU2Q4LqRiKRIJkcA/ZP\ns8Y+ksk3SSQSEfZKkmpX1CHhNmAU+DnwPeCjEbenBtfXt4nm5tuBfVOU3Edz85fYtu3+cnRLkmpS\nlCHhc8DXgY3AR4BngO3ApRG2qQYXi8UYGEjT0XEv8fjNwG7g5Pi7J4HdxOM309FxLzt39rFo0aLK\ndVaSqlyUezf8LvAwsHX85/8C/Fvgd4AvR9iuGlwsFuPWP/s0j/zTIzR9//O8+qOf8PPjb/JL8+fx\ngYvex+WXJ/jCyi8YECRpClGFhHOBVuCrp73+XWB1RG1Kb0stT5FangLg0X8Y5vPPtPEX1w5x08da\nK9wzSaodUd1u+AAwFyic9voRIB5Rm9Ipcrkc67vWc/fvrYXH4O7fW8v6rvXu1SBJ0+RW0ao7hUKB\n627sZOSnGd5oz8NvBq8fJss3Dmd57IbtLL0gSf8TfQ2/TXQ6HRwAx4/DwYOwZAnMnx+8lkoFh6TG\nFFVIeBU4AZz+GzgGvHKmSt3d3SxYsOCU11KpFCl/S2maCoUCq29YzcjVIxA25WAxvPG5PAeO5Gm/\noZ2BJwcaOiikUnDNNTl6ezezY0eGbBZOnIA1a5L09HT5eKhUZdLpNOmJZD/u2LFjkbU3J7IzB9PK\nh4DJ2/LtB74N/MFpZVuBoaGhIVpbvWesmbvuxut4+rKnwwPC6Y5Ax0sd9D/RH3GvqlOhUKCzs5tM\npml898zJm2PtIR7fTDI5Rl/fpoYOUlK1Gx4epq2tDaANGC7luaO83fCnwP8gWB9hN3ArsBj47xG2\nqQY2OjpK5mgGrppmhUWQeS5DLpdruL+YC4UCq1enGBl5EFgWUmIV+fwq8vn9tLenGBhIGxSkBhTl\nOgmPA91AD/AswUJKNwCHImxTDWzjfRvJL8sXVSffkqf3vt6IelS9Oju7zxIQJltGNvsAnZ3d5eiW\npCoT9YqLfw78MjAfWAH8n4jbUwMbfGEwuFZVjMUw+PxgJP2pVqOjo2QyTUwdECZcQSYzz6dCpAbk\n3g2qG2MnxoqvNAfG3ppBvRq2ceND43MQpi+f76K396GIeiSpWhkSVDea5jYVX+kkNJ0zg3o1bHAw\nw6mTFKdjFYODB6LojqQqZkhQ3Vhx5Qo4XGSlw7Dywysj6U+1GpvRhZM5M6wnqZYZElQ3eu7qIb6/\nuAU94wfibLhzQ0Q9qk5NM7pwcnKG9STVMkOC6kYikSC5MBks/j0dRyC5MNlwjz+uWJEE9hRZaw8r\nV7ZE0R1JVcyQoLrS93Afzbubpw4KR6B5dzPbHtlWln5Vk56eLuLxzUXVicc3s2HDbRH1SFK1MiSo\nrsRiMQaeHKDjpQ7i340Hq3KcHH/zJHAI4t+N0/FSBzu372zI7aITiQTJ5BjBAqjTsY9k8s2Gu+Ii\nyZCgOhSLxeh/op9dj+5i3fx1ND/VDI9B81PNrJu/jl2P7qL/if6GDAgT+vo20dx8O7BvipL7aG7+\nEtu23V+ObkmqMu4CqbqVSCTY+uBWhl8Zpm1LG4/f+jitF7s3CIxfcRlIj+/dMG/S3g1zCC65TOzd\n8CbbtvU1dKCSGpkhQXUp/WKa9N5gp7Tjbx7n8osu5+6/u5v584I9kFMfSpFa3ti7i8ZiMfr70+Ry\nOXp7H2LHjq+QzUJzM6xZ00JPz0ZvMUgNLspdIIvhLpBSBaTTwQFw/DgcPAhLlsD8IEuRSgWHpOpV\nq7tASqpyhgBJZ+PERUmSFMqQIEmSQhkSJElSKEOCJEkKZUiQJEmhDAmSJCmUIUGSJIUyJEiSpFCG\nBEmSFMqQIEmSQhkSJElSKEOCJEkK5QZPUgM7fUvtg68dZMmFS9xSWxJgSJAaWmp5imveew29f9LL\njuEdZI9mObHwBGta19BzVw+JRKLSXZRUQYYEqUEVCgU6b+kkczRDflkePhG8niVL9nCW7TdtJ7kw\nSd/DfcRiscp2VlJFGBKkBlQoFFh9w2pGrh6Bq0IKLIb84jz5I3nab2hn4MkBg4LUgKKauPgHwE7g\nZ8CPI2pD0gx13tIZBIRFUxRcBNmrs3Te0lmWfkmqLlGFhCZgG/BQROeXNEOjo6NkjmamDggTFkHm\naIZcLhdltyRVoahCwj3A/cDeiM4vaYY23rcxmINQhHxLnt77eiPqkaRq5ToJUoMZfGEQFhdZaTEM\nPj8YSX8kVS9DgtRgxk6MFV9pDoy9NYN6kmpaMU833AP0TFHmKmB4xr2RFLmmuU3FVzoJTefMoF6J\npdPBAXD8OBw8CEuWwPxg7SdSqeCQVBrFhIQHgMemKHNwFn2hu7ubBQsWnPJaKpUi5f/1UsmsuHIF\new/vLe6Ww2FY+eGVkfVpulIpuOaaHL29m9mxI0M2CydOwJo1SXp6ulz8SXUvnU6TnkjK444dOxZZ\ne3MiO3Pgt4GvA++folwrMDQ0NERra2vEXZIaWy6X45qbriH/8elPXox/N86uR3dV9EO4UCjQ2dlN\nJtNEPt8FrJr07h7i8c0kk2P09W1yTQc1lOHhYdra2gDaKPHV/KgWU7oMWDj+dS7wYYJA8gPg9Yja\nlDQNiUSC5MIk+SP56T0GeQSSC5MVDwirV6cYGXkQWBZSYhX5/Cry+f20t6cYGEgbFKQSiGriYi9B\nmrkHOB94FhgiSDmSKqzv4T6adzfDkSkKHoHm3c1se2RbWfp1Jp2d3WcJCJMtI5t9gM7O7nJ0S6p7\nUYWE3x4/9zkEVxImvu6IqD1JRYjFYgw8OUDHSx3EvxuHQ8DJ8TdPAoeCWwwdL3Wwc/tOFi2a7spL\npTc6Okom08TUAWHCFWQy81z8SSoBH4GUGlQsFqP/iX52PbqLdfPX0fxUMzwGzU81s27+OnY9uov+\nJ/orGhAANm58aHwOwvTl81309rrgqzRbbvAkNbD0i2nSe9PQDktXLWXua3NZcuESXp33KnfsuoPU\nv6RILa/s00WDgxlOnaQ4HasYHPxKFN2RGoohQWpgqeWVDwFTGZvRGk5zZlhP0mTebpBU1ZpmtIbT\nyRnWkzSZIUFSVVuxIgnsKbLWHlaubImiO1JDMSRIqmo9PV3E45uLqhOPb2bDhtsi6pHUOAwJkqpa\nIpEgmRwD9k+zxj6SyTddolkqAUOCpKrX17eJ5ubbgX1TlNxHc/OX2Lbt/nJ0S6p7hgRJVS8WizEw\nkKaj417i8ZuB3Zy6+tNu4vGb6ei4l507+0q+tkM6Dddfn+Oyy+7iggtu5Nxzb+SCC27kssvu4vrr\nc5y2345UN3wEUlJNiMVi9PenyeVy9PY+xI4dXyGbheZmWLOmhZ6ejZHcYigUCmzZ8u6NpcbG4PXX\n9zA21sOWLWN87GNuLKX6Y0iQVFMSiQRbt36N4WFoa4PHH4eoNo91Yyk1OkOCpJqRTvP2pf3jx+Hy\ny+Huu2H+/OC1VCo4SmUmG0v193vvQfXDkCCpZpQ6BJzNbDaW8skK1QsnLkpSCDeWkgwJkhRq5htL\nHYiiO1JFGBIkKYQbS0mGBEkK5cZSkiFBkkK5sZRkSJCkUG4sJRkSJCmUG0tJhgRJOiM3llKjMyRI\n0hlUemMpqdJccVGSzqJSG0tJ1cCQIElTCPaMSABfY+lSmDsXliyBV1+FO+4o73LRUjkZEiRpCoYA\nNSrnJEiSpFCGBEmSFMqQIEmSQkUVEhLAI8AI8DPg/wH3AK5qLklSjYhq4uKvAnOAWwkCwnLgL4Dz\ngbsialOSJJVQVCHhqfFjQg64D/gdDAmSJNWEcs5JWAD8qIztSZKkWSjXOgnNwO3A75apPUmqecEq\nj5sZHMwwNgZNTcEW1j09Xa7yqLIoNiTcA/RMUeYqYHjSz5cAfwM8Dmwtsj1JajiFQoHrrutmZKSJ\nN97oAla9/d7evXt47LEeli4do79/E7FYrHIdVd2bU2T5i8aPszkIvDH+/SVAP7AL+O2z1GkFhq69\n9loWLFhwyhupVIqUS51JahCFQoHVq1OMjDwILDtLyf00N9/OwEDaoNBA0uk06XT6lNeOHTvGM888\nA9DGqX+kz1qxIaEYHyQICIPA53ln67QwrcDQ0NAQra2tEXZJkqrbddelePrpDZw9IEzYR0fHvfT3\np6cuqro1PDxMW1sbRBASopq4+EHgaYKrCncBMSA+fkiSQoyOjpLJNDG9gABwBZnMPHK5XIS9UiOL\nKiT8OsFkxY8Bh4GXx48fRtSeJNW8jRsfIp/vKqpOPt9Fb+9DEfVIjS6qkPDN8XPPHf96zqSfJUkh\nBgczTJ6kOD2rGBw8EEV3JPdukKRqMTY2k1pzZlhPmpohQZKqRNOMdrc5OcN60tQMCZJUJVasSAJ7\niqy1h5UrW6LojlS2FRcladbSL6ZJ7w0e9zv+5nEOvnaQJRcuYf68+QCkPpQitbx211Xp6eli+/Ye\n8vnpz0uIxzezYcPGCHulRmZIkFQzUsvfCQHDrwzTtqWN9GfTtF5cH+urJBIJkskx8vn9THedhGTy\nTZdoVmS83SBJVaSvbxPNzbcD+6YouY/m5i+xbdv95eiWGpQhQZKqSCwWY2AgTUvLvZx33s3Abt5Z\nsPYksJvzzruZlpZ72bmzj0WLFlWus6p73m6QpCoTi8XYvz89vgvkQwwOfmXSLpAt9PRsjPQWg7tP\naoIhQVJNyeVy9P5JLzuGd8BRWPs3a1nTuoaeu3rq7gMskUiwdevXytZeoVCgs7ObTKZpfOXHU3ef\n3L69h2RyjL4+d59sFIYESTWhUCjQeUsnmaMZ8svy8Ing9SxZsoezbL9pO8mFSfoe7vMDbAam3n1y\nFfn8KvL5/bS3p9x9skE4J0FS1SsUCqy+YTVPX/Y0+Y/nYfFpBRZD/uN5nr7sadpvaKdQKFSkn7Ws\ns7N7GttTAywjm32Azs7ucnRLFWZIkFT1Om/pZOTqEZhqjt4iyF6dpfOWzrL0q164+6TOxNsNkqra\n6OgomaMZuGqaFRZB5rkMuVyuZHMU6n0Rp9nsPlnOORMqP0OCpKq28b6NwRyEIuRb8vTe18vWB7eW\npA/1vojTzHef/EoU3VEV8XaDpKo2+MLgu+cgTGUxDD4/GEl/6pG7T+pMDAmSqtrYiRl8Es2BsbdK\n+wmWy+VY37WetZ9ZC4/B2s+sZX3X+rq4L+/ukzoTbzdIqmpNc2fwSXQSms4pzSdYIzx6uWJFkr17\n91DcLQd3n2wEXkmQVNVWXLkCDhdZ6TCs/PDKWbfdKI9e9vR0EY9vLqpOsPvkbRH1SNXCkCCpqvXc\n1UN8f7yoOvEDcTbcuWHWbTfKo5cTu0/C/mnWcPfJRmFIkFTVEokEyYVJODLNCkcguTA56w+wtx+9\nnO7+SYsgczRTsjkK6RfTXP9n13PZJy/jguUXcO6yc7lg+QVc9snLuP7Prif9Yrok7Uxw90mFMSRI\nqnp9D/fRvLt56qBwBJp3N7PtkW2zbnM2j17OVqFQYMuXt7Bv2z4OLT7E67/1OmOfG+P133qdQ4sP\nsW/bPrZ8eUtJb29M7D7Z0XEv8Xj47pPx+M10dLj7ZCNx4qKkqheLxRh4ciCYQPhchnzL+PyAOQSf\nX4eDWwzJhUm2bd9Wkg+wwRcG4foiKy2Gwb+f3aOXE/MgRq4eCV9AajHkF+fJH8nTfkM7A08OlGzC\nZCwWo7+/crtPqvoYEiTVhFgsRv8T/cEH2H297HhqB9mjWZoXNrOmbQ09j5Z2F8hKPXo5k3kQ/U/0\nz6rN05V790lVL0OCpJqSSCTY+uDWt1c+fPzWxyNZ+bASj15WwxLU0mTOSZCkEJV49LKS8yCkMIYE\nSQpRiUcvXYJa1caQIEkhKvHoZbUsQS1NMCRI0hmU+9HLSi9BLZ0uqomL3wE+TDA/98fA3wG/D7wS\nUXuSGkD6xTTpvcEiQsffPM7lF13O3X93N/PnzQcg9aF3tnQuhXI/erniyhXsPby3uFsOJVqCWgoz\nJ6LzdgM7CULBYuA+gqsW15yhfCswNDQ0RGtrfezPLqm+vP3o5dBpj17eWbpHL3O5HNfcdE2wT8Q0\nxb8bZ9eju3y6oYENDw/T1tYG0AYMl/LcUV1J2DTp+0PAHwPfBuYCJyJqU5IiU45HLyfmQeSP5Ke3\nHHSJlqCeLP1imkf6H+H727/P0cNH+cWJX3Du3HNZuHghl3/ycr5w3RdKerVG1a0c6yQsBG4C+jEg\nSNJZ9T3cR/sN7WSvzp49KEzMg9g++yWoJ0wsB/32tthXB6+PMcbrh19nbNsYW/52Cx97+GM1uy22\nihNlSPhjoAt4D/A94JMRtiVJkSnnXIhKLEENlV0OWtWrmDkJ9wA9U5S5infuh1wEvB9IAH84/toa\n3tkxZDLnJEjSacoxD2LCdTdex9OXPT3t2xwdL3WUfDlozUyUcxKKCQkXjR9ncxB4I+T1DxLMTfgo\nwYTG07UCQ9deey0LFiw45Y1UKkUq5f0vSY3l9KsXB187yJILl0Ry9WJ0dJTVn1/thMkakE6nSadP\n3Sb82LFjPPPMM1DhkDAblxIEiF8Dngl53ysJklQh67vW841ffKO4Ry8Pwbr569j64NbI+qXpifJK\nQhSLKa0Ebgc+AiwBrgMeA34A7IqgPUnSLLgctM4kipDwM+DfEyyglAEeAV4guIrwZgTtSZJmweWg\ndSZRPN2wF/g3EZxXkhQBl4PWmbh3gyQ1uEpsi326XC7H+q71LL92OcnVSZZfu5z1XevJ5XIla0PF\nK8diSpKkKtZzVw/bb9pOfnERTzcciLPh0Zlviz2hUChwXed1jPxkhDda34Dr33lv7+G9PPbZx1j6\nvqX09/W7LkMFeCVBkhpcJbbFhncWcDqw7ABvfPqNd0+eXAxvfPoNDiw7QPsN7RQKhVm1p+IZEiRJ\nZd8WG6Dzls5ghcepFnBaBNmrs3Te0jnrNlUcQ4Ik6e3loDte6iD+3Xiw/N3E+rgngUPBAkodL3Ww\nc/vOWS8HPTo6SuZoZnorPAIsgszRjHMUysyQIEkCgqBw61dv5YrPXcGlL1/K+X99Pk3bmjj/r8/n\n0pcv5YrPXcGtX721JPtFbLxvY7CJVBHyLXl67+uddduaPicuSpLello+vtzzHdG2M/jC4CmTFKdl\nMQz+vQs4lZNXEiRJZecCTrXBkCBJKjsXcKoNhgRJUtlVwwJOmpohQZJUdj139RDfHy+qTvxAnA13\nzn4BJ02fIUGSVHaJRIKlFywtagGnpRcsnfUCTiqOIUGSVBk/XQSPXjqtBZx49NKgvMrKkCBJKrvR\n0VFGRt4Lrw3CX3XAX4Yv4MRfxoP3X/seIyMXuJhSmRkSJEllt3HjQ+TzXUAMErfCh66A3ZfCN98L\n3zw/+Lr70uD1xK3AIvL5Lnp7H6p01xuKiylJkspucDADrAp+2JsKjjD7Jv+wisHBr0TcM03mlQRJ\nUtmNzWhNpDkzrKeZMiRIksquaUZrIp2cYT3NlCFBklR2K1YkgT1F1trDypUtUXRHZ2BIkCSVXU9P\nF/H45qLqxOOb2bDhtoh6pDBOXJQklV0ikSCZHCOf3w8sm0aNfSSTb5Z0MaX0i2nSe9MAHH/zOAdf\nO8iSC5cwf958AFIfGt8Rs4EZEiRJFdHXt4n29hTZ7APAFWcpuY/m5i+xbVtfSdt/e1tsYPiVYdq2\ntJH+bJrWi1tL2k4t83aDJKkiYrEYAwNpOjruJR6/GdjNqasp7SYev5mOjnvZubOPRYtKv+JiLpdj\nfdd61n5mLTwGaz+zlvVd6120aZxXEiRJFROLxejvT5PL5ejtfYgdO75CNgvNzbBmTQs9PRsj2a+h\nUCjQeUsnmaMZ8svy8Ing9SxZsoezbL9pO8mFSfoe7iMWi5W8/VphSJAkVVwikWDr1q8xPAxtbfD4\n49Aa0VX/QqHA6htWM3L1CFwVUmAx5BfnyR/J035DOwNPDjRsUPB2gySpoXTe0hkEhKnuXiyC7NVZ\nOm/pLEu/qpFXEiRJFZVOBwfA8eNw+eVw990wP3jIgFQqOEphdHSUzNFM+BWEMIsg81yGXC7XkNtU\nGxIkSRVVyhAwlY33bQzmIBQh35Kn975etj64NaJeVa+obzecBzwHvAVcGXFbkiSd1eALg7C4yEqL\nYfD5wUj6U+2iDglfA34YcRuSJE3L2IkZ7BA1B8beasydpaIMCZ8ErgfujLANSZKmrWnuDHaIOglN\n5zTmzlJRhYQYsAW4Gfh5RG1IklSUFVeugMNFVjoMKz+8MpL+VLsoQsIc4JvAnwPDEZxfkqQZ6bmr\nh/j+eFF14gfibLhzQ0Q9qm7FPN1wD9AzRZkVQDtwAfDfTntvzlQNdHd3s2DBglNeS6VSpMo17VWS\nVNcSiQTJhUnyR/JTr5MAcASSC5NV8/hjOp0mPfG86Lhjx45F1t6UH9yTXDR+nM1BoA+4kXcW4AaY\nC5wAvgWsC6nXCgwNDQ3RGtUSW5IkEay42H5DO9mrs2cPCkegeXczO7fvjGTfiFIZHh6mra0NoI0S\nX8Ev5krCj8aPqdwB/MGknz8IPAWsBfYU0Z4kSSUXi8UYeHIg2LvhuQz5lnzwWOQcgj9vDwe3GJIL\nk2zbvq2qA0LUolhM6dBpP/9s/GsWeDmC9iRJKkosFqP/if5gY6n7etnx1A6yR7M0L2xmTdsaeh7t\nqZpbDJVUrhUXT05dRJKk8km/mCa9Nw3tsHTVUua+NpclFy7h1XmvcseuO0j9S4rU8saeE1eOkJAj\nmJMgSVLVSC03BEzFXSAlSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUOVaJ0GSpKqSTgcH\nwPHjcPAgLFkC8+cHr6VSwdHIDAmSpIY0OQQMD0NbWxAa3ELoHd5ukCRJoQwJkiQplCFBkiSFMiRI\nkqRQhgRJkhTKkCBJkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFMiRIkqRQhgRJkhTKkCBJ\nkkIZEiRJUihDgiRJCmVIkCRJoQwJkiQplCFBkiSFiiok5IC3Tju+GlFbkiQpAvMiOu9JYAPwF5Ne\nez2itiRJUgSiCgkAPwWORHh+SZIUoSjnJPw+8CrwLPBloCnCtiRJUolFdSXhfmAI+DGwCvgj4JeB\n/xRRe5IkqcSKuZJwD++ejHj60TpedhPwDLAXeAT4z8AXgPeXotOSJCl6xVxJeAB4bIoyB8/w+p7x\nr78CDJ4u5T2IAAAFn0lEQVSpcnd3NwsWLDjltVQqRSqVmm4fJUmqW+l0mnQ6fcprx44di6y9OZGd\n+VSfAr4DXAYcDnm/FRgaGhqitbU15G1JkqIzPAxtbTA0BLX2MTQ8PExbWxtAGzBcynNHMSfhauAa\noB94DVgB/CnwvwkPCJIkqQpFERLeANYCPcB5BLcgtgBfi6AtSZIUkShCwrMEVxIkSVINc+8GSZIU\nypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIo\nQ4IkSQplSJAkSaEMCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQplSJAkSaEM\nCZIkKZQhQZIkhTIkSJKkUIYESZIUypAgSZJCGRIkSVIoQ4IkSQoVZUj4d8Ae4GfAPwN/HWFb0rSl\n0+lKd0ENwrGmWhdVSPgs8FfAI8CVwGrg0YjakoriL26Vi2NNtW5eROe8H7gT+Mak138QQVuSJCki\nUVxJaAUuAU4CzwIvA08CV0TQVsWV+y+FUrY3m3MVW7eY8tMpO1WZevwLzrFW+vKOtXCNOtbAsXa6\nKELC0vGv9wC9wKeAHwNPA++PoL2KatT/mfzFXX6OtdKXd6yFa9SxZkh4t2JuN9wD9ExRZgXvBI97\ngW+Pf78OOAz8B2DLmSofOHCgiO5Uh2PHjjE8PFyT7c3mXMXWLab8dMpOVeZs75f7v1mpONZKX96x\nFq4Rx1rw8XOMAwdqb6xF+dk5p4iyF40fZ3OQYJLi3wMfBXZOem838LfAhpB6FwODwAeL6I8kSQr8\nkOAP9VdKedJiriT8aPyYyhDwBpDknZDQBCQIQkSYVwj+cRcX0R9JkhR4hRIHhCh9HTgE/Drwq8DD\nBJ2/sJKdkiRJlTcP+BMgD7wGPAW0VLRHkiRJkiRJkiRJkiRJ7/Ze4J8IVnDcC9xe2e6ojl1KsPDX\nPuB54Lcq2hvVu28DR4H/WemOqG59CsgA3we+UOG+ROYcYP74978EjAD/qnLdUR2LE2xKBsEYO0Qw\n5qQo/BrBL3FDgqIwD/i/BMsLXEAQFBYWc4Iot4oupbeA4+PfvwcYm/SzVEp54IXx7/+Z4K+8ov6n\nkorwj8BPK90J1a2VBFdFXyEYZ08CHy/mBLUSEiBYY+F54CWCXSb/pbLdUQO4imBV0h9WuiOSNAOX\ncOrvr8MUubJxLYWE14APA78MdAG/UtnuqM5dBPwlcGulOyJJM3RytieIKiSsAZ4gSDBvAb8RUuY2\nYBT4OfA9gr0eJnyJYJLiMMGSzpMdIZhY9pGS9li1Koqxdh7wv4CvEuw5IkF0v9dm/YtcdWu2Y+5l\nTr1ycClVcmX0EwTbRP8mwT/s06e9/zmC/R3WEyzb/HWC2weXnuF8i4D3jX//PoJ7xr9a2i6rRpV6\nrM0h2C/2D6PorGpaqcfahA6cuKhwsx1z8wgmK15C8JTg94H3R97rIoX9w/YAm097bT/BX25hWgkS\n+HPjx7pSdlB1oxRj7aPACYK/9p4dP64oYR9VH0ox1iBYsv4I8DrBkzRtpeqg6s5Mx9yNBE84/AC4\nJbLezcLp/7BzCZ5OOP2yySaC2wjSTDnWVC6ONZVbRcZcJSYufgCYCxROe/0IwTPqUqk41lQujjWV\nW1nGXC093SBJksqoEiHhVYJ7vrHTXo8RLPgglYpjTeXiWFO5lWXMVSIk/AIY4t2rPv06sLP83VEd\nc6ypXBxrKreaHnPnE6xj8BGCyRbd499PPJaxluCxjXVAC8FjGz9h6keFpNM51lQujjWVW92OuQ6C\nf9BbBJdDJr7fOqnM7xAsAHEcGOTUBSCk6erAsaby6MCxpvLqwDEnSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJUA/4/AHZYvEaTdS0AAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7fa8466ecf90>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xscale('log'); ylim(-6,2)\n",
|
|
"errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10)\n",
|
|
"errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\t### errors for param 0 ###\n",
|
|
"+++ 1.632e+02 1.627e+02 -1.193e-01 1.144e-01 0.905 +++\n",
|
|
"+++ 1.632e+02 1.622e+02 -1.193e-01 2.312e-01 1.9 +++\n",
|
|
"+++ 1.632e+02 1.625e+02 -1.193e-01 1.728e-01 1.37 +++\n",
|
|
"+++ 1.632e+02 1.626e+02 -1.193e-01 1.436e-01 1.13 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -1.193e-01 1.290e-01 1.01 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -1.193e-01 1.217e-01 0.958 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -1.193e-01 1.254e-01 0.985 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -1.193e-01 1.272e-01 0.999 +++\n",
|
|
"\t### errors for param 1 ###\n",
|
|
"+++ 1.632e+02 1.627e+02 -9.449e-01 -7.407e-01 0.961 +++\n",
|
|
"+++ 1.632e+02 1.622e+02 -9.449e-01 -6.386e-01 2.04 +++\n",
|
|
"+++ 1.632e+02 1.625e+02 -9.449e-01 -6.897e-01 1.46 +++\n",
|
|
"+++ 1.632e+02 1.626e+02 -9.449e-01 -7.152e-01 1.2 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -9.449e-01 -7.279e-01 1.08 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -9.449e-01 -7.343e-01 1.02 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -9.449e-01 -7.375e-01 0.989 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -9.449e-01 -7.359e-01 1 +++\n",
|
|
"\t### errors for param 2 ###\n",
|
|
"+++ 1.632e+02 1.630e+02 -2.529e+00 -2.369e+00 0.307 +++\n",
|
|
"+++ 1.632e+02 1.629e+02 -2.529e+00 -2.289e+00 0.681 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.529e+00 -2.249e+00 0.919 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.529e+00 -2.229e+00 1.05 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.529e+00 -2.239e+00 0.984 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.529e+00 -2.234e+00 1.02 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.529e+00 -2.236e+00 1 +++\n",
|
|
"\t### errors for param 3 ###\n",
|
|
"+++ 1.632e+02 1.630e+02 -2.695e+00 -2.567e+00 0.306 +++\n",
|
|
"+++ 1.632e+02 1.629e+02 -2.695e+00 -2.504e+00 0.681 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.695e+00 -2.472e+00 0.922 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.695e+00 -2.456e+00 1.05 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.695e+00 -2.464e+00 0.988 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.695e+00 -2.460e+00 1.02 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.695e+00 -2.462e+00 1 +++\n",
|
|
"\t### errors for param 4 ###\n",
|
|
"+++ 1.632e+02 1.629e+02 -2.813e+00 -2.614e+00 0.665 +++\n",
|
|
"+++ 1.632e+02 1.624e+02 -2.813e+00 -2.515e+00 1.57 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.813e+00 -2.565e+00 1.07 +++\n",
|
|
"+++ 1.632e+02 1.628e+02 -2.813e+00 -2.590e+00 0.853 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.813e+00 -2.577e+00 0.956 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.813e+00 -2.571e+00 1.01 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.813e+00 -2.574e+00 0.983 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -2.813e+00 -2.573e+00 0.997 +++\n",
|
|
"\t### errors for param 5 ###\n",
|
|
"+++ 1.632e+02 1.628e+02 -3.096e+00 -2.917e+00 0.837 +++\n",
|
|
"+++ 1.632e+02 1.623e+02 -3.096e+00 -2.827e+00 1.87 +++\n",
|
|
"+++ 1.632e+02 1.625e+02 -3.096e+00 -2.872e+00 1.29 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -3.096e+00 -2.895e+00 1.06 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -3.096e+00 -2.906e+00 0.947 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -3.096e+00 -2.900e+00 1 +++\n",
|
|
"\t### errors for param 6 ###\n",
|
|
"+++ 1.632e+02 1.627e+02 -3.327e+00 -3.165e+00 0.992 +++\n",
|
|
"\t### errors for param 7 ###\n",
|
|
"+++ 1.632e+02 1.631e+02 -3.880e+00 -3.769e+00 0.278 +++\n",
|
|
"+++ 1.632e+02 1.629e+02 -3.880e+00 -3.714e+00 0.631 +++\n",
|
|
"+++ 1.632e+02 1.628e+02 -3.880e+00 -3.686e+00 0.862 +++\n",
|
|
"+++ 1.632e+02 1.627e+02 -3.880e+00 -3.672e+00 0.991 +++\n",
|
|
"********************\n",
|
|
"-0.119263 -0.944854 -2.52866 -2.69453 -2.81277 -3.09632 -3.32687 -3.87987\n",
|
|
"0.246439 0.208948 0.29245 0.232296 0.24017 0.196142 0.161799 0.207668\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"p2, p2e = clag.errors(P2, p2, p2e)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 2.664e+02 1.060e+01 inf -- 2.187e+02 -- -0.209329 -0.861493 -2.15962 -2.40847 -2.77148 -3.0939 -3.74416 -6.23993 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n",
|
|
" 3 2.987e+01 1.264e+01 2.257e+00 -- 2.210e+02 -- -0.16831 -0.824919 -2.12464 -2.39488 -2.7608 -3.0706 -3.74724 -5.93993 0.0804747 0.16472 0.155918 0.19816 0.150032 0.148466 -0.0426696 2.76354\n",
|
|
" 5 3.330e+01 1.479e+01 2.062e+00 -- 2.230e+02 -- -0.134691 -0.793404 -2.09481 -2.37915 -2.74942 -3.04926 -3.74185 -6.23993 0.0666414 0.2131 0.199386 0.281712 0.193626 0.185727 -0.170109 -2.41599\n",
|
|
" 7 4.032e+02 1.707e+01 1.889e+00 -- 2.249e+02 -- -0.106698 -0.766368 -2.06929 -2.36269 -2.73774 -3.02999 -3.73105 -6.53993 0.0565128 0.250258 0.234434 0.352126 0.231411 0.214451 -0.279352 -0.654819\n",
|
|
" 9 1.006e+02 1.948e+01 1.734e+00 -- 2.267e+02 -- -0.0831017 -0.743148 -2.04735 -2.34643 -2.7261 -3.0127 -3.71739 -6.23993 0.0489265 0.27947 0.263536 0.411371 0.264011 0.236678 -0.370557 0.617417\n",
|
|
" 11 5.264e+01 2.201e+01 1.603e+00 -- 2.283e+02 -- -0.0630157 -0.723142 -2.02838 -2.33091 -2.71472 -2.99725 -3.70277 -5.93993 0.0431576 0.302888 0.288287 0.46139 0.292059 0.253914 -0.445773 0.691506\n",
|
|
" 13 3.251e+00 2.467e+01 1.448e+00 -- 2.297e+02 -- -0.0457823 -0.705838 -2.0119 -2.31642 -2.70374 -2.98344 -3.68838 -5.63993 0.0387303 0.321962 0.309779 0.503862 0.316158 0.267284 -0.507655 -2.9489\n",
|
|
" 15 5.697e+00 2.744e+01 1.389e+00 -- 2.311e+02 -- -0.0308979 -0.690819 -1.99751 -2.30307 -2.6933 -2.97112 -3.67473 -5.93993 0.0353185 0.337702 0.32866 0.540271 0.336854 0.27759 -0.559235 -3.12456\n",
|
|
" 17 9.962e+01 3.030e+01 1.295e+00 -- 2.324e+02 -- -0.0179753 -0.677732 -1.9849 -2.29088 -2.68339 -2.9601 -3.66228 -6.23993 0.0326949 0.350836 0.34562 0.571642 0.354613 0.285527 -0.602072 1.49229\n",
|
|
" 19 8.259e+01 3.325e+01 1.196e+00 -- 2.336e+02 -- -0.00670527 -0.666291 -1.97381 -2.2798 -2.67406 -2.95025 -3.6511 -5.93993 0.0306947 0.361894 0.361049 0.598897 0.369841 0.291591 -0.63793 -0.807155\n",
|
|
" 21 5.466e+01 3.625e+01 1.126e+00 -- 2.347e+02 -- 0.00316205 -0.65626 -1.96403 -2.26977 -2.6653 -2.94143 -3.64118 -5.63993 0.0291917 0.371274 0.375204 0.622756 0.382913 0.296138 -0.668602 -0.4239\n",
|
|
" 23 9.811e+00 3.926e+01 1.030e+00 -- 2.358e+02 -- 0.0118288 -0.647441 -1.95537 -2.26071 -2.65711 -2.93352 -3.63242 -5.33993 0.0280965 0.379279 0.388328 0.643807 0.394112 0.29949 -0.69488 1.89304\n",
|
|
" 24 1.540e+02 1.799e+03 6.966e+00 -- 2.427e+02 -- 0.0881649 -0.569745 -1.87911 -2.17878 -2.58105 -2.86227 -3.55241 -6.66644 0.0206511 0.447973 0.510379 0.832388 0.489337 0.32364 -0.914155 2.17049\n",
|
|
" 25 6.954e+03 5.225e+01 3.722e+00 -- 2.464e+02 -- 0.0820074 -0.577455 -1.8985 -2.17524 -2.54532 -2.85023 -3.57378 -8 0.0966827 0.412543 0.647274 0.885367 0.477195 0.280838 -0.833819 0.980251\n",
|
|
" 26 6.093e+00 2.044e+01 2.548e-01 -- 2.467e+02 -- 0.0836413 -0.576897 -1.8864 -2.18141 -2.55069 -2.85268 -3.54966 -5 0.0710854 0.434328 0.591545 0.904499 0.417485 0.266475 -0.938934 1.34469\n",
|
|
" 27 1.995e+00 5.009e+00 1.592e-01 -- 2.469e+02 -- 0.0831948 -0.576805 -1.88848 -2.17663 -2.54734 -2.85305 -3.5567 -4.22205 0.0761925 0.426631 0.625953 0.910649 0.424127 0.266244 -0.891405 -0.565813\n",
|
|
" 28 1.248e+00 1.375e+01 4.599e-02 -- 2.469e+02 -- 0.0833105 -0.576655 -1.88396 -2.17799 -2.5475 -2.85314 -3.57374 -4.03476 0.0730522 0.429262 0.625062 0.905512 0.418149 0.264942 -0.967314 0.563133\n",
|
|
" 29 2.171e+00 9.396e+00 3.382e-01 -- 2.472e+02 -- 0.0829995 -0.576375 -1.88776 -2.17599 -2.54493 -2.85329 -3.58608 -4.02931 0.0763743 0.428086 0.638377 0.920493 0.411594 0.274496 -0.815157 -0.139608\n",
|
|
" 30 9.841e-01 1.149e+01 1.388e-01 -- 2.474e+02 -- 0.0832295 -0.57636 -1.88467 -2.17976 -2.54698 -2.8543 -3.58978 -3.89975 0.0738415 0.429686 0.629413 0.910992 0.412336 0.271501 -0.957932 0.163421\n",
|
|
" 31 2.338e+01 3.752e+00 6.030e-02 -- 2.474e+02 -- 0.0829583 -0.576172 -1.88634 -2.17783 -2.54432 -2.85466 -3.60447 -3.874 0.0761271 0.428633 0.633503 0.910755 0.410289 0.277401 -0.858061 0.00260138\n",
|
|
" 32 3.920e-01 3.182e+00 1.581e-02 -- 2.475e+02 -- 0.0830523 -0.576117 -1.88559 -2.18042 -2.54532 -2.85537 -3.60659 -3.85372 0.0749087 0.429912 0.628364 0.908088 0.410987 0.278401 -0.917876 0.0634286\n",
|
|
" 33 3.181e-01 1.292e+00 4.081e-03 -- 2.475e+02 -- 0.0829733 -0.576083 -1.88614 -2.17987 -2.54423 -2.85554 -3.60968 -3.84594 0.0757541 0.429324 0.627903 0.906455 0.410964 0.280705 -0.882158 0.0385634\n",
|
|
" 34 9.740e-02 4.768e-01 1.118e-03 -- 2.475e+02 -- 0.0830058 -0.576059 -1.88614 -2.18078 -2.54437 -2.85582 -3.61078 -3.84115 0.0755814 0.429797 0.625777 0.906066 0.411713 0.281667 -0.897167 0.0508303\n",
|
|
" 35 6.139e-02 4.667e-01 3.378e-04 -- 2.475e+02 -- 0.0829936 -0.576051 -1.88632 -2.18077 -2.54398 -2.85585 -3.61168 -3.83901 0.0759106 0.429622 0.624827 0.905205 0.411841 0.282606 -0.888007 0.0458794\n",
|
|
" 36 2.074e-02 6.100e-02 1.146e-04 -- 2.475e+02 -- 0.0830052 -0.576043 -1.8864 -2.18106 -2.54393 -2.85595 -3.61204 -3.83759 0.0759487 0.42976 0.623936 0.905027 0.412248 0.283153 -0.891435 0.0486959\n",
|
|
" 37 1.454e-02 1.834e-01 4.331e-05 -- 2.475e+02 -- 0.0830055 -0.57604 -1.88647 -2.18112 -2.54378 -2.85597 -3.61236 -3.83689 0.0760799 0.429719 0.623352 0.904662 0.412343 0.283555 -0.889115 0.047686\n",
|
|
"********************\n",
|
|
"0.0830055 -0.57604 -1.88647 -2.18112 -2.54378 -2.85597 -3.61236 -3.83689 0.0760799 0.429719 0.623352 0.904662 0.412343 0.283555 -0.889115 0.047686\n",
|
|
"0.00496524 0.0080639 0.0332817 0.053869 0.0497847 0.0510814 0.188809 0.22006 0.0806462 0.0938084 0.215752 0.243886 0.211727 0.201233 0.481882 0.380625\n",
|
|
"0.183432 0.0383088 -0.0465819 -0.037514 0.0169821 -0.0145299 -0.00365015 0.00975964 0.0073746 0.00371696 -0.00866648 -0.0017458 0.00395749 0.0070437 -0.00320102 0.00463012\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n",
|
|
"p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n",
|
|
"p, pe = clag.optimize(Cx, p)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\t### errors for param 0 ###\n",
|
|
"+++ 2.475e+02 2.473e+02 8.301e-02 8.549e-02 0.306 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 8.301e-02 8.673e-02 0.912 +++\n",
|
|
"+++ 2.475e+02 2.467e+02 8.301e-02 8.735e-02 1.46 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 8.301e-02 8.704e-02 1.16 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 8.301e-02 8.689e-02 1.03 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 8.301e-02 8.681e-02 0.969 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 8.301e-02 8.685e-02 0.999 +++\n",
|
|
"\t### errors for param 1 ###\n",
|
|
"+++ 2.475e+02 2.473e+02 -5.760e-01 -5.720e-01 0.399 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -5.760e-01 -5.700e-01 1.13 +++\n",
|
|
"+++ 2.475e+02 2.471e+02 -5.760e-01 -5.710e-01 0.698 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -5.760e-01 -5.705e-01 0.897 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -5.760e-01 -5.702e-01 1.01 +++\n",
|
|
"\t### errors for param 2 ###\n",
|
|
"+++ 2.475e+02 2.473e+02 -1.887e+00 -1.870e+00 0.291 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -1.887e+00 -1.862e+00 0.915 +++\n",
|
|
"+++ 2.475e+02 2.467e+02 -1.887e+00 -1.857e+00 1.53 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -1.887e+00 -1.859e+00 1.18 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -1.887e+00 -1.860e+00 1.04 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -1.887e+00 -1.861e+00 0.971 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -1.887e+00 -1.861e+00 1 +++\n",
|
|
"\t### errors for param 3 ###\n",
|
|
"+++ 2.475e+02 2.473e+02 -2.181e+00 -2.154e+00 0.29 +++\n",
|
|
"+++ 2.475e+02 2.471e+02 -2.181e+00 -2.141e+00 0.808 +++\n",
|
|
"+++ 2.475e+02 2.468e+02 -2.181e+00 -2.134e+00 1.25 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.181e+00 -2.137e+00 1.01 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.181e+00 -2.139e+00 0.905 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.957 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.984 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.181e+00 -2.138e+00 0.997 +++\n",
|
|
"\t### errors for param 4 ###\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.544e+00 -2.494e+00 0.973 +++\n",
|
|
"+++ 2.475e+02 2.459e+02 -2.544e+00 -2.469e+00 3.08 +++\n",
|
|
"+++ 2.475e+02 2.466e+02 -2.544e+00 -2.482e+00 1.78 +++\n",
|
|
"+++ 2.475e+02 2.468e+02 -2.544e+00 -2.488e+00 1.32 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -2.544e+00 -2.491e+00 1.14 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -2.544e+00 -2.492e+00 1.05 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.544e+00 -2.493e+00 1.01 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.544e+00 -2.494e+00 0.993 +++\n",
|
|
"\t### errors for param 5 ###\n",
|
|
"+++ 2.475e+02 2.473e+02 -2.856e+00 -2.830e+00 0.277 +++\n",
|
|
"+++ 2.475e+02 2.471e+02 -2.856e+00 -2.818e+00 0.713 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -2.856e+00 -2.811e+00 1.04 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.856e+00 -2.814e+00 0.867 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.856e+00 -2.813e+00 0.953 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -2.856e+00 -2.812e+00 0.993 +++\n",
|
|
"\t### errors for param 6 ###\n",
|
|
"+++ 2.475e+02 2.473e+02 -3.612e+00 -3.518e+00 0.392 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -3.612e+00 -3.471e+00 1.06 +++\n",
|
|
"+++ 2.475e+02 2.471e+02 -3.612e+00 -3.494e+00 0.67 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -3.612e+00 -3.483e+00 0.845 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -3.612e+00 -3.477e+00 0.947 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -3.612e+00 -3.474e+00 1 +++\n",
|
|
"\t### errors for param 7 ###\n",
|
|
"+++ 2.475e+02 2.474e+02 -3.836e+00 -3.727e+00 0.218 +++\n",
|
|
"+++ 2.475e+02 2.471e+02 -3.836e+00 -3.672e+00 0.684 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -3.836e+00 -3.644e+00 1.16 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -3.836e+00 -3.658e+00 0.894 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -3.836e+00 -3.651e+00 1.02 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -3.836e+00 -3.654e+00 0.955 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -3.836e+00 -3.653e+00 0.988 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -3.836e+00 -3.652e+00 1 +++\n",
|
|
"\t### errors for param 8 ###\n",
|
|
"+++ 2.475e+02 2.470e+02 7.613e-02 1.568e-01 0.869 +++\n",
|
|
"+++ 2.475e+02 2.465e+02 7.613e-02 1.971e-01 1.9 +++\n",
|
|
"+++ 2.475e+02 2.468e+02 7.613e-02 1.769e-01 1.35 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 7.613e-02 1.668e-01 1.1 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 7.613e-02 1.618e-01 0.98 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 7.613e-02 1.643e-01 1.04 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 7.613e-02 1.630e-01 1.01 +++\n",
|
|
"\t### errors for param 9 ###\n",
|
|
"+++ 2.475e+02 2.473e+02 4.298e-01 4.767e-01 0.29 +++\n",
|
|
"+++ 2.475e+02 2.471e+02 4.298e-01 5.001e-01 0.641 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.298e-01 5.118e-01 0.863 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.298e-01 5.177e-01 0.985 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 4.298e-01 5.206e-01 1.05 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.298e-01 5.192e-01 1.02 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.298e-01 5.184e-01 1 +++\n",
|
|
"\t### errors for param 10 ###\n",
|
|
"+++ 2.475e+02 2.471e+02 6.230e-01 8.388e-01 0.802 +++\n",
|
|
"+++ 2.475e+02 2.466e+02 6.230e-01 9.467e-01 1.77 +++\n",
|
|
"+++ 2.475e+02 2.468e+02 6.230e-01 8.928e-01 1.25 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 6.230e-01 8.658e-01 1.02 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 6.230e-01 8.523e-01 0.906 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 6.230e-01 8.591e-01 0.96 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 6.230e-01 8.624e-01 0.988 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 6.230e-01 8.641e-01 1 +++\n",
|
|
"\t### errors for param 11 ###\n",
|
|
"+++ 2.475e+02 2.470e+02 9.046e-01 1.149e+00 0.88 +++\n",
|
|
"+++ 2.475e+02 2.465e+02 9.046e-01 1.271e+00 1.88 +++\n",
|
|
"+++ 2.475e+02 2.468e+02 9.046e-01 1.210e+00 1.35 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 9.046e-01 1.179e+00 1.1 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 9.046e-01 1.164e+00 0.989 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 9.046e-01 1.171e+00 1.05 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 9.046e-01 1.168e+00 1.02 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 9.046e-01 1.166e+00 1 +++\n",
|
|
"\t### errors for param 12 ###\n",
|
|
"+++ 2.475e+02 2.471e+02 4.125e-01 6.242e-01 0.737 +++\n",
|
|
"+++ 2.475e+02 2.467e+02 4.125e-01 7.300e-01 1.59 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 4.125e-01 6.771e-01 1.13 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.125e-01 6.507e-01 0.924 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 4.125e-01 6.639e-01 1.02 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.125e-01 6.573e-01 0.974 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.125e-01 6.606e-01 0.999 +++\n",
|
|
"\t### errors for param 13 ###\n",
|
|
"+++ 2.475e+02 2.470e+02 2.838e-01 4.851e-01 0.854 +++\n",
|
|
"+++ 2.475e+02 2.465e+02 2.838e-01 5.857e-01 1.84 +++\n",
|
|
"+++ 2.475e+02 2.468e+02 2.838e-01 5.354e-01 1.31 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 2.838e-01 5.103e-01 1.07 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 2.838e-01 4.977e-01 0.96 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 2.838e-01 5.040e-01 1.01 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 2.838e-01 5.008e-01 0.987 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 2.838e-01 5.024e-01 1 +++\n",
|
|
"\t### errors for param 14 ###\n",
|
|
"+++ 2.475e+02 2.470e+02 -8.899e-01 -4.078e-01 0.957 +++\n",
|
|
"+++ 2.475e+02 2.465e+02 -8.899e-01 -1.668e-01 1.91 +++\n",
|
|
"+++ 2.475e+02 2.468e+02 -8.899e-01 -2.873e-01 1.41 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -8.899e-01 -3.476e-01 1.18 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 -8.899e-01 -3.777e-01 1.07 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -8.899e-01 -3.928e-01 1.01 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -8.899e-01 -4.003e-01 0.984 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 -8.899e-01 -3.965e-01 0.998 +++\n",
|
|
"\t### errors for param 15 ###\n",
|
|
"+++ 2.475e+02 2.471e+02 4.838e-02 4.285e-01 0.661 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.838e-02 6.186e-01 0.961 +++\n",
|
|
"+++ 2.475e+02 2.469e+02 4.838e-02 7.136e-01 1.07 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.838e-02 6.661e-01 1.02 +++\n",
|
|
"+++ 2.475e+02 2.470e+02 4.838e-02 6.424e-01 0.991 +++\n",
|
|
"********************\n",
|
|
"0.0830101 -0.576037 -1.88651 -2.18123 -2.54372 -2.856 -3.61248 -3.8364 0.0761257 0.429759 0.622953 0.90456 0.412522 0.283831 -0.889856 0.0483793\n",
|
|
"0.00383825 0.00579502 0.025767 0.0436043 0.050153 0.0439107 0.138708 0.1845 0.086924 0.0886716 0.241158 0.261188 0.248061 0.218563 0.493323 0.593987\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"p, pe = clag.errors(Cx, p, pe)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"phi, phie = p[nfq:], pe[nfq:]\n",
|
|
"lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n",
|
|
"cx, cxe = p[:nfq], pe[:nfq]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFitJREFUeJzt3W9sXed9H/CvYslxG69V/jSknMVRotalEnj1yCiqo8CV\nO8foi8oZMMM1gRir7dVGrTbQVrgtUpj1LLsDgq1R0NkrtMZp06DXbosUibFpS19I6eY/mkp6XSRL\nSatYnmrp0nEcpY1Sx0rsvTjkQpGUxPvw3nvu5f18gAtenvvcc36UHpJfPuc5z0kAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAYMW4JsljSZ5P8mqSDy3S5t6Z17+dZG+Sd3erOABg+V7XwX3/YJKnk2yf+fy1\nea//WpIdM69vStJM8udJLu1gTQBAH3o1yQ1zPl+V5GSSu+dsuzjJN5Lc0cW6AIBl6OSIxPm8M8lQ\nki/M2fZKki8meX8tFQEALasrSAzPfJyet/2FOa8BAD1udd0FLGL+XIpZ62YeAEBrTs482q6uINGc\n+Tg05/lin89ad9lll504ceJExwsDgBXo+VQXNrQ9TNQVJJ5NFRiuT/JXM9suTvJTOXsC5qx1J06c\nyGc+85ls3LixSyW2z44dO7Jr166+PNZy9tfqe5fafintLtTmfK938/+r3fS19rbX185NX2tv+072\ntcOHD+fDH/7w21KN6vdVkHhDkh+b8/m7klyV5OtJjifZleSjSf46yd/MPP9Wkj861w43btyY0dHR\nTtXbMWvXru1a3e0+1nL21+p7l9p+Ke0u1OZ8r3fz/6vd9LX2ttfXzk1fa2/7Tve1Trqog/vekuSJ\nJHemmvfwMzPP35jkc0keT3JJkt9M8pEk30wynmSx8xfrktx55513Zt26/pwmceWVV/btsZazv1bf\nu9T2S2l3oTbner3RaGR8fHxJdfQifa297fW1c9PX2tu+U33t5MmT2b17d5LsTgdGJFa1e4cdMppk\ncnJysm/TO/3jhhtuyOc///m6y2AA6Gt0w9TUVMbGxpJkLMlUu/df1+WfAMAKIEjAPP081Ex/0ddY\nCQQJmMcPd7pFX2MlECQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQA\nUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADF\nBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQ\nAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkA\noJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgWJ1B4t4kr857nKixHgCgRatrPv7BJNfN+fx7dRUCALSu7iDxvSQv\n1FwDAFCo7jkSP5bk+SRfTdJI8s56ywEAWlFnkHgqyS1Jrk/yC0mGkzyR5E011gQAtKDOUxv/bc7z\nQ0meTHI0yb9M8vFaKgIAWlL3HIm5vp3kS0l+9FwNduzYkbVr1561bXx8POPj4x0uDQB6X6PRSKPR\nOGvbqVOnOnrMVR3de2ten2pE4neT3D/vtdEkk5OTkxkdHe16YQDQr6ampjI2NpYkY0mm2r3/OudI\n/Psk16SaYLk5yZ8muTTJH9RYEwDQgjpPbbwt1ZUab0nytVRzJH4yyfEaawIAWlBnkDCxAQD6XN3r\nSAAAfUyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZI\nAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQA\nUEyQAACKCRIAQDFBAgAoJkgAAMUECeC8Go3kuuuO5fLL786ll27LxRdvy6WXbsvll9+d6647lkaj\n7gqBOq2uuwCgd01PT2f37h05cmRNms3tSTYnSc6cSU6f3p8zZyaye/eZ/PRP78rQ0FC9xQK1ECQY\nWI1G/v9f0y+/nDz3XPKOdySXXFJtGx+vHoNqeno673//eL761f+Y5N2LtNicZnNzms1nsmXLeB5/\nvCFMwAASJBhYc4PC1FQyNlYFi9HReuvqFTffvOM8IWKud+fo0d/JzTfvyN69znPAoDFHAljg2Wef\nzZEja3LhEDHrPTlyZHWOHTvWwaqAXiRIAAvs3PnQzJyIpWs2t+e++x7qUEVAr3JqA1jgwIEjmZ1Y\nuXSbc+DAA50opyXmvkB3CRLAAmfOlLxrVeH72svcF+gupzaABdasKXnXa4XvA/qZIAEssGnTSJL9\nLb5rf973vo2dKKdlx44dy2233Z2bbtqWZFtuumlbbrvtbpNBoQOc2gAWmJjYnj17JtJsLn2exPDw\ng7nnnp0drOrCpqenc/PNCxfQOno0OXp0f/bsmcjIyJk88ogFtKBdBAlggfXr12dk5EyazWeytEtA\nD2Vk5LtZv359hys7t7oX0Go0kk9+8li+8pUH89JLR/LKK8nFFydvetNIrrhie26/fb1JnqxITm0A\ni3rkkV3ZsOGXkhy6QMtD2bDhl/Poo5/oRlnnVLKAVrtUS4mP59ChiRw/fmNOn34sZ848ltOnH8vx\n4zfm0KGJ7N49nunp6bYdE3qFEQlgUUNDQ3n88cbMqYLVc04VrEryWpL9GR5+MCMj382jjz6St771\nrbXVupwFtJY7ilL3SAjUzYgEcE5DQ0PZu7eRJ5/cmVtv/Ww2bLghybZs2HBDbr31s3nyyZ3Zu7dR\na4hI6l1Aq86REOgFRiSA86oWeFqf5GN517uSiy6qFnh68cXkIx/pjQWe6lpAq86REOgVggRwXr0Q\nFC6krgW0ljMS8vDDH1vewaFHOLXBQLPewMpQ1wJa5SMhh5d3YOghRiQYSNYbWFk2bRrJwYP709ov\n9eUvoNXPS4lDuxiRYODMzrLft++eNJufzsJfPpvTbH46+/bdky1bXLLXDyYmtmd4+MGW3lMtoHXX\nso5rKXEQJBhAZtmvPLMLaCXPLPEd7VlAq9+XEod2ECQYKMuZZU9vq2MBrbpGQqCXCBIMlDrXG6Cz\nZhfQ2rr1/gwP35LkqVQLZ2Xm41MZHr4lW7fenyeeaM8CWnWNhEAvESQYKGbZr2x1LKDVb0uJQ7u5\naoOBYpb9YFi/fn0efvhjmZpKxsaSP/7jZHS0M8fqp6XEoRMECQaKWfZ0wtDQUO64o5FPfvJY1qx5\nKC+99MCcu39uzBVX7Mztt6+PDMFKJEgwUOpab4CVr1oBdH0SK1YyWAQJBsrExPbs2TORZnPpQaKa\nZb+zg1XRTtW9QarnL7+cXHFF8uu/nlxySbWtH5b8hn4iSDBQZmfZN5vPZGmXgJpl328EBeguV20w\ncMyyZyWZvV/MlVduy8jItlx5pfvF0F1GJBg4ZtmzEpzrfjFJcvCg+8XQPYIEA2l2vYFjx47lvvse\nyl/8xQM5ejTZsCG55pqNmZjY6XQGPWv2fjHnXup9c5rNzWk2n8mWLeN5/PGGMEHHCBIMtG6uNwDt\nUnK/mL17G90ojQFkjgRAH+mV+8WYm8EsIxIAfWQ594t5+OHlr3FhbgbzCRIAfaT8fjEPLPvY5maw\nGKc2APpInfeLKZmbwconSAD0kbruF9MrczPqYD7I+fVCkLgrybNJ/iHJXyb5QL3lAPSuTZtGkuxv\n8V3Lv1/McuZm9Kvp6elce+14rr56Ip/61I05ePCxfPnLj+XgwcfyqU/dmKuvnsi1145nenq67lJr\nVXeQ+LkkH0+yM8lVSf5Hkj1J3l5nUQC9amJie4aHH2zpPdX9Yu5a1nHL52YcXtZx6zI7H2TfvnvS\nbH46C7/2zWk2P519++7Jli2DHSbqDhL/JsnvJXk4yZeT/Oskx5P8Yp1FAfSq2fvFJM8s8R3tuV9M\nnXMz6mA+yNLVGSQuTjKa5Avztn8hyfu7Xw5Af6jjfjF1zc2owyDPBylRZ5B4S5KLkswfD3ohyXD3\nywHoD7P3i9m69f4MD9+S5KlU94nJzMenMjx8S7ZuvT9PPNGe+8XUNTejDoM4H2Q5rCMB0Ifm3y/m\nwIEHcuZMNXKwaVP77xczMbE9e/ZMpNlc+jyJam7GzrbV0C11rtXRj+oMEi8m+V6S+auVDCU5udgb\nduzYkbVr1561bXx8POPj4x0pEKDXzd4vphvHGRk5k2bzmSxtyL89czPmqkLTgzlw4Mic0DSSiYnt\nbT1OP88HaTQaaTTOvq/KqVOnOnrMOoPEK0kmk1yf5HNztn8wyZ8t9oZdu3Zl1B2VAGrxyCO7smXL\neI4e/Z0k7zlPy9m5GY+05bjdXpa7n+eDLPbH9dTUVMbGxjp2zLpPbfx2kj9MtX7EU0nuSPKPk/xu\nnUUBsNDs3Izql/rqOb/UV6Wam7E/w8MPZmTku3n00fbMzahjWe5Nm0Zy8OD+tHZ6oz/ng7TDqroL\nSHWp568mWZfkS6kuAf2f89qMJpmcnJw0IkHbNBrVI0lefjl57rnkHe9ILrmk2jY+Xj2Ahb4/N+Pw\nvLkZd7X1NMO111ZrOSz1dMrWrfcv+5bpx44dy9VXT8ysH7E0w8O35Mkn2zsvpV3mjEiMJZlq9/7r\nHpFIkv8084CuEhSgXDfmZiznMszl/ELvhfkg/aTuBakAYFF1XoZZx1od/UqQAKAn1bksdx1rdfSr\nXji1AQAL1H0ZZrfX6uhXggQAPalXLsPs1lod/cqpDQB60iAty93PBAkAelJdt0ynNYIEAD2prlum\n0xpBAoCe5TLM3idIANCzXIbZ+1y1AUBPcxlmbxMkAOgLLsPsTU5tAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgA\nAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQ\nTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUE\nCQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAA\nAIoJEgBAMUECAChWZ5A4luTVeY/fqrEeAKBFq2s89mtJ7knyn+dsO11TLQBAgTqDRJJ8K8kLNdcA\nABSqe47EryV5McnTST6aZE295QAArahzROITSSaTfCPJ5iT/Lsk7k/xCjTUBAC1od5C4N8nEBdq8\nN8lUkl1zth1MFSj+NMmvzjxfYMeOHVm7du1Z28bHxzM+Pl5YLgCsHI1GI41G46xtp06d6ugxV7V5\nf2+eeZzPc0m+s8j2tyU5nmp04sC810aTTE5OTmZ0dHTZRQLAoJiamsrY2FiSjKX6Q76t2j0i8fWZ\nR4l/OvPxZJtqAQA6rK45Ej+Z5Ooke5N8M8mmJL+d5HNJ/rammgCAFtUVJL6T5KZU8ylen+p0x+4k\nH6upHgCgQF1B4ulUIxIAQB+rex0JAKCPCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBM\nkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkS\nAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAsU4Fid9I8kSSbyf5xjnaXJ7k\nsSTfSvK1JJ9IsqZD9cCSNRqNuktgQOhrrASdChJrkjya5KFzvH5Rkv+S5AeSbElyc5J/keQ/dKge\nWDI/3OkWfY2VYHWH9nvvzMefP8fr1yfZmOSDSZoz234lye8n+WiqUQoAoMfVNUfi6iRfyvdDRJJ8\nIcnrk4zVUlEHdfOvjnYfazn7a/W9S22/lHYXarNS/xLU19rbXl87N32tve37ua/VFSSGk0zP2/aN\nJK/MvLai+IZrb/t+/obrNH2tve31tXPT19rbvp/7WiunNu5NMnGBNu9NMrXE/a1q4dhJksOHD7f6\nlp5w6tSpTE0t9Z+lt461nP21+t6ltl9Kuwu1Od/r3fz/ajd9rb3t9bVz09fa276Tfa3Tvztb+WX+\n5pnH+TyX5DtzPv/5JB9P8sZ57f5tkg8luWrOtjcm+XqSa5N8cV77dUkOJHlbC/UCAJXnk2xKcrLd\nO25lROLrM492eDLVJaJD+f4pjutThZDJRdqfTPUPsK5NxweAQXIyHQgRnXR5qtGGiSR/l+QnZj5/\nw8zrr0vyf5L8+cz2f5bk/6ZaSwIAGHC/n+TVmcf35ny8Zk6bt6dakOp0kheT7IoFqQAAAAAAAAAA\nLuQfJflfSZ5OcjDJL9VbDivY25PsS3IoyV8lubHWaljp/izJS0n+pO5CWLF+NsmRJF9JcnvNtdTq\ndUkumXn+A0m+muRH6iuHFWw4yT+Zef4jSY6n6nPQCT+V6ge9IEEnrE7y5VTLK1yaKky8qZUd1LVE\ndie8muTlmec/mOTMnM+hnZqpLl9Okq+l+muxpW88aMEX40aGdM77Uo2unkzVz/5rqnWdlmwlBYkk\n+eFUQ82za1L8fb3lMADem2qF2OfrLgSgwGU5++fX36bFVaRXWpD4ZqrFr96ZZHuSH623HFa4Nyf5\ngyR31F0IQKHXlruDOoPENakWpHo+1WmJDy3S5q4kzyb5hyR/meQDc1775VQTK6eycCGrF1JNhrsq\n0Jm+9vokn03yW0me6kjV9KNO/Vxb9g97Vqzl9rkTOXsE4u3poxHWn0lyX5J/nuqLv2He6z+X6t4b\ntyX58VQ3//r7VF/kYt6a5Idmnv9QqnPYP97ekulT7e5rq5I0kvxmJ4qlr7W7r83aGpMtWdxy+9zq\nVBMsL0t19eNXsvBGm31hsS9+f5IH5217JtVfgIsZTZXk//fM49Z2FsiK0Y6+9oFUS75PpepzTyd5\nTxtrZGVoR19Lkv+eapT1dKorhMbaVSArTmmf25bqyo2/TvKvOlZdh83/4i9OddXF/CGaXalOWUAp\nfY1u0dfotlr6XK9OtnxLkovy/VuMz3oh1TX80C76Gt2ir9FtXelzvRokAIA+0KtB4sVU56CH5m0f\nSrVoBrSLvka36Gt0W1f6XK8GiVeSTGbh6lofTPJE98thBdPX6BZ9jW5b8X3uDanWebgq1QSRHTPP\nZy9JuSnVJSu3JtmY6pKVv8uFL5OC+fQ1ukVfo9sGus9tTfVFv5pq6GX2+cNz2vxiqkU0Xk5yIGcv\nogFLtTX6Gt2xNfoa3bU1+hwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9Kj/B9TGynPkrh4w\nAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7fa846cbd410>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"xscale('log'); ylim(-10,10)\n",
|
|
"errorbar(fqd, lag, yerr=lage, fmt='o', ms=10)\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([ 1.43381244, 0.4889989 , 0.68917289, 0.48155621, 0.29506678,\n",
|
|
" 0.16772896, 0.24424756, 0.18973346])"
|
|
]
|
|
},
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"lage"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 2",
|
|
"language": "python",
|
|
"name": "python2"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|