mirror of
https://asciireactor.com/otho/phy-4660.git
synced 2024-11-28 02:45:04 +00:00
624 lines
126 KiB
Plaintext
624 lines
126 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Populating the interactive namespace from numpy and matplotlib\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f736504bd10>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import sys\n",
|
|
"import getopt\n",
|
|
"sys.path.insert(1,\"/usr/local/science/clag/\")\n",
|
|
"import clag\n",
|
|
"%pylab inline\n",
|
|
"\n",
|
|
"from scipy.stats import norm\n",
|
|
"from scipy.stats import lognorm\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"import numpy.fft\n",
|
|
"\n",
|
|
"ref_file=\"lc/1367A.lc\"\n",
|
|
"echo_file=\"lc/5404A.lc\"\n",
|
|
"\n",
|
|
"dt = 0.01\n",
|
|
"t1, l1, l1e = np.loadtxt(ref_file).T\n",
|
|
"errorbar(t1, l1, yerr=l1e, fmt='o')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n",
|
|
" 0.16658029, 0.25819945, 0.40020915, 0.62032418])"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n",
|
|
" 0.25819945, 0.40020915, 0.62032418])\n",
|
|
"# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n",
|
|
"nfq = len(fqL) - 1\n",
|
|
"fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n",
|
|
"\n",
|
|
"\n",
|
|
"fqL\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n",
|
|
" 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n",
|
|
" 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n",
|
|
" 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n",
|
|
" 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n",
|
|
" 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n",
|
|
" 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n",
|
|
" 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n",
|
|
" 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n",
|
|
" 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n",
|
|
" 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n",
|
|
" 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n",
|
|
" 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n",
|
|
" 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n",
|
|
" 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n",
|
|
" 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n",
|
|
" 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n",
|
|
"********************\n",
|
|
"0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n",
|
|
"0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n",
|
|
"-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n",
|
|
"p1 = np.ones(nfq)\n",
|
|
"p1, p1e = clag.optimize(P1, p1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\t### errors for param 0 ###\n",
|
|
"+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n",
|
|
"+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n",
|
|
"+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n",
|
|
"+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n",
|
|
"\t### errors for param 1 ###\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n",
|
|
"+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n",
|
|
"+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n",
|
|
"+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n",
|
|
"+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n",
|
|
"\t### errors for param 2 ###\n",
|
|
"+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n",
|
|
"+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n",
|
|
"+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n",
|
|
"+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n",
|
|
"\t### errors for param 3 ###\n",
|
|
"+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n",
|
|
"+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n",
|
|
"+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n",
|
|
"+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n",
|
|
"\t### errors for param 4 ###\n",
|
|
"+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n",
|
|
"+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n",
|
|
"+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n",
|
|
"+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n",
|
|
"+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n",
|
|
"\t### errors for param 5 ###\n",
|
|
"+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n",
|
|
"+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n",
|
|
"+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n",
|
|
"+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n",
|
|
"+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n",
|
|
"+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n",
|
|
"\t### errors for param 6 ###\n",
|
|
"+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n",
|
|
"+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n",
|
|
"+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n",
|
|
"+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n",
|
|
"\t### errors for param 7 ###\n",
|
|
"+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n",
|
|
"+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n",
|
|
"+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n",
|
|
"+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n",
|
|
"+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n",
|
|
"********************\n",
|
|
"0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n",
|
|
"0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"p1, p1e = clag.errors(P1, p1, p1e)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f7388dbb2d0>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xscale('log'); ylim(-4,2)\n",
|
|
"errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xt8XNV97/3P6GokWZYJwgbLWLKMHMuYGjsRxiaQ1Abj\n0nJLTDyEk8gPLU5f5FDatOa0aXuc8/Rc6qe5lCZPwS3FEJohQFsuIdiOkgAWGBRkaByPg7GwsSVs\nNAbfJPmiy5w/1uzRzGhGmtHsPbNn9H2/XvMCSzOz9yzt2fu31/qt3wIRERERERERERERERERERER\nEREREREREREREREREREREREREREREREREREREZFxOwAMxXl8L4v7JCIiIi72CeDCiMdyTPBwTTZ3\nSkRERHLHd4G92d4JERERyQ0lwFHgv2V7R0RERMQ+RQ6+9y3AFGDzKM+5KPQQERGR1BwOPTLO4+B7\nbwXOADcn+P1FF1988QcffPCBg7sgIiKSt7qAT5OFAMKpnodZmGTJW0d5zkUffPABjz/+OPPmzXNo\nNyTWfffdx3e/+91s78aEojbPPLV55qnNM2vPnj3ceeedMzC993kTPKwFPgReGOuJ8+bNY9GiRQ7t\nhsSqqqpSe2eY2jzz1OaZpzafWAoces+1wKOYaZoiIiKSR5wIHlYANcC/OPDeIiIikmVODFtsAwod\neF8RERFxASd6HsTFvF5vtndhwlGbZ57aPPPU5hOLk1M1x7IIaG9vb1eSjYiISAp27tzJ4sWLARYD\nOzO9ffU8iIiISEoUPIiIiEhKFDyIiIhIShQ8iIiISEoUPIiIiEhKFDyIiIhIShQ8iIiISEoUPIiI\niEhKFDyIiIhIShQ8iIiISEoUPIiIiEhKFDyIiIhIShQ8iIiISEoUPIiIiEhKFDyIiIhISoqyvQMi\nIvnEt8uH79c+uk52cfDkQU73n6a0qJSzA2c5r/g8Lqm8hBmVM/Be5sW7wJvt3RUZFwUPIiI28i7w\nsmL6CtZvWM/RHUc5evgoZznLQNEAF0y7gMuvvJyNGzZSXV2d7V0VGTcFDyIiNuru7mbpqqV0fLID\njgE3wkDNAHjg/aH32dy1me03bGfHlh0KICRnKedBRMRG93/zfjqu6IADwHJgJuAJ/bLA/Lvjig7W\nb1ifrV0USZuCBxERG7W93QY1QADz33hmhJ4nkqMUPIiI2GgAM0QRfsRTEHqeSI5S8CAiYqMiiiDI\n8COeodDzRHKUggcRERs1LWyCTqAa8994ukLPE8lRCh5ERGy0ccNG6t+qh1rgZ8AhYCj0yyHz7/q3\n6tm4YWO2dlEkbQoeRERsVF1dzY4tO2iuauaSqZfAC1C0qQj+GWa9MIvm0mZN05Scp0E3EREbhStM\nXt5FX20f5f3l4QqTvcW9/KryV9zVcpcqTEpOU/AgImIj7wIFBZL/NGwhIiIiKVHwICIiIilR8CAi\n4iDfLh8rH1rJzFUzqZhfQUljCRXzK5i5aiYrH1qJb5cv27sokjLlPIiI2MRKlgQ4M3CG90+8z0We\ni/jlA7+k7zN9cCXggf6hfnq7eindVMqK21Zkd6dFxkE9DyIiNvEu8PLwiof5ROsn2Pe9fez9h720\nb2w3gYMWyJI8op4HERGbhJfjvqIDVgEe6Hm8Z/QFslq0QJbkHgUPIiI2CS/HPTPihwVogSzJOxq2\nEBGxSXg57khaIEvykIIHERGbhJfjjqQFsiQPKXgQEbFJeDnuSMswC2QdRAtkSd5Q8CAiYpPwctyR\nyoHVQDtUPFoBP4S6LXVaIEtymoIHERGbhJfjjl2G+2MoO13G4j9bTMN/bWDO1+bw0dUfcVfLXSoS\nJTnJiUydGcDfAjcA5wF7gbuAnQ5sS0TENVqOtFB/dz1nnznLsR3HOBc8R4mnhKmXTKXxTxppXtqs\nRbMkL9gdPEwFXsWM8N0AdAP1wHGbtyMi4jrhFTXXZXtPRJxld/BwP/A+pqfBctDmbYiIiEgW2Z3z\ncBPQDjwFfIgZqvh9m7chIiIiWWR38DAb+EPgHeB64B+BB4Av27wdERERyRK7hy0KgDbgL0P//k/g\nMuCrwGPxXnDfffdRVVUV9TOv14vXq6QiERERn8+Hzxc9K+f48eymEiaquD5eB4BtwN0RP/tD4BuM\nLNq6CGhvb29n0aJFNu+GiIi7xFuue9aUWUwqmgSA9zKvZmJI0nbu3MnixYsBFpOF2Yx29zy8Cnwy\n5mcNmKBCRGTC8i7wsmL6CtZvWM/Lb77M/uP76a/q59pPXcvGDRtVLEpyit3Bw3eA14A/xyRNNgF/\nEHqIiExY8Zbr3j+0n/1d+9l+w3ZVm5ScYnfC5JvArYAX2IUZrvgjQCXURGRCi1qu2xowLgBmQscV\nHazfsD6LeyeSGicqTL4QeoiISEjb221wXYJfzoC2lraM7o9IOrS2hYhIBsRdrttSEPq9SI5Q8CAi\nkgFxl+u2DIV+L5IjFDyIiGRA3OW6LV2h34vkCAUPIiIZkHC57kNw3ivn8cHlH3CT7yYt0S05QcGD\niEgGVFdXs2PLDppLm7nk+UvgQSjaVARb4cLKC7n4Vxfz8IqHVShKcoIG2UREMsCqMHl2wVkCPw3A\njTBQY5Io3x96n81dm1XvQXKGeh5ERDLAu8DLc97nuHjXxZy+5rTqPUhOU8+DSBq0XoGkSvUeJB8o\neBBJg9YrkFSp3oPkAwUPImnQegWSqnC9h3gBhOo9SI5QzoNIGrRegaRK9R4kHyh4EElD29ttUJPg\nlzNCvxeJMFq9h/q36tm4YWMW904kOQoeRNKg8WsBkzi78qGVzFw1k4r5FZQ0llAxv4KZq2ay8qGV\nUYWfWo60UH93PTVdNZQ/XU7xj4opf7qcmq4a6u+up+VISxY/iUhyNLgmkgaNXwvA8mnL+atNf0Xn\nFZ1wJeCB/qF+ert6Kd1UyorbVoSf611gZuD4lvrY/Npm/M/4OXbwGB++/yHHHjiG/xk/m2/ZTPPS\nZs3UEddSz4NIGjR+LTC+3Jfl05bTsamDzhmd9K7upf+L/fR+oZfOGZ10bOpgxfQVI14j4hYKHkTS\noPFrgfHlvijZVnKZggeRNFjj1+cfOJ+CxwvgQcxjK+w/uZ9Pej85Ysxb8odvl4+bfDfx/sn3U859\nUbKt5DINyIqkwLcrepz6XPAcJZ4SKqdVUlpQyukbT5sLggeGhob4uOtj0wV9m7qg85FVJOzSb1ya\ncu6Lkm0ll6nnQSQFicapD398mNPXar2Ciaa7u5urbriKE5UnUs59CSfbxqNkW3E5BQ8iSfLt8rHw\njoXxx6n7UBf0BBTOW7ge+Bkjc18OJs59GSvZ9mTlSQ13iWsptBVJ0vJpyzm6+yhcHeeXHtQFPQGF\nF7nyAKuBV4FXQv8egin9U9jxy/glyjdu2Mj2G7bTcboD9gNHQ687BxUDFWzbto158+Zl7sOIpEA9\nDyJJuv+b99Nf1h8/SAiiLugJKCpvoRzTA/El4A7gThiYPMBdLXfF7UGorq7muR88x+Ttk6Ex9Jo7\ngC9Dz8oefu/O3yMQCGTok4ikRsGDSJLa3m6DQuIHCdWo3sMENFbewqzKWTznfS5usSffLh8rv76S\nU9efUq6M5BwFDyJJGmAgcZCwDNgKHET1HiKkUrY5F6VTJMy7wEvlyUrlykhOUvAgkqQiimAp8RPj\nPoKis0WsYQ11W+rgh1C3pY7m0uYJvSx3vldRTLdImKZrSq7SQKxIkpoWNuE/5h+ZGBcEyqCwvpC9\nTXuZ89k5FJ8oZtaUWXxU9BF3tdyF9zLvhFynIKqKosXqlsd0yz/y/UeytXvjZtX7ePOpNzl+/Di8\ngAkaSqBgUgFVs6rCi1x5qxP/3bU2iuQqHZkiSQpnx1/RASswF8EhoMvcZe54buL2MCQSno0Qzwxo\na8nNbnlrIayPr/jYzL4Jza6gC+reqmOHL7ljoWlhE/5Of3RwZVGujLiYhi1EklRdXc2OLTtoLm1O\nODSR72P8qcrXbnm71qXQ2iiSq9TzIJIk3y4fvl/74Goov6yc8mPlnCo+xY/5MU/901PMnjqbizwX\n0fqdVvo+0zfm0swTQb52y9vVo2KtjXL2mbMc2zFc7nzqJVOTGvYQyZbc/OaKZIF3QXTeQiAQYP2G\n9bz85sscPX6Unqoe3ut/zwQOeTbGP1752i1vV49K+JhaZ9++iWSCggeRceju7mbpqqWm63oV4IH9\nQ/vhMUafepejY/zjFc4ToQNmMCJPZOOW3OyWz9ceFZFkKedBZBwSjnmXkJdj/OOVTJ5ILkqnvoNI\nPlB4LDIOCce8rTLVuiMFovNE5izJnyms+dqjIpKsiXUmE7FJwjFvqwJlno3xj1dsnki+UKKjTHQK\nHkTGIeGY9zLgKeC3ganADqAbGAJPj4etC7ay8qGVNC9tzsuL6kShREeZ6BQ8iIxDwlkE5cBSOO/n\n53Gm5wzBm4PhJZuDQ0EOdx2mbFNZ3k/ZDA9XAGcGzvD+ifeZNWUWk4omAeTscIVTrIqV/mf8HDsY\n3ZPReEujgk1xnUSpXZmwCGhvb29n0aJFWdwNkdQFAgGuuuEqkzQZZ8z70ws/zROeJ+IPXxyC5tJm\nV03ZdOJiHzmVdf/x/dRV1XHtp65l44aNOZso6ZSo2Ts1RFWsrH+rPqeTS8UZO3fuZPHixQCLgZ2Z\n3r56HkTGYawx7+2btsPvJXixC6dsehd4WTF9RdTFvr+qf9wX+0RTWfd37Wf7Ddt1MYyRr2uASP5S\n8CAyDmONec99bG5OTdm0+2Kvi2Fq8nUNEMlfqvMg4oBwQmU8Lpqyaa3FUbeszpa1Gixtb7eNXizr\nbV0MI+XrGiCSv+wOHjZgRuoiHx/YvA0R18uVIkLLpy2nY1MHfQN90Rf7XmAb8K/Adnj03x5NaXGv\nERfDyPd7AvZ07Jmwi4XFkyvBpojFiSPy15gFiy2DDmxDxNVypYhQeHhhO8MX+x7gaWA5UTNFOrs6\nk17cK2oqqw3v5xZOzSLJ1zVAJH85MWwxiJnZbj0+cmAbIq5mJVTWdNVQ/nQ5xT8qpvzpcmq6asJF\nhNwgPLxgVcbsxdSpWE5aQxhRPS+vpf9+buFd4OXhFQ/zidZPsO97+9j7D3vZ9719fKL1Ezy84uFx\nT6fU0tySa5zoebgU6ALOAm8AfwHsd2A7Iq7l1iJCVj2BN596kxOHTjB4atBc0KuBdzEXeg9pL+4V\n1fPSTd4kAzo1i0QVKyXX2B08vA78F2AvMB34S8zpaD7wsc3bEpEULZ+2nL/a9Fd8fMXHcAUmByGI\nqYy5GbiJ6CGMWEkm70VeDLt6uwh6Egzop5EMmI3CSk7NInFrsCmSiN3Bw5aI/9+NKc7bAXwF+I7N\n2xJxNTdWDQxf/KZi8hAuZHgtjkqihzDSWNwr8mI4f9l8/EG/eb9e4FUgQLgQ0nu976VUsttq110/\n2sWRXUdMFc8rzfv1D/XT29XrWC6FplSKGE6n8PYBu4A5iZ5w3333UVVVFfUzr9eL16suOslt1l1+\n5xWdGbu4jSV88fspJg/hfIZzHAoZHsKwcXGvcDKgFbBEJE4yBANdA3Rs6ki6Pax2PTx4GG4mo7Uk\nNKVSssHn8+HzRc9KOn78eJb2xnC6PHUppufhQeBvYn6n8tSS19bes5bNZze7qkT13GVz2Xv9XjNc\ncQfRvQH7gD/EhPxWQBE5U6QT6t9OvVRyuJT3YAd8irTbI9yur0R8hlhD0NjSyO5Xdye9n8mYv2w+\n/uv8Gd2mSDzZLk9t92yLvwOuAeow91pPAxXAozZvR8T13FgoKWoKpXUBLAeux/QPdob+vRrYA/iA\nHwKPQdkrZeOaKWLlPxR9VGTaI7Lmww9D//XDUz97KqmaD+F2jfwMsRzqBciV+h0iTrN72GIG5nRz\nAWZUcwewBDMBSWRCcVsXt2+Xj2PnHTMXv3h5DZHLiddgAgobFmey8h/mPjaXvb174w5d0AXnfnyO\nFdPHHroIt6sNuRmpypX6HSJOs7vnwYv5SpViTj+rgd/YvA2RnOC2qoHLpy2ntLsUtgLnMfIO2upx\naIeih4tsr01RRJEZHklQ86H/xv6kaj6E29XKzYjHoV6AXKnfIeI01TzNQ27M8p+I3FY18P5v3s+B\npgMmSfIl4FnM1Mwahu+gP4b6wnp2vGX/qpdNC5vw/8RvejTiqUlutkK4Xa2ekgS5GU70AmhKpYjh\ndMLkaJQw6ZCoQjbW2LAN3c+SmnCi4BXxu7gz/XcYkewXM23Sc8LDjCtmOBZgBgIBZlwxg/4/6E/4\nnIZtDbzz6jtjvk+4Xaswg6PdwBAU9BRwwdwLKCwp5OThk5wZOkPwXND0VBSCp8jDpIJJKQfSCsjF\nbbKdMKmehzw0ViGb31rzWxSWFOok6DC3VQ0ckYNhJUqGXLrtUt55cfQLdzpajrRQUllCf7A/rTwF\nq12PPXWME4dOMOQZwlPgoWB6ARVXVnD82eOcu/YcXI0JkKwci1Ag3TvUm/J0WTdOuxXJJvU85KFR\np5OdguLHi+n/3X4z7/41wndtnh4P0xdMZ8HqBQoi8pAbphk6PX11xPtvA+Zh3/RQF027tahXZGLK\nds+DEwtjSZaNmuX/CsOBw9OYE+uXgC9D8KtBDtceNgV7ksh6l9zihmmGyS4A5dvlY+VDK5m5aiYV\n8ysoaSyhYn7FmMt4j5geG8CW6bJunHZrsZZV75zRSe/v9NI/tZ/ec7107u3kp3/9U77+x1/X0udi\nOwUPeShhln8PcABzEsyjlQ4lOW5YuTHZ2QpRF8TVvfR/sZ/eL/TSOaNz1OB2ROBsQy0I3y4fB44f\ncNW020gjSo7rhkAyQDkPeShhlv9rwGTMSTCAavRPMNXV1ezYsoP1G9bz8paX2X98P3VVdVz7qWvZ\nuGVjRpI3k52tMN4FqKKKYEFKtSASdf9XTqvkdOB0xmtKJGtEyfEMluvOBg3TuIN6HvJQwjvMDzDr\nF8RWGIylGv15ybfLx10td/HR1R8x52tzaPivDcz52hw+uvoj7mq5y1Xd2qkME0QOcezdvzd6aCaF\nWhCJejsOf3yY4MXBxO/Tmd3KkuHeFpuGaNxuvL1SYi/1POShRFn+Z4bOMFg9mLjCoGUIes/0svKh\nlYrubeCWO6XwXX8OSKU6Z9RMiMswXfdWlczYqpmjVIRM2NvRh1mAy5q1EVNToviFYjbuyl5lybgl\nx2Pl0Q2BU8uiS2oUPOShRF3D85fNx7/Ub06CUxh15cSrL7+aNze9qalpNtA0v9SFL4h9RC/hHQQu\ngK6Pu/Dt8uFd4B15MVkdes12YBAKzxRS+kopwaIgp4dOJxyqSbjctgezQo/1vq9E7Es1FE8tzvi0\n20jhYcoslOvOBi2L7g4atphAmhY2wTHMSbAEU2HwIHGT5zwFnuETshIq0xJ1ccuxthzvrId0NS1s\ngncxvQbzMKtn3oEpgN8IBX0F4e7p8BCHteDWM8BRYAAYhMHBQfoK+zg7dJaiC4s4ccMJfnX5r0YM\n1STs7bAuylZdjC+F9uVLwAqoPb82qz064WHKMrI+myYT3LZmzESVH6GojCkQCHDm9BmKf1JM/439\nsAo4DbQCPwfOQFlVGefXnk/93fVs37Qdfi/Bmym6T0ku3yk51Wsy1lDObbffxtN3Pk3Pyp643dOn\nrj8V7p4eYCC6GNR1DP97BeHiUENDQwx1DTH1x1PZsmXLiATREcmWFitvwiVlxmNZw5R9T/Zx5Nkj\nBG8KjjlEk8sS/p0gr3pY3E49D3kuEAhw1a1XMa1xGk8UPEH/f+k3S5X9EPg3YB9UXVLF9Ruu55+f\n/GcOvXiIreu2Uj6pXNG9TXL1Tsm3y8fCOxY60msyVtIbQHByMKkEwLgLbo1jKnLCOhjLMIuJJeil\ns3OK63h6erwLvGxdt5VvffdbXPc311HzQX4v2uWGeiWinoe89uBLD/L1dV+n77w+k/Bl3TlFLkx0\nCG4pvYXrl17P5tc2s379eo4dPEbv0d7hJZNjKbpPSa7eKS2ftpyju4+aMs/xpNFrMlbS2+tPvs6M\nqTPY69kb/w0igq64C26NYypy1HLbMWtmcBoKflYAxdHrY9hdZjydnp6JsmiXlkV3B/U85LE3nnqD\nvs/0maSzMe7gYu8EmcOEi+6dGt/P1Tul+795P/1lEetQWDkF/4rpufoB+N/xU3hpIUXzilJqq1Gn\nYlbB4//xOO92vJvUkuYbN2ykuL847eJQVvf/Re9dhOdRT1SxJe6BoRVD1FXWcfiVw/Ts7gn30tmZ\n75DL+TGZomXR3cGdtzwyLrHjyL1He+EPSepEOuJOMNFyx3kc3Y+Y8vca9Hf307u3l66/7mLXgl1s\nXr055amV2b5TGu9U0ba324brgiTKKbgFhmqGhhec2tfL4Q2Haa1q5SueryTcTsKhnB7g32DgdwbA\nT1K5BnEX3BrHzAPrzn3tr9ayefbmrEwFzOX8mEyZKD0sbqeehzwyovegiuEpZWPcwY24EyzHzMrY\ng7nLfIi8j+6dKvOb7TultEo9W8mCsTkE8XIK+szPB28cpO+LfaNuJ2EJ9cj3vRr4GWOW0/Yu8LL6\nc6vHXRwqVjbXschEfky2ZtC4bR8kPep5yCMjeg+soCGJbPHX3n5t5EkrYsnmhm0NvPOqc8s1u4FT\nZX6zfaeUVqnnpZhACqLviOPlFERe+MfYTsIS6pHvawWwEbUVPCc8zLhixohcgxG9OykUh4qVzQTX\nTOTHuKHuiBv2QdKj4CGPjOjytIKGREMQnVD/tjmRfvaWzw6ftHqJLswzBO/1vsfKh1bmdWXJqDK/\nedR1PN6u8KaFTfiP+c0F3MfYOQUptFvCoZzBmPeNCGABLt12Ke+8ODKIja2qemboDMGCIPwCKDRJ\njkUUQRV0lnYy85qZDHmGKPGUUHpRKZ4rPATfCnL28NnhZOEEBaqcnByTMKgC2/Jj4gaTp4E90PFx\nB9MWT6NscpmjFVBVJTL3KXjIIyPumCKDhs9jssdfBobA0+Nh+oLp4Tu48EnL6rK3xrZDwcNA14Dp\nes7jO4J8LfM73jvp8AX+ig6YxNgLTqXQbolKqJ89d5aBYIL9HeXOO5nene7ubpauWmo+T6j2Q/9Q\nP737eil6tIiBmwbMUMlPMQWqrJ6UiO8BXdDxQgcPvfwQ6661vyvJjvyY2ByXM0NnCJ4LEhwKEiQI\np4CvRbygh6jvfNATNPkrDvYCKLcj9ynnIU8EAgE+PPxh9DhyZN7Cs8B+KC8pp6ahhuv+x3V86zvf\nCmeLh6vURXbZT7Bs7/CsiCRyRHJJwvwCGPXzROZqFPUWDecQ9ALnGJlTkEK7WbUJDr14iJ7dPZzz\nn6Nndw933nSnYzNTEs5kOIAJHKyfL2PU78HgjYO8/uTr496P0diRH7N82nLe/t7bdJ7fSe+UXgb7\nBhk6PkRwaeiPMyXiM/UyfIORwe98rtY+kWG5dRaUuML1HCr7RuY2WN2+h6C5tDlhV6B10nr/b95n\noCbBFzfP7wjCd31lHa6uKJiq8XaFR97NBwIBrrrhKjpOd5g78mWYZMbIobALSLvdRrvzvvCNCznw\nlQPMXDVzXAuMJbzbjR1uKQcqGT1p0qHvgR35Mfd/8366L+82f6elwD7gVsxNxHJM/kjkDBoPGf+s\nuVr7RIbpL5QHwvUczmfM3IZErJPW3MfmJlWYJx/la5lfO7rCrbY5/HeH6VveZwKEGUQvFHUaPO96\nCN4cTHs7scMZUy+ZSv2X6/E/6qf7yu5xJdklvNuNN9xSGOdnlgx9D9KaYhvEnAf2YIKhGszf6TqG\nc6GsYGI7Gf+sUQFtbI7VOThQdCDvc6xynYKHPBC+o/IwcuW/ISjqLaL+vydXCW8i3xFYAZRvacRJ\n+/WYC5jNFQUzYdQLcpKfx2qb+Y/Nx1/jNz+MSWZkCMp+VMbUrqlpbyfenffae9by8pUvjzvJLuGx\nHS9/I8srVPp2+Xhoy0O0fruVwRsHRwRLJ797knOnzoUrwka29cfHP4Z+hgOGEoYDJGtY5qnQhq7L\nzmcNB7RWT1ZMbklfV1/e51jluvy9EkwgUXdUsSd0YPa22WxdtzWp98pEtrfbZXtqpd3s/Dwj7t5j\n7hr7TvQxlaksu3eZbXeN1h34z5/7OdyV4ElJdK8nPLbjTWXO8mJYy6ct5+4H7jaBQ5xg6eSik7Q/\n0M6p60+NCCyK3y42wy5WsBCMeVi5UNYMmix81rg9WTGfUbMu3E0Jk3lgvAlx8YQTJ8cozCMTU9Sx\n1sOIJbOD64JjFp+KlEyxIKvI1UBJekl2Ucf2KUyp7UeBvcC/E73w1VVkbDGseO7/5v30FPUkzkXY\nb1YWjZfk2D+t3yS0WsGClYsSWTirHDgv9HsrfyX2O3/Qmc8aCATY9uA2Oh/rZKB3IKWCXIFAgLX3\nrGX+svnMXTaX+cvms/aetQQCAVv3Ucam4CEP2Ll2Qmy2d+EThRQ8XkDBzwvYf3I/F11zkSrBTWBR\nx9o4Vq6MlUz1y/AsCatUdjxJBMkj1q6oDb3fzZgeDWu12cfMo2R6CaV7Sil9sjTjVUHb3m4bHm6I\n5yiJL7orwHPSMxww1GGCg1qigwQrmIicleUj3AZlr5TZ/lkffOlBaq+uZfPZzfiv83Nu8rmkA8LY\n1+69fi/+FX42n91M7dW1PPTyQ7btp4xNwxZ5wM61E2K7uOPNjXd6Dri4V9Sx1k3ac/WTKRYUzulJ\ns3t9xNoVVsJggtVm7yi9I2td5gMMjJ6LMFpNjckw6fxJnHvhHIOfGxyedbE/9JoXMMW4gsA7mOCp\nBvP5Q+eNsu1lfHvTt22vZRFO7o6tgptEvsWI10L4WOn7TB+vP/m6I7U3JD4FD3nAjoS4RFQJTiJF\nHmtdvV0EPQm6ApLM0o+aPhmnsunjvY9TMrUkOtEvzmyistYylmxaktRnCG/Tmn0QT5anJRdRNPrU\nV2tYIsFF9/zK85n/p/N586k3OV5wnKGfD5m2KoGCigKqZlXxqdWf4rZP3sbrT75OW0sbAwxQRBFN\nC5vY2LqR6upq2z9Xwiq4SQSEKizlLgoe8oCTCX76wkqkyGNt/rL5+IP+tLL0wwmYMVUOIyubel7w\nRCf6xcyjol7bAAAgAElEQVQmmtI/hXd/+W7SF7vwNl1cSbRpYRP+4/6RtTRCwVJRTxEDnQMJL7rX\nLbmOR9Y9ktQ5IZN366NWwR2j11SFpdxFwYOMaqJ8Ycc7p34is2NmTjgBc5RFtfqn9Q/fncbOJjoE\nt5bemtJdcnibWZ6OOZqNGzbyk9/+Cd1Lu83S5FawdA4KzxTSdE8T+/5tH910Z2WZ9/EaMV02MiB8\nGeiF8qnlcXtNJ/I0cjdSa8uoJsoXVqv8pc6OXJtwADLaolorwPNo/OJTZduTH64Ysc0sT8ccTcuR\nFhZ+baEJZk8c41xRKJidbYLZhpkNVFxUYX5vw1BlpoLnuAFnklVwNY3cXfLjzC+OmShfWOV2pM6O\nXJtwADLYMWoCYF1dHdeUXmPL2PyS25fw5N1P0vepvvjDAuMMSuwUOTwUe2H/xd//glc9r9p6Yc9U\n8JxOwGlnYrikT8GDjGqifGGV25E6O3JtotZUGWU1zUnFk2wL3tZdu47bWm9j/Yb1vFb9GkdajnDm\n3BkmlU1i+iems/RTSx1LGByPTFzYMxU8pxNwOpkYLqlT8CCjmihf2ImS2+E2UdMnOzdnrIeruro6\nZ3qS4l7YTwN7oOPjDqYtnkbZ5LK0eiIyFTynE3DmW+XXXKciUTIq7wIvzUubabylkamXTKXEU8K5\n4DmOHTyG/xk/m1/bnBeFouys0ukWyVRvtEu6lf+W3L6Esu1lcSublm0vY8nt2RtCyLa2t9uiC0JF\nVvb8CgTvCo4orJUqBc+SKgUPMqZkqgDmOjurdLpFpv5udlT+W3ftOg60HqC5tJnGlkYatjXQ2NJI\nc2kzB1oPTOjiPyMu7DZU9oyVj8GzOEvBg4wpqtvUppOV2+Tjmh6Z+rtFVf6L2Y5V+S8Z1lDC7ld3\n886r77D71d088v1HXJN7kC1RF/ZeTKXIFNaDSEbc4LkXs/7HY7Dn0J6slaXPZA+aJE/hZA7L1PSq\niZBMmIncjkz9vexahTJZE+H4yKbwjKepmEJa52H7EEN4Bspn+qAKU3PhAKZ09XUQ9AQdL0sfCATC\n5cgjZ9T82T1/ZnrQNI3aVRIdgpmwCGhvb29n0aJFWdyN3BVv3YnImRA7tuyw5a5t7rK57L1+b8Lf\nN2xr4J1X30l7O/kuU3+v8HaOd8CXEz/Prr+bjg9nBQIBrrrhKjOd9VOYglF3kHBmSmNLI7tf3T2u\n7dx090280foGwRlBs614Caxj1GMYjwdfepCvr/u6CV5ivhuFLxSOXJrcwX3JFTt37mTx4sUAi4Gd\nmd6+hi1yWKa6pTUeag+n/l6xyYoNTQ22rEKZLB0fzrJ6xYo+KjIX1siltWOlkZ9TXV3NJy/+pCnG\n1YftQyOjiRr66sMMl/iA7TA4OJjRfZHkOBk8/DdM7PgdB7cxoY3Iwo5k45cqH5MJs8GJv1e8ZMUT\nxSccvcjE0vHhLO8CL1vXbWX2JbOHFwiLXFqb0H8Ppj8zJXyMRq77YeU+/CtmuW4f7D2w19Z8g/B2\nI2eS3BF6TEUzQVzIqVuCTwN3A78i8T2JpClT06smSqEopznx90q4TPEYq1DWv23f303HR2aEe3hs\nWiAsnvAxaq370UvCBcs6NnXYlm8Q3m68NU5cvAbJROZEz0MF8Djw+8AxB95fQjLVXWx1m9Z01VD+\ndDnFPyqm/OlyarpqwsmEuSqTmdxO/L3i9mZYJ1vrIrMH0wX8Q/MoerHI1r9bPh8fbhLVw2OtB/El\nzN35tXDrjaktEBZP+Bi1eq0cmBY66nYDmOM5srfjFOrZciEnQrbvAz8Gfg78tQPvLyGZWncinyu7\nZXJBLCf+XnF7MyIXfIqzCuWdpXea5Zptks/Hh5tEzYhwaC2O8DFq9VpBRmbShLfrYWRvR19oX34b\nE1ioZ8sV7O55WAMsBP489G8NWThIVfnSl8kaFk7UkhjRm9EL9APPAgft245kXyYKaYWP0Y+BzwMD\nZGxotP6tejiHGY6J7O2wetB+AzwGnoc96tlyATt7HmYCfw+swBwCEJ12E9d9991HVVVV1M+8Xi9e\nb+6vl+C0yAV+7FhtcCLKZI0Cu2pJRNaLOLL/yHAvQw/Dd2zXYrqcX8EEDqegal5VXq1HMhE5vSZH\n7DHae643I/kG1nYP/91h+g73RfeWwXAP2hDMa5k3rqmouczn8+HzRQ+hHj9+PEt7Y9hZ5+EW4N+B\nwYifWZPFBoFSou+RVOdBsi7XahT4dvl4aMtDtH671cx9twoH/TYmt6ERzYcX26y9Zy2bz27O2DEV\nCASYccUM+v+gP+Fz3PadzJZ8qvPQAlwG/FbosRB4E5M8uRANYYgL5VKNgkAgwLPffpZX/s8rw0Vz\nKhju0u1A8+HFVlFDo6cwSYyPY4YPnvfwzpF3kl78LBktR1ooqSzJme/kRGZn8NAD+CMeuzGpLh+H\n/i3iOrlSo8Cq5/Cjt35EsDIYHSRYXbpVaD682MrKs1jy0RI8j3pM/YUvAV+G4FeD7Ji6I+nFz5Lh\nXeBl9edW58R3cqJzusKkNWlMxJVyZUGscD2HPqCE+EHCaN823bHJOEVVnkxz8bNk5Mp3cqJzOnj4\nHPAnDm9DZNxypUZBVOW/eEFCLyZNWXds4oBMVbOF3PlOTnS6FclBiVaf27hBMyxSlSs1CqIq/13A\n8AwLGJ5lYZUtjq0oqfnwkqZMVbOF3PlOTnRaGCvHxFvLwL/Cz+azm20de5wIYheUmr9sPmvvWWtr\nAphdoir/1RG9toFVBbCBkRUlH4Oyl8t0xyZpCR9/setc/CuwFbo+6hqzGmsmq7mK89TzkEMCgQDf\n+pNvxV/LIGLs0Y5iMaPtQz70ekQtARxRs9/f5efJq5/k25u+7Wg7pmpE5b+lmDTkV4ATDNeqiK0o\nOQS1LbVsXbc1o/sr+aVpYRP+d/3DgWrEd4YuKNhWwIrpo1djzWQ1V3Geeh5yhNXjsO/YvqxNx8un\nXo+oBaUcTgCzw4jKfwcw6wBYVVU0y0IctHHDRipeqUi4zsWp60+NWY01k9VcxXkKHnJE+GKXKNMe\nHL9Q5NoFdzSZTACzQ1QS2YvlFB8rpryknJqGGso/Ua5ZFuKoliMtBCcH0/rOpPqd0zCHuyl4yBHh\nL14Wp+Pl2gV3NJlMAEvGWCdKgK3rtnLoxUP07O7hnP8cPbt7OPTiIc2LF8d5F3iZMXXG8HcmNvfB\nB51dnaPmC6X6nVs+bTkdmzronNFJ7+pe+r/YT+8Xeumc0WmWAx9jmEScpeAhR4S/eNaKifE4fKFw\n2wU3HW6rLJnOiVLz4iUTwt+ZHkzezTzMcuB3AF44ueLkqMOXqX7nNMzhbgoeckT4i2dNx4u9UBx0\n/kLhtgtuOtxWWTKdE6XmxUsmhL8zVtJkisOXqX7n8qmnMx8peMgR4S+etTxt7HS8V5yfjue2C246\n3Ha3ns6J0rvAm3BIY+u6rWbOvEiawutcfMC4jtWodTJivnNl28tYcvuSqOfnU09nPsqdW8UJbuOG\njWy/YTsddJgCQKHlaa0CQDu27HB8quSIfcjhIkR2LY9tF50oxe3WXbuO21pvY85VczjpORn/SaMc\nq9br129YT1tLzFTv1pFTvcM9nQ4vBy7jo9bPEW642LlhH+yS7Sp2sfUyDuw/oBOluF51dTU102rw\nB/3jOlarq6uTXsI7XNsk3nLgOdbTmY90RsoR2b7YuWUf8kHcAlVbiS45HUknSnGRTF3Ul9y+hCfv\nftJ8T2J6Osu2l7Fk05Ix3kGcpJwHmXCyXZY6br2MqzGJsAcZHg8+BfwH8Bz8oOUHmuMurpCpfCFr\nOfDm0mYaWxpp2NZAY0sjzaXNHGg94KoKsBNRolHWTFgEtLe3t7No0aIs7oZMJFF3/dYqlRF3M5ko\nSz1/2Xz818Xp9u0FWqHkQAk1M2o4dOgQ/b/bD1MxGe7dZl89PR6mL5jOgtULaF7arIRIySjfLh+b\nX9uM/xk/H7/3MadPnYYhKCgtYFL5JBb/1mKefuDpnCpXn4t27tzJ4sWLARYDOzO9ffU85IBs3ynn\nEzdUyYybHNkLvAochWBhkI8CHw0HDk9j5tR/CfgyBL8a5HDtYRXKkaywZvd84/5vABD8nSDBrwYZ\n/H8G6V3dyyvlr+RcuXpJnYIHl3PrehKxAc3cprlcuuhS5l4519UBjhvmjo+olxFTdKf/9/s5UXzC\n7Ococ+pVKEeyyQ2BuGSPggeXc+MXdERAs3QvewN72bdoH3tX7XVNgBOPG6ZEjqiXkShA8GAWv1Kh\nHHEhNwTikj0KHlzOjV/QEQHNOCvOZYMbqmSOSDiLFyBYa5h4yHqwIxKPGwJxyR4FDy7nxi9oVEDT\nC+zHdQFOIm6okhlbTpoeRv6NrTVMsrgQmshoUgnElbeVfxQ8uJwb7pRjhQMaa6z+PNJabS+T3FCW\nOrKc9P6X9jNl0pSRf2NrDZPzyHqwIxJPsoG4W/O2JD0KHlzODXfKscIBjTVcUUhaq+1lkpsWkbJO\nqicqT4z8G1trmAxiaj1E1n8YZT0AkUyJCsRPYW4aHgceg6Lni3ip9SXmXjmX+5vvd13elqRPfZ4u\n58Yqa+EKcwFMhUSri30Pw7kPlpiTRLYLu7ipSmY4d+R8TNC1nOi/8UdQ1l/GN//lm+zetjup9QBE\nMsUKxD/61484vuc43Iw5H/TCwNMDHPj0ATOc+UNGH9Zscc+wpiRPwYPLpbqYTCaEA5rBPnMnsQxz\n8QNz8ohHJ4kR2t5uGy5PvRpT5+EVwoWrpvRP4d1fvmv+xjdnc09FRrIC8bW/Wsvmhs3DNw2RCdSg\npN88peAhB6SymEwmWAHNpVdeyongieEudh86SaQgKhm2HLNSaoRp26apZ0FcLxwEw3ACdeRNROTM\noVhK+s1ZynmQcamurubWVbcOj9WXY5L7XJbc6WZuTIYVSdWoCdQwPKwZj5J+c5aCBxm3JbcvoWx7\n2fDMBZ0kUuLGZFiRVCVMoAbTE9EPPEvcpN9MzXAS+yl4kHGLXfXuwp4L8Tzr0cyAJI0IvkDtJTkn\nHARbxc6smwirJ+JyoBn4DSZ58jHgH6Hq3aqMz3AS+6hfVNISm48RCARcldzpZm5MhhVJVcIE6ilE\nJ05G5vQcgltKb+GRde7J5ZLUaEluERFJSyAQMAnUXz5hriq9mJoPd5MwUbKxpZHdr+7O6H7mEy3J\nLSIiOS1uAvVkNPsqjyl4kAnDt8vHyodWMnPVTCrmV1DSWELF/ApmrprJyodW4tvly/YuiuSsETk8\nWpclryl4kAlj+bTldGzqoHNGJ72re+n/Yj+9X+ilc0YnHZs6WDF9RbZ3USRnxSZQV56r1GyiPKbg\nQSaM+795Px1XdMStsd9xRQfrN6zP4t6J5D4rgXr3q7vZ98t9WV+ETpyj4EEmjKilxGO5bOlwkVzn\npkXoxH4adJIJI6ocdCwlcInYyk2L0In91PMgtnJzUqLKQYuI2EPBg9jKzUmJKgctImIPBQ9iKzcn\nJaoctIiIPdRPK7aKWp431gxoa8leUqLKQYuI2EPBg9gqKimxF3gVs2COBwhC57lOAoFA1i7UsWtx\niIhI6jRsIbYKJyVaK+rNA+4IPbxwcsVJaq+u5aGXH8rmboqISBrsDh7+EPhP4ETo8Rpwg83bEBcL\nJyW+xvCKejG5D32f6eP1J1/P1i6KiEia7A4eDgH3Y1bMXAz8HHgOmG/zdsSlwkmJH6CCTCIiecru\n4OHHwBagA9gH/CVwCtAcuAnCqm9fWVipgkwiInnKyYTJQmA1UApsd3A74jLV1dXUTKvBH/RDHyOS\nJrkAFDuIiOQuJxImF2DS5c4Am4DbMb0QMoE0LWyCd4mbNEkjdBzqUNKkiEiOcqLn4TfA5cAUTM/D\nE8BngZ3xnnzfffdRVVUV9TOv14vX63Vg1yRTlty+hB+s+QGDNw6apElLKGly8MZBXn/yddZdq8L3\nIiKj8fl8+HzRpf2PHz+epb0xEo1K2+mnwAHgD2J+vghob29vZ9GiRRnYDcm0uVfOZe+qvfGPsiFo\nbGlk96u7M75fIiK5bufOnSxevBjM5IS4N+dOykSdh4IMbUfcpgglTYqI5CG7hy3+N/ATzJTNycAa\n4Frgf9q8HckB4YJRCXoetIqliEhusrtHoBp4DJP30AJ8GliJqfcgE4xWsRQRyU92Bw+/D9QBk4Bp\nwPXAz2zehuQIrWIpIpKf1G8sjtEqliIi+UnBgzhKq1iKiOQfzYKQCSEQCLD2nrXMXzafucvmMn/Z\nfNbes5ZAIJDtXRMRyTkKHiTvPfjSg9ReXcvms5vxX+dn7/V78a/ws/nsZi0PLiIyDgoeJO+98dQb\n9H2mT8uDi4jYRMGD5L22t9u0PLiIiI0UPEjeG2BAlS5FRGyk4EEyKhuJi+FKl/Go0qWISMoUPEjG\nZCtxUZUuRUTspeBBMiZbiYuqdCkiYi/110rGtL3dBtcl+OUMaGtxJnFRlS5FROyl4EEyZkTiYi/w\nKhAAPLDv1D7W3rOWjRvsv6Cr0qWIiH00bCEZE5W42AM8BcwD7jCPc39wToWbRERygIIHyZioxMXX\ngOWocJOISA5S8CAZE5W42I0KN4mI5CgFD5Ix665dx4HWAzSXNlNypkSFm0REcpSCB8koK3FxziVz\nMlK4SatpiojYT8GDZEUmCjdpNU0REWdoqqZkxZLbl/Dk3U+aolEzMGHsENAVKty0KfnCTYFAwNRw\neNvUcKAfhgaG6P6om77rQkWpLDFJmeuuXWfvBxMRmQAUPEhW2FW4qbu7m6WrltJxRYcpQNULPA0s\nBX7B6EmZDhWlEhHJdwoeJGvsKNy0+o9Wm8BhJiZweApYhpkKeh5KyhQRcYByHiSnHT141PQuWEWn\nPMB+TA2JQrSapoiIAxQ8SFalMxsiEAjQ+WGnCRisolMlwFFMQFGNVtMUEXGAbr0ka0bkK3iAIfB3\n+dl+w3Z2bNmRMPfhwZce5Ovrvk7fYJ/pXQhg3iMYeh8PZvjiKUxQEZmU2QllraklZYqIyDAFD5I1\nUfkKltBsiA46+MK9X+Bl38txXxte3nsPpnfBChiqgQ8wQUQ5sBqz+NYrhIOTKf1TePeX72o1TRGR\ncVLwIFlz9ODRUZfoPtpyNOFrw8t7n4/pXQATMCwDNmMCipmYAOL6iBcegltLb1XgICKSBuU8SNaM\nWKI7UsxsiMjciPqmen7z3m/Ma63ehSAmYCgHbgd+DBzEDFMQ+u+hUA2J2zVcISKSDvU8SNaEl+iO\nF0BEzIaIyo1YiqnjMInh11oBQ2R+w5eBVuDn4DnrYfqF01m5bGVKNSRERCQ+BQ+SNU0Lm/B3+qNz\nHiwRsyHCuRHnA08CKxjOdbBeG5nf8DM4j/Oou7iOpt9pYuMGBQwiInZS8CBZk2yJ6qMHj5oeB6uO\nQw3DuQ6RMynOAz4J9WfqR52pISIi6VHOg2RN5BLdDS82UPlIJSX/VELlS5XUVNXw+pOvEwgETO5D\nZB2HyFyHPYAP+KH5b+XPKhU4iIg4TD0PklXV1dX87X//W5auWsrJFSehBs55znFy6CR7u/ay/Ybt\nFBYVwjGG6zhE5jpEzqQYgpqWGgUOIiIOU/AgWTdifYpXMUWfPNBxroNJZycNr1NhVY0cI09CRESc\no+BBsi5c76EHM5NiOVEVJ8/sOwNbGK7joKqRIiJZpeBBsi5c78HKa4itONkA/CfDPQ6xVSPPwbSy\naexq3aUhCxGRDFDCpGRduN5DADOTIp4boPjHxXAIM4RxPeAFPgP159ez6yUFDiIimaKeB8m6cL0H\na32KeCbDzEtmck3pNbS1tDHAAEUU0bSwiY1bVMdBRCSTFDxI1oXrPZzrG7Xi5KTiSTzy/UcyvXsi\nIhJDwxaSdVa9hzlT55i8hng0k0JExDUUPIgrVFdX86ff+VPKtpeZvAYtaCUi4lp2Bw9/DvwSOAl8\nCPwHJldeZEyRFScbWxpp2NZAY0sjzaXNHGg9wLpr12V7F0VEBPtzHq4B/gETQBQD/xPYBjQCfTZv\nS/JQdXW18hpERFzO7uBhVcy/1wLdwCLMAskiIiKS45zOeagK/fdjh7cjIiIiGeJk8OABvgNsB/wO\nbkdEREQyyMk6D98D5gNXO7gNERERyTCngod/AH4Xk0D5wWhPvO+++6iqqor6mdfrxev1OrRrIiIi\nucPn8+Hz+aJ+dvz48SztjZGoGHA67/cPwM3AZ4GOUZ67CGhvb29n0aJFNu+GiIhI/tq5cyeLFy8G\nWAzszPT27e55+D5muaKbgV5geujnx4EzNm9LREREssDuhMmvApXAS5jhCutxu83bERERkSyxu+dB\n5a5FRETynC72IiIikhIFDyIiIpISBQ8iIiKSEgUPIiIikhIFDyIiIpISBQ8iIiKSEgUPIiIikhIF\nDyIiIpISBQ8iIiKSEgUPIiIikhIFDyIiIpISBQ8iIiKSEgUPIiIikhIFDyIiIpISBQ8iIiKSEgUP\nIiIikhIFDyIiIpISBQ8iIg4IBAJ4vV6qqqooKirC4/GMeNTU1LBnz55s76pIyhQ8iIjYzO/3U1tb\nyxNPPMGJEycYHByM+7yuri4aGxtHBBUlJSXceuutBAKBDO+5SHIUPIiI2Mjv93P55ZfT19c37vfo\n7+/nmWeeoba2Vj0T4kpF2d4BkXwRCARYv349bW1tDAwMADA0NERBgYnRi4qKaGpqYuPGjVRXV2dz\nV8VmgUCAe++9l+eff57e3l7b3revr4/LLruMuro6SktLdfyIa3iyuO1FQHt7ezuLFi3K4m6IpG7P\nnj3cdNNNvP/++wwMDBAMBpN+bXFxMZdccokuBnlgz5493HDDDRw8eDCj2508eTI33ngjDzzwgI6d\nCWrnzp0sXrwYYDGwM9Pb17CFSAoCgQDLly+nsbGRffv20d/fn1LgAKZLuqOjA7/fz+bNm5k9e3bW\nu6YDgQBr165l7ty5VFRUjBiDLy4uZs6cOaxdu5ZAIBCVDFhaWkppaSlVVVV4vd6ocfpAIMCtt95K\nSUlJ+L0KCwupq6vL+mdOJLItpkyZQklJCSUlJZSWljJlyhRqa2vDbdTY2JjxwAHg1KlTPPHEE1x4\n4YV4PB4KCgooKCgI50vMmTMHr9eL1+tl/vz51NfXU1VVRVVVFXV1dVRVVVFeXh5+jfUoKCigrq4u\n6rVz585l/vz54b99tll/Hzfum2TGIiDY3t4elMzo7u4ONjc3BxsbG4MNDQ3BxsbGYHNzc7C7uzvh\n7/x+f7C5uTnY0NAQrKysDJaUlAQrKyuDDQ0N4dfmO6ttGhoaggUFBUHAkcfVV18drK2tDRYXFwc9\nHk8QCBYXFwfr6+tTbuvR/taxz5k1a5Zjn2k8D4/HE5w5c2Zw9uzZwbKysqzvjx7Dj6Kioqx+9z/8\n8MNgfX193H2rr6+fEOcjS3t7u/XZJ1zXvYKHDIi88BUVFTlyor/lllvy8kvb2trquotXeXl5sLKy\nMjhlypRgfX193KBgtBOsHnrY+SgvL094HDqhubl51P1pbm52dPtuouBBwYPt/H5/sK6uLqsnlDVr\n1uRcQNHa2hqcPHly1k/I43kUFxcH16xZE/T7/cELLrgg6/ujx8R8pNozYZ2rrJ4261FQUBAsLi4O\nlpSUBOfMmRNsbW0NrlmzZsTzYh8XXXRRBs4U7qDgQcHDuCTqln7llVcc7VpP9TF58uSM3pmM18sv\nv5z1trLjUVhYmPV90GP0x/Tp04PFxcVZ349MPCZPnhw3mOju7g5efvnltm+vsrIyi2eRzFLwoOAh\nJd3d3cEvfvGLCU8+uXDxWLVqleuCiPLy8qy3ix75/SgrKwv6/f6Ex2B3d7cjQ4tueVRUVAT9fn/w\nww8/DM6cOdORbZSUlGTwrJFd2Q4eVOchh3R3d7N06VI6OjoSPidRJTs3efHFF1m8eDHt7e2umGbm\n9/ttnZsPZjrmzJkzw1nwAwMD7N+/P+WZGZL7iouL+fznPz/mtMrq6mpeeuklrr766gzuXeb09PTQ\n2Njo6Db0/ZoY1POQorGShXLtkY3kJr/fH5wzZ06wpKTEkbu8mTNnJhye8fv9Y47Z6pFfj/HMAGht\nbVVP2Dgf06dPt+tU4XrZ7nnIJgUPKZoxY0bWv5x2PjweT0anff361792rFu4qKgo2NraOuY+tLa2\nZr3d9XD2Yfd0xu7u7mBtbW3WP1cuPDTbYmJQ8JCi6dOnZ/3L6dTD6Tna3d3dts+kGO9ForW1NSd6\nIGbOnBmcM2dOcPbs2boTHuVRXFzseO2TyATp2bNnBydPnhwsKipy7DjKheMz9qE6DxOHgocUNTY2\nOv4FLCwsDNbW1gZnzZqV8YzwdO8auru7g2vWrAlOmTIlXGipoKAgWF5ebmuPgx21Lfx+v6umhRYX\nFwdra2uTnhWTTBGqsV7T0NAQnDNnzohjzePxBAsLC1NK/i0rKws2NDQE16xZE1y1alVKx67H4wlW\nVFQEa2trg7Nnz0742ly7OCVqb+v/x/qbtba25kQCNhAsLS3Nqb+NHRQ8KHhIWrI5D4kKG1mBQUVF\nRdTPCwoKgpWVlQlrM3R3d2ek6NCMGTPG1S7WDBSnhiQ8Ho8jd5bxLsBr1qwJrlmzJjh79uykP09x\ncXF435IdL8/F4l52BCxOvSZfxQtA6urqghUVFa7pnSgoKBh1Fku+UvCg4CFpyVzEa2trwyWl7Tz5\nRVaqjA0+7HpMnz493HswefLk8MkpMriJ/WwNDQ2O3sFPnjzZNReNZC9qkW0Y+VmsICgXC3iJez3/\n/PO29lBMmzYt6eeONf01nyl4UPCQksiLeDbXmkh0IWttbR13dcuGhgZXrbNgzUsXkbHFDhum+n3z\neDzB1tbWYHd3d/CWW24Z8z1ybRjJbtkOHrQktzgiEAhw1VVXjVqTItacOXPYt2+fg3uVnGTn5YvI\n6Pbs2cOVV17JqVOnEj6nuLiYWbNm8dxzzzFv3jx8Ph8+nw+AM2fO0NHRwenTpzl16hTBYJCqqiqu\nu5DofvUAAAfUSURBVO66Cb+UfbaX5FaRKHFEdXU1O3bs4N577+Xpp59mYGBg1OfX19fbXqgpFbW1\ntZSVldHU1DThT0oidpk3bx4dHR2sX7+etrY2BgYGKCoqGvV7Zi0HLu6mngdxXCAQ4N577+XFF1+k\nr6+PgYEBPB4P5eXlXHTRRSxdupSNGzdy+eWXc+TIkYzv35o1a8J3OiIiuUA9D5L3qqurk7o4n3/+\n+RkPHmpra3nggQcyuk0RkVxXkO0dkMxy8x12U1NTRrc3Z84c2traHB+icHOb5yu1eeapzScWJ4KH\na4DngS5gCLjZgW3IOLn5C75x40Zqa2vH9dqKigpmz55NRUUFHs/Yo3GTJ0/mtddey0hug5vbPF+p\nzTNPbT6xOBE8lAFvAfeE/h10YBuSh6qrq2lra2PNmjVMnjx5zCCguLiYhoYGmpubee+99+jo6ODU\nqVMMDQ3R3d1NfX193NdVVFTwxhtvKClSRGScnMh52BJ6iKQsXn5EIBBIKVvbep8dO3ak/DoRERmb\nEibF9aqrq3nkkUcy9joRERld1oOHPXv2ZHsXJpTjx4+zc2fGZ/VMaGrzzFObZ57aPLOyfe10us7D\nEHAL8Fyc310E/BKY4fA+iIiI5KMu4NPA4UxvOJs9D4cxH/qiLO6DiIhIrjpMFgIHyP6wRdY+uIiI\niIyPE8FDOXBpxL9nAwuBj4BDDmxPREREctxnMbkOQ8BgxP//Sxb3SURERERERERERERERERERCau\nDQznL1iPD2KeMw9T0+E4cBLYAcyMec5VwM+BHuAY8AtgUsTvD8TZzv+KeY9LMItv9QAB4O+B4nF+\nLjfbQHptXhvn9dbj8xHvMRX4Qeg9jgOPAVNitqM2H2ZHmx+I83sd5+M/t1wM/BA4gmmvnUS3N+g4\nj7SBzLT5gTjb0XE+/javB/4D6AZOAD8CLox5D9cd5xuAX4V21Hp8IuL39ZgZFf8H+C3MSXQVELmI\nwFWYD7Me00j1wG1AScRz9gPfiNlOecTvC4FdQEtoO8uBTuCBdD+gC20gvTYviHnthcBfYQ66soj3\neRH4T+BKYElom5GFvdTmw+xqcx3nwzaQ/rnlF8DrwKdCv/8GMICZ6WXRcT5sA5lpcx3nwzaQXpuX\nAx3A08B84DJMIPEG0QUfXXecb8CslpnIE8CjY7zH68A3x3jOfuCPRvn9KswBOj3iZ18ETgMVY7x3\nrtlA+m0e6y3gnyL+PQ8TAX864mdXhn5mTblVmw+zo81Bx3mkDaTf5qeAL8X87CiwNvT/Os6jbcD5\nNgcd55E2kF6bX49pq8h2qcIcw8tD/87YcZ7qktyXYsphvgf4gLqI9/kd4F1gK/AhJlC4OeK1FwJN\nmC6S1zBdXS8By+Js537MQfgW8BdEd6dchYmajkT8bBtQCixO8fPkgnTaPNZiTKT5cMTPrsLcFf8y\n4mdvhH62NOI5anP72tyi43xYum3+Y2ANpsu2IPT/JZhzDOg4j8fpNrfoOB+WTpuXAkHgXMTPzmIC\nA+s66srj/AbgVkx3yXJMl9Vh4HxMBDOEGT/5I+ByzAEzCFwTev2S0HOOAl/BnFC/DZwB5kRs5z7g\nM5gumbswYzuRd22biL/k9xlM9JRP0m3zWP8/8OuYn/0F8E6c574Tej9Qm9vd5qDjPJIdbX4epht2\nCHNyPc7w3RjoOI+ViTYHHeeR0m3zCzBt/B1M25cD3wu97h9Dz8mJ47wM88H/GLM+xRDweMxznsUk\n1ICJeoaAv4l5zn8yMoEm0m2h100N/XsTJjKLlY8HW6xU2zzSeZgD749jfp7swaY2t6/N49FxPmw8\nbf7vmOSyzwELgL/GJGRfFvq9jvPROdHm8eg4HzaeNr8O2IcJKvoxwxxvAt8P/T5jx3mqwxaR+jBd\nH3MwvQkDgD/mOb/BZHXC8BoWsc/ZE/GceN4I/dfqnTgCTIt5zlRMd9kR8luqbR7pC5iL2WMxPz/C\nyGxdQj87EvEctbl9bR6PjvNhqbb5PMzqvXdh7uZ2Af8Dc1K9J/QcHeejc6LN49FxPmw855afhp5f\njUm2/ApQgxkGgQwe5+kED6VAIyYo6MeMsXwy5jkNmKk6hP77QZznzI14TjxXhP5rBR+vYSLbyA9/\nPWbspz3Jfc9VqbZ5pLswUexHMT/fgZnGE5tgMwXT1qA2t7vN49FxPizVNrfOY4MxzxliOAtdx/no\nnGjzeHScD0vn3PIxZirnckwgYc2mcOVx/neYsZe60M48j+mSteag3hLa+O9jIqOvYRpkacR7/FHo\nNZ8PPef/BXoZThpZgunCWRj62e2YKST/EfEeBZipJz8NPW85cBAzTzXf2NHmhH43iDlA4vkJ8DbR\nU3uejfi92tzeNtdxHi3dNi/E3LG9jDlp1gNfx7T/DRHb0XE+LBNtfhU6ziPZcW5Zizl264E7MT0W\n/1/Mdlx3nPswWaJnMQfAU4yMktYCezHdMTuB34vzPveHdrQHaCW6Ya7ARE7HQu+xBzOONinmPWZi\nGr4X03jfJT+LitjV5v+L0Xt3qjBFRU6EHo8BlTHPUZsPS7fNdZxHs6PNZ4dedxhzbnmLkdMIdZwP\ny0Sb6ziPZkeb/29Me5/FDGncF2c7Os5FRERERERERERERERERERERERERERERERERERERERERERE\nREREREREREREREREREQkq/4vwbptSNrRFIEAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f7364bb1710>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"t2, l2, l2e = np.loadtxt(echo_file).T\n",
|
|
"errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n",
|
|
"errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 4.610e-01 9.098e+01 inf -- 1.744e+02 -- 1 1 1 1 1 1 1 1\n",
|
|
" 2 8.066e-01 8.980e+01 1.014e+02 -- 2.758e+02 -- 0.764458 0.592778 0.539049 0.562235 0.572289 0.566582 0.574488 0.570186\n",
|
|
" 3 4.133e+00 8.890e+01 1.012e+02 -- 3.771e+02 -- 0.390803 0.167503 0.104265 0.129187 0.143015 0.13475 0.14757 0.142553\n",
|
|
" 4 7.028e+01 8.821e+01 1.004e+02 -- 4.775e+02 -- 0.00503816 -0.253372 -0.326662 -0.304159 -0.285875 -0.29734 -0.280456 -0.284431\n",
|
|
" 5 8.140e-01 8.698e+01 9.903e+01 -- 5.765e+02 -- -0.34905 -0.657519 -0.755903 -0.73766 -0.713908 -0.729735 -0.710276 -0.71228\n",
|
|
" 6 3.770e-01 8.522e+01 9.618e+01 -- 6.727e+02 -- -0.633175 -1.02654 -1.18245 -1.1696 -1.13984 -1.16159 -1.14079 -1.13949\n",
|
|
" 7 2.735e-01 8.339e+01 9.226e+01 -- 7.650e+02 -- -0.806027 -1.33498 -1.60319 -1.59717 -1.56166 -1.59163 -1.57085 -1.56469\n",
|
|
" 8 2.138e-01 8.120e+01 8.777e+01 -- 8.527e+02 -- -0.862131 -1.54146 -2.00828 -2.01427 -1.9772 -2.01825 -2.00048 -1.98894\n",
|
|
" 9 1.754e-01 7.801e+01 8.241e+01 -- 9.351e+02 -- -0.842095 -1.59954 -2.37394 -2.40556 -2.38506 -2.43954 -2.42825 -2.41302\n",
|
|
" 10 1.483e-01 7.298e+01 7.502e+01 -- 1.010e+03 -- -0.783896 -1.56622 -2.64497 -2.73499 -2.78365 -2.85462 -2.85094 -2.83628\n",
|
|
" 11 1.272e-01 6.498e+01 6.421e+01 -- 1.074e+03 -- -0.728704 -1.54164 -2.75253 -2.94491 -3.15964 -3.25681 -3.26391 -3.25681\n",
|
|
" 12 1.111e-01 5.364e+01 4.985e+01 -- 1.124e+03 -- -0.697013 -1.52135 -2.76748 -3.01573 -3.47965 -3.61977 -3.65793 -3.67111\n",
|
|
" 13 9.921e-02 3.928e+01 3.311e+01 -- 1.157e+03 -- -0.68286 -1.50549 -2.78198 -3.01943 -3.7022 -3.88826 -4.01576 -4.07908\n",
|
|
" 14 8.742e-02 2.316e+01 1.815e+01 -- 1.175e+03 -- -0.67696 -1.49524 -2.79447 -3.00982 -3.82195 -4.00921 -4.30702 -4.48377\n",
|
|
" 15 6.880e-02 9.460e+00 7.667e+00 -- 1.183e+03 -- -0.675273 -1.48938 -2.80142 -2.99712 -3.87606 -4.02132 -4.49151 -4.87573\n",
|
|
" 16 3.697e-02 2.241e+00 2.003e+00 -- 1.185e+03 -- -0.675444 -1.48628 -2.80573 -2.98594 -3.90153 -4.01347 -4.55974 -5.21119\n",
|
|
" 17 6.073e-03 2.318e-01 2.232e-01 -- 1.185e+03 -- -0.675725 -1.48454 -2.80827 -2.9785 -3.91588 -4.0101 -4.56645 -5.40386\n",
|
|
" 18 8.426e-04 9.306e-02 4.878e-03 -- 1.185e+03 -- -0.675636 -1.48368 -2.80908 -2.97402 -3.92351 -4.00944 -4.56338 -5.43668\n",
|
|
" 19 4.159e-04 3.811e-02 3.790e-04 -- 1.185e+03 -- -0.675401 -1.48333 -2.809 -2.97151 -3.92669 -4.00953 -4.56255 -5.4346\n",
|
|
" 20 1.919e-04 1.760e-02 7.212e-05 -- 1.185e+03 -- -0.675286 -1.48317 -2.80889 -2.97028 -3.92799 -4.00961 -4.56253 -5.43514\n",
|
|
"********************\n",
|
|
"-0.675286 -1.48317 -2.80889 -2.97028 -3.92799 -4.00961 -4.56253 -5.43514\n",
|
|
"0.231904 0.203388 0.246283 0.177512 0.182405 0.144335 0.166268 0.423476\n",
|
|
"0.000864464 0.00208153 0.00125836 0.0175976 -0.0171085 -0.00187558 -1.56774e-05 2.12549e-05\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n",
|
|
"p2 = np.ones(nfq)\n",
|
|
"p2, p2e = clag.optimize(P2, p2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\t### errors for param 0 ###\n",
|
|
"+++ 1.185e+03 1.185e+03 -6.752e-01 -4.433e-01 0.84 +++\n",
|
|
"+++ 1.185e+03 1.184e+03 -6.752e-01 -3.274e-01 1.76 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -6.752e-01 -3.854e-01 1.27 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -6.752e-01 -4.144e-01 1.04 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -6.752e-01 -4.288e-01 0.94 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -6.752e-01 -4.216e-01 0.992 +++\n",
|
|
"\t### errors for param 1 ###\n",
|
|
"+++ 1.185e+03 1.185e+03 -1.483e+00 -1.280e+00 0.943 +++\n",
|
|
"+++ 1.185e+03 1.184e+03 -1.483e+00 -1.178e+00 2 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -1.483e+00 -1.229e+00 1.43 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -1.483e+00 -1.254e+00 1.18 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -1.483e+00 -1.267e+00 1.06 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -1.483e+00 -1.273e+00 0.999 +++\n",
|
|
"\t### errors for param 2 ###\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.809e+00 -2.563e+00 0.987 +++\n",
|
|
"+++ 1.185e+03 1.184e+03 -2.809e+00 -2.439e+00 2.1 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.809e+00 -2.501e+00 1.5 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.809e+00 -2.532e+00 1.23 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.809e+00 -2.547e+00 1.11 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.809e+00 -2.555e+00 1.05 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.809e+00 -2.559e+00 1.02 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.809e+00 -2.561e+00 1 +++\n",
|
|
"\t### errors for param 3 ###\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.970e+00 -2.792e+00 0.612 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.970e+00 -2.703e+00 1.31 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.970e+00 -2.748e+00 0.934 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.970e+00 -2.726e+00 1.12 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.970e+00 -2.737e+00 1.02 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.970e+00 -2.742e+00 0.978 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -2.970e+00 -2.740e+00 1 +++\n",
|
|
"\t### errors for param 4 ###\n",
|
|
"+++ 1.185e+03 1.185e+03 -3.929e+00 -3.746e+00 0.715 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -3.929e+00 -3.655e+00 1.61 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -3.929e+00 -3.701e+00 1.12 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -3.929e+00 -3.723e+00 0.906 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -3.929e+00 -3.712e+00 1.01 +++\n",
|
|
"\t### errors for param 5 ###\n",
|
|
"+++ 1.185e+03 1.185e+03 -4.010e+00 -3.865e+00 0.991 +++\n",
|
|
"\t### errors for param 6 ###\n",
|
|
"+++ 1.185e+03 1.185e+03 -4.563e+00 -4.396e+00 1.01 +++\n",
|
|
"\t### errors for param 7 ###\n",
|
|
"+++ 1.185e+03 1.185e+03 -5.435e+00 -5.223e+00 0.386 +++\n",
|
|
"+++ 1.185e+03 1.185e+03 -5.435e+00 -5.118e+00 0.993 +++\n",
|
|
"********************\n",
|
|
"-0.675245 -1.48309 -2.80886 -2.96971 -3.92857 -4.00963 -4.56252 -5.43512\n",
|
|
"0.253646 0.209743 0.248217 0.230185 0.21667 0.144334 0.166265 0.317595\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"p2, p2e = clag.errors(P2, p2, p2e)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w2/d93/GnLDFW67ZWZI2AHHlChE6B4sjOyFC1ydil\nurZLvTbtklYFlmwXMpqzxq1P2+yb1p44H7nL0kbXuE7a5lSb6bpYIL1rssZ3Zp3+gGuXolOWTGyr\nJuIUJGgrFqAqitw2iVTa1v4AGVEyKBIkvvj5fNzhSAGfD75vSV9BL36/n+/3DZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVqj/w6MA38P5IEvADurWpEkSaoJI8B/AHYBNwGPAlng+6tY\nkyRJqkFbgNeBd1e7EEmStLyrKritTfNfz1Rwm5Ikqcato3C64S+qXYgkSVqZDRXazqeBG7nyqYat\n8w9JklSak/OPsqpESPgU8NPA7cDLS4zZev3117/88stLvSxJkq7gG0AHZQ4KQYaEdRQCws8C3cDs\nFcZuffnll/nc5z7Hrl27Aiyp/A4cOMD9999fl9tby3uVOreU8SsZu9yYK71e6b+zcnFfK/9497Xi\n3NfKPz7IfW1qaooPfvCDb6FwNL5uQsJvAwkKIeHbQHj++bPAuWITdu3aRVtbW4Alld+mTZsqWnM5\nt7eW9yp1binjVzJ2uTFXer3Sf2fl4r5W/vHua8W5r5V/fND7WlDWB/jejwJXAz3Af130+DrwzGVj\ntwIf+chHPsLWrfW3LGH37t11u721vFepc0sZv5Kxy41Z6vVkMkkikVhxLbXEfa38493XinNfK//4\noPa1kydPcuTIEYAjlPlIwrpyvtkatAETExMTdZm6VV/e+9738sUvfrHaZagJuK+pEiYnJ2lvbwdo\nBybL+d6VvE+CJEmqI4YENZ16Pfyr+uO+pnpnSFDT8YNbleK+pnpnSJAkSUUZEiRJUlGGBEmSVJQh\nQZIkFWVIkCRJRRkSJElSUYYESZJUlCFBkiQVZUiQJElFGRIkSVJRhgRJklSUIUGSJBVlSJAkSUUZ\nEiRJUlGGBEmSVJQhQZIkFWVIkCRJRRkSJElSUYYESZJUlCFBkiQVZUiQJElFGRIkSVJRhgRJklSU\nIUGSJBVlSJAkSUUFGRJuBx4FvgG8DvxsgNuSJEllFmRI+H7gK8Bd87++EOC2JElSmW0I8L3/eP4h\nSZLqkGsSJElSUYYESZJUlCFBkiQVFeSahJIdOHCATZs2XfJcIpEgkUhUqSJJkmpHMpkkmUxe8tzZ\ns2cD2966wN75Uq8DPwd8cYnX24CJiYkJ2traKlSSJEn1b3Jykvb2doB2YLKc7x3kkYRrgH+x6Nc7\ngHcC3wReCnC7kiSpDIIMCR3An89/fwH4zfnvfx/oDXC7kiSpDIIMCU/gwkhJkuqW/4lLkqSiDAmS\nJKkoQ4IkSSrKkCBJkooyJEiSpKIMCZIkqShDgiRJKsqQIEmSijIkSJKkogwJkiSpKEOCJEkqypAg\nSZKKCrLBk1Q1yeeSJI8nATj36jlmX5ll+7Xb2bhhIwCJdyRI7E5Us0RJqnmGBDWkxO6LIWDy5CTt\nR9pJvj9J29a2KlcmSfXD0w2SJKkoQ4IaVjabpfeuXva9bx8chX3v20fvXb1ks9lqlyZJdcHTDWo4\n+Xye+P446TNpcm/PwXsKz2fIkDmRYeQDI8Q2xxh6cIhQKFTdYiWphhkS1FDy+Tydd3Qyfcs0vKvI\ngG2Q25YjdypH1x1djD42alCQpCV4ukENJb4/XggIrcsMbIXMLRni++MVqUuS6pEhQQ1jZmaG9Jn0\n8gFhQSukz6RdoyBJSzAkqGEMHB4orEEoQW5Xjv7D/QFVJEn1zZCghjH+7DhsK3HSNhh/ZjyQeiSp\n3hkS1DDmXpsrfdI6mHt9FfMkqQkYEtQwWta3lD7pArRctYp5ktQEDAlqGB03dcCJEiedgD037wmk\nHkmqd4YENYy+e/sIPx8uaU54Ksyhew4FVJEk1TdDghpGJBIhtjkGp1Y44RTENseIRCJBliVJdSvo\nkPBRYAb4LvDXwLsD3p6a3NCDQ0Sfji4fFE5B9Okoww8NV6QuSapHQYaEXwQ+CQwA7wSeAkaAGwLc\npppcKBRi9LFRul/sJvylMLwEXJh/8QLwEoS/FKb7xW6OjRyjtXWld16SpOYTZEj4L8CDwCDwNeA/\nU/jI/qUAtykRCoVIPZpi7OExejb2EH08Ckch+niUno09jD08RurRlAFBkpYRVIOnNwFtwMcue/5L\nQGdA25QuEYlEGPz0IJMnJ2k/0s4jdz5C29a2apclSXUjqCMJW4D1QP6y508BpS0/lyRJVWGraDWk\n5HNJkseTAJx79Rw7r9vJwT89yMYNGwFIvCNBYneimiXWhMv/nGZfmWX7tdv9c5IEwLqA3vdNwLeB\nnwf+aNHzvwXcBOy9bHwbMHHbbbexadOmS15IJBIkEn5ISUHJZrP0f6KfJyefJHMmQ3RzlNvbbqfv\n3j4vD5VqTDKZJJlMXvLc2bNneeqppwDagclybi+okADwNDAB3LXoueeBLwC/dtnYNmBiYmKCtjbP\nGUuVkM/nie+Pkz6TLnTPXNwc6wSEnw8T2xxj6MEhQqFQ1eqUdGWTk5O0t7dDACEhyNMNvwn8Hwr3\nR3gauJPCx9BnAtympBXI5/N03tHJ9C3T8K4iA7ZBbluO3KkcXXd0MfrYqEFBakJBXgL5CHAA6AO+\nQuFGSndQuAxSUhXF98cLAWG5q0BbIXNLhvj+eEXqklRbgr7j4u8CbwU2Ah3AXwa8PUnLmJmZIX0m\nvXxAWNAK6TNpstlskGVJqkH2bpCazMDhgcIahBLkduXoP9wfUEWSapUhQWoy48+OX7pIcSW2wfgz\n44HUI6l2GRKkJjP32lzpk9bB3OurmCeprhkSpCbTsr6l9EkXoOWqVcyTVNcMCVKT6bipA06UOOkE\n7Ll5TyD1SKpdhgSpyfTd20f4+dJaqISnwhy651BAFUmqVYYEqclEIhFim2OFdmsrcQpim2Peollq\nQoYEqQkNPThE9Ono8kHhFESfjjL80HBF6pJUWwwJUhMKhUKMPjZK94vdhL8ULtwH9cL8ixeAlyD8\npTDdL3ZzbOQYra0rvfOSpEZiq2ipSYVCIVKPpgpdIA/38+Tji7pAtt9O38N2gZSanSFBamLJ55Ik\njyehC3b8yA7Wv7Ke7ddu5/SG09w9djeJf0iQ2G2rdqlZGRKkJpbYbQiQtDRDghpSMpkkmUwCcO7c\nOWZnZ9m+fTsbN24EIJFIkEj4n6MkXYkhQQ1pcQiYnJykvb2dZDJJW1tblSuTpPrh1Q2SJKkoQ4Ia\nVjabpbe3l3379gGwb98+ent7yWaz1S1MkuqEpxvUcPL5PPF4nHQ6TS6X+97zmUyGTCbDyMgIsViM\noaEhQqFQFSuVpNpmSFBDyefzdHZ2Mj09veSYXC5HLpejq6uL0dFRg4IkLcHTDWoo8Xj8igFhsUwm\nQzweD7giSapfhgQ1jJmZGdLpdElz0um0axQkaQmGBDWMgYGBS9YgrEQul6O/vz+giiSpvhkS1DDG\nx8crOk+SGp0hQQ1jbm6uovMkqdEZEtQwWlpaKjpPkhqdIUENo6OjY1Xz9uzZU+ZKJKkxGBLUMPr6\n+giHwyXNCYfDHDp0KKCKJKm+GRLUMCKRCLFYrKQ5sViMSCQSTEGSVOcMCWooQ0NDRKPRFY2NRqMM\nDw8HXJEk1a+gQsKvAceA7wDfCmgb0huEQiFGR0fp7u5e8tRDOBymu7ubY8eO0draWuEKJal+BBUS\nWoBh4HcCen9pSaFQiFQqxdjYGD09Pd87shCNRunp6WFsbIxUKmVAkKRlBNXg6b75rx8K6P2lZUUi\nEQYHB5mcnKS9vZ1HHnmEtra2apclSXXDLpBqSMlkkmQyCcC5c+fYuXMnBw8eZOPGjQAkEgkSiUQ1\nS5SkmmdIUEMyBEjS2pUSEu4D+pYZ8y5gctXVSNIVJJ9Lkjw+f4To1XPMvjLL9mu3s3HD/BGidyRI\n7DYcSuVSSkj4FHB0mTGza6iFAwcOsGnTpkue8ydCSQsSuxPc+oO30v+Jfp6cfJLMmQyvbX6N29tu\np+/ePu95oYa3+FTqgrNnzwa2vXWBvXPBh4BPAm9eZlwbMDExMeHCMklF5fN54vvjpM+kyb09B9sW\nvXgCws+HiW2OMfTgEKFQqGp1SpW2sDgbaKfMR/ODWpPwz4HN81/XAzdTCCRfB74d0DYlNah8Pk/n\nHZ1M3zJdOKl5uW2Q25YjdypH1x1djD42alCQyiCo+yT0U0gz9wHXAF8BJiikHEkqSXx/vBAQlru1\nRStkbskQ3x+vSF1SowsqJHxo/r2vonAkYeHrkwFtT1KDmpmZIX0mvXxAWNAK6TNpstlskGVJTcHe\nDZJq2sDhgcIahBLkduXoP9wfUEVS8zAkSKpp48+OX7pIcSW2wfgz44HUIzUTQ4Kkmjb32lzpk9bB\n3OurmCfpEoYESTWtZX1L6ZMuQMtVq5gn6RKGBEk1reOmDjhR4qQTsOfmPYHUIzUTQ4KkmtZ3bx/h\n58MlzQlPhTl0z6GAKpKahw2epCZ2ebfM2dlZtm/fXlPdMiORCLHNMXKnciu7DPIUxDbHvEWzVAYe\nSZCaWCKR4IEHHmDLli1MT0/zwgsvMD09zZYtW3jggQeqHhAWDD04RPTpKJxaZuApiD4dZfih4YrU\nJTU6jyRITSqfzxOPx0mn0+RyF+9DkMlkyGQyjIyMEIvFGBqqfi+EUCjE6GOjhd4NX02T2zXfu2Ed\ncIFC74apQu+G4ZFhWltXeuellUk+l+Sh1EO8MPICZ06c4Z9e+yfetP5NbN62mZ0/tZMP7/2w3SfV\nkAwJUhPK5/N0dnYyPT295JhcLkcul6Orq4vR0er3QgiFQqQeTZHNZuk/3M+Tjxe6QEY3R7m9/Xb6\nHg6mC2Q+n+fIrx652FjqlsLzc8zx7RPfZm54jiN/coQfe/DHqv5nJJVb0F0gV8oukFIF7d27lyee\neGLF47u7u0mlUsEVtAqTJydpP9LOxJ0TtG0N5nPjksZSVzo4MX+aw8ZSqoZ67AIpqUbNzMyQTqdL\nmpNOF3ohVHsxYPK5JMnj8wstXz3Hzut2cvBPD7Jxw/xCy3ckynrYfzWNpVKP1laYktbCkCA1mYGB\ngUvWIKxELpejv7+fwcHBgKpamcTu8oaAK/leY6liramLaYX0V2sjTEnl4tUNUpMZH19dT4PVzqtX\nNpaSDAlS05mbW11Pg9XOq1c2lpIMCVLTaWlZXU+D1c6rVzaWkgwJUtPp6OhY1bw9e5qrF4KNpSRD\ngtR0+vr6CIdL7IUQDnPoUHP1QrCxlGRIkJpOJBIhFouVNCcWa75eCDaWkgwJUlMaGhoiGo2uaGw0\nGmV4uPl6ISw0llq2X8QCG0upARkSpCYUCoUYHR2lu7t7yVMP4XCY7u5ujh07VvZeCPXCxlJqdoYE\nqUmFQiFSqRRjY2P09PR878hCNBqlp6eHsbExUqlU0wYEuNhYqvvFbsJfCsNLFBpKMf/1JQh/KUz3\ni90cG2neMKXGZUiQmlgymeTuu+/m9OnT7Nixg507d7Jjxw5Onz7N3XffTTKZrHaJVbfQWGrs4TF6\nNvYQfTwKRyH6eJSejT2MPTxG6tHmDlNqXDZ4kqRlXN4zYvaVWbZfuz2wnhFSKWzwJElVVMmeEVIt\n8XSDJEkqypAgSZKKMiRIkqSiggoJEeAhYBr4DvC3wH2ANzWXJKlOBLVw8W0Urpy4k0JA2A38HnAN\ncG9A25QkSWUUVEh4fP6xIAscBn4JQ4IkSXWhkmsSNgHfrOD2JEnSGlQqJESBXwY+U6HtSVLdy2az\n9N7Vy+7bdhPrjLH7tt303tVLNputdmlqEqWebrgP6FtmzLu49I5P1wN/DDwCDJa4PUlqOvl8nr3x\nvUz//TTn287Dj1987fiJ4xx9/1F2/NAOUkMpQqFQ9QpVwyv1tszXzT+uZBY4P//99UAKGAM+dIU5\nbcDEbbfdxqZNmy55IZFIkEh4pzNJzSGfz9N5RyfTt0zDldpBzHeeHH1s1KDQRJLJ5Bt6qpw9e5an\nnnoKArgtc5C9G95CISCMAx/kYu+0YuzdIEnA3p/ZyxP//IkrB4QFp6D7xW5Sj6YCrkq1LMjeDUGt\nSXgL8ASFowr3AiEgPP+QJBUxMzND+kx6ZQEBoBXSZ9KuUVBgggoJP0FhseKPASeAl+cf3whoe5JU\n9wYOD5B7e66kObldOfoP9wdUkZpdUCHh9+ffe/3816sW/VqSVMT4s+OwrcRJ22D8mfFA6pHs3SBJ\nNWLutbnSJ62DuddXMU9aAUOCJNWIlvWraG9zAVqusi2OgmFIkKQa0XFTR2EVVylOwJ6b9wRSj2RI\nkKQa0XdvH+HnS7sILDwV5tA9hwKqSM3OkCBJNSISiRDbHINTK5xwCmKbY0QikSDLUhMzJEhSDRl6\ncIjo09Hlg8L8HReHHxquSF1qToYESaohoVCI0cdG2fX8Lq7+4tXwEhfvV3sBeAmu/uLV7Hp+F8dG\njtHautI7L0mlK7XBkyQpYKFQiOdTz5PNZuk/3M/4n40z9/ocLVe10HFzB31/2BfoKYZsNkv/J/oZ\nf3acudfmaFnfQsdNHfTdG+x2VXsMCZJUoyKRCIOfrlzz3Hw+T3x/nPSZdOHOj5d1nxz5wAixzTGG\nHhyyqVSTMCRIki7tPvmuIgO2QW5bjtypHF13dNl9skm4JkGSRHx/fPn21ACtkLklQ3x/vCJ1qboM\nCZLU5Ow+qaUYEiSpydl9UksxJEhSk7P7pJZiSJCkJmf3SS3FkCBJTc7uk1qKIUGSmpzdJ7UU75Mg\nqW4kk0mSySQA586dY3Z2lu3bt7Nx40YAEokEiUSimiXWpb57+xj5wAi5bStfvBieCnPoYbtPNjpD\ngqS6sTgETE5O0t7eTjKZpK2trcqV1beF7pO5U7mVXQZp98mm4ekGSXUlm83S29vLvn37ANi3bx+9\nvb1es79Gdp9UMR5JkFQX8vk88XicdDpNLnfxsHgmkyGTyTAyMkIsFmNoyL4Cq7HQfTK+P076q2ly\nu3KFyyLXUeg+eaJwiiG2OcbwyLDdJ5uEIUFSzcvn83R2djI9Pb3kmFwuRy6Xo6uri9FR+wqsRigU\nIvVoaunukw/bBbLZGBIk1bx4PH7FgLBYJpMhHo+TSqUCrqpxVbr7pGqXaxIk1bSZmRnS6XRJc9Jp\n+wpI5eCRBEk1bWBg4JI1CCuRy+Xo7+9ncLA8Pw176aWalUcSJNW08fHV9QdY7bxiEokEDzzwAFu2\nbGF6epoXXniB6elptmzZwgMPPGBAUMPySIKkmjY3t7r+AKuddzmvqlAzMyRIqmktLavrD7DaeYt5\nVYWaXVCnG74IzALfBV4G/gDYGtC2JDWwjo6OVc3bs2ftfQVWc1WF1EiCCgl/DvwCsBN4PxAFPh/Q\ntiQ1sL6+PsLhcElzwuEwhw6tra+AV1VIwYWE+4G/Al4CxoBfB/YA6wPanqQGFYlEiMViJc2Jxdbe\nV2AtV1VIjaISVzdsBj4ApIDXKrA9SQ1maGiIaDS6orHRaJTh4bX3FaiFqyqkagsyJPw68I/AaeCt\nwC8GuC1JDSwUCjE6Okp3d/eSpx7C4TDd3d0cO3asLH0Fqn1VhVQLSgkJ9wGvL/NY3K/1N4B3Aj8J\nnAf+H4VWIZJUslAoRCqVYmxsjJ6enu8dWYhGo/T09DA2NkYqlSpb46FqXlUh1YpSLoH8FHB0mTGz\ni77/5vzjb4EpCusTbgWOLTX5wIEDbNq06ZLnvJOZpMUikQiDg4NMTk7S3t7OI488Qltb2/ITS9TR\n0cHx48dLnleOqyqkpSy+++eCs2fPBra9Sv1kfwOFAPGjwFNFXm8DJiYmJgL5xy6p8SyEhKA+N7LZ\nLLfeemtJixfD4TBjY2N2SlRFLfxbANqByXK+dxA3U9oz//hL4FvADqAf+DqFKx0kaVUu76Gwc+dO\nDh48GEgPhYWrKkoJCeW4qkKqJUGEhO8A/5bCGoZrgJPACDAAvBrA9iQ1iUqffhwaGqKrq4tMJrPs\n2HJdVSHVkiCubjgO/CtgC/B9FI4k3AWUdsGxJFVZNa6qkGqJXSAl6QoqfVWFVEts8CRJK1Cpqyqk\nWmJIkKRlVHLBpFRLDAmStAxDgJqVaxIkSVJRhgRJklSUIUGSJBXlmgRJUlUln0uSPD6/MPTVc8y+\nMsv2a7ezccP8wtB3JEjsdk1INRgSJElVldh9MQRMnpyk/Ug7yfcnadvqJabV5ukGSVLVZbNZeu/q\nZd/79sFR2Pe+ffTe1Us2m612aU3NIwmSpKrJ5/PE98dJn0mTe3sO3lN4PkOGzIkMIx8YIbY5xtCD\nQ4RCoeoW24QMCZKkqsjn83Te0cn0LdPwriIDtkFuW47cqRxdd3Qx+tioQaHCPN0gSaqK+P54ISAs\n1/aiFTK3ZIjvj1ekLl1kSJAkVdzMzAzpM+nlA8KCVkifSbtGocIMCZKkihs4PFBYg1CC3K4c/Yf7\nA6pIxRgSJEkVN/7sOGwrcdI2GH9mPJB6VJwhQZJUcXOvzZU+aR3Mvb6KeVo1Q4IkqeJa1reUPukC\ntFy1inlaNUOCJKniOm7qgBMlTjoBe27eE0g9Ks6QIEmquL57+wg/Hy5pTngqzKF7DgVUkYoxJEiS\nKi4SiRDbHINTK5xwCmKbY0QikSDL0mUMCZKkqhh6cIjo09Hlg8IpiD4dZfih4YrUpYu8LbMk1aBk\nMkkyOd8++dw5Zmdn2b59Oxs3zrdPTiRIJOq7fXIoFGL0sdFC74avpsntyhUui1wHXABOFE4xxDbH\nGB4ZprV1pXdeUrmsq3YB89qAiYmJCdrabA0qSYtNTk7S3t5OI39GZrNZ+g/38+TEk2TOZIhujnJ7\n++303dPnKYZlLOwfQDswWc739nSDJNWobDZLb28v+/btA2Dfvn309jZm++RIJMLgpwd55POPwL+D\nRz7/CIOfHjQgVJmnGySpxuTzeeLxOOl0mlzu4q2LM5kMmUyGkZERYrEYQ0O2T1awDAmSVEPy+Tyd\nnZ1MT08vOSaXy5HL5ejq6mJ0tP7bJyefS5I8Pr/+4tVz7LxuJwf/9CAbN8yvv3hHgsTu+l5/Ua8M\nCZJUQ+Lx+BUDwmKZTIZ4PE4qlSprDdlslv7+fsbHx5mbm6OlpYWOjg76+oJZH5DYbQioVUGHhKuB\nLwM3Ae8Eng14e5JUt2ZmZkin0yXNSacL7ZPL8Z93Pp9n7969TE9Pc/78+UteO378OEePHmXHjh2k\nUqm6P3qhlQl64eJvAN8IeBuS1BAGBgYuWYOwErlcjv7+tbdPXjjNMTU19YaAsOD8+fNMTU3R1dVF\nPp9f8zZV+4IMCT8F/DhwT4DbkKSGMT6+ujbIq5232GpOc6jxBRUSQsAR4N8D3w1oG5LUUObmVtcG\nebXzFqzlNIcaWxAhYR3w+8DvUuabOkhSI2tpWV0b5NXOW1DN0xyqbaUsXLwP6FtmTAfQBfwA8PHL\nXlv27o4HDhxg06ZNlzzXCLcelaSV6Ojo4Pjx4yXP27Nnbe2Tq3maQ6VZfLvuBWfPng1se6Xclvm6\n+ceVzAJDwM9QuPP2gvXAa8DngJ4i87wts6Sml81mufXWW0v6qT4cDjM2NramqxtisRhf+9rXSp73\ntre9reTTFCq/IG/LXMqRhG/OP5ZzN/Bri379FuBxYB+FyyElSUVEIhFisVhJISEWW3v75Gqd5lDt\nC2JNwkvA84seX59/PgO8HMD2JKlhDA0NEY1GVzQ2Go0yPLz29skdHR2rmrfW0xyqfZVq8HRh+SGS\npFAoxOjoKN3d3YTD4aJjwuEw3d3dHDt2rCztk/v6+pbc1lLC4TCHDh1a87ZV2yoRErIU1iR4t0VJ\nWoFQKEQqlWJsbIyenp7vHVmIRqP09PQwNjZGKpUqS0CAi6c5SlGO0xyqfbaKlqQalEwmufvuuzl9\n+jQ7duxg586d7Nixg9OnT3P33Xe/YYX7WlXjNIdqnw2eJKkGVfry74XTHMVaVC8Ih8PEYjGGh4fL\ndhRDtc2QIEkCLp7mqHQXSNUuQ4Ik6RKRSITBwcFql6Ea4JoESZJUlCFBkiQV5ekGSVJTSj6XJHm8\ncJXIuVfPMfvKLNuv3c7GDRsBSLwjQWJ3c/cOMiRIkppSYvfFEDB5cpL2I+0k35+kbas9hBZ4ukGS\nJBVlSJAkVV02m6W3t5fdu3cTi8XYvXs3vb29ZLPZapfW1DzdIEmqmnw+z969e5menub8+fOXvHb8\n+HGOHj3Kjh07SKVShEKhKlXZvDySIEmqinw+T2dnJ1NTU28ICAvOnz/P1NQUXV1d5PP5ClcoQ4Ik\nqSri8TjT09MrGpvJZIjH4wFXpMsZEiRJFTczM0M6nS5pTjqddo1ChRkSJEkVNzAwULSJ1JXkcjn6\n+/sDqkjFGBIkSRU3Pj5e0XlaHUOCJKni5ubmKjpPq2NIkCRVXEtLS0XnaXUMCZKkiuvo6FjVvD17\n9pS5El2JIUGSVHF9fX2Ew+GS5oTDYQ4dOhRQRSrGkCBJqrhIJEIsFitpTiwWIxKJBFOQijIkSJKq\nYmhoiGg0uqKx0WiU4eHhgCvS5QwJkqSqCIVCjI6O0t3dveSph3A4THd3N8eOHaO1tbXCFcqQIEmq\nmlAoxJ133smNN97IDTfcwDXXXENLSwvXXHMNN9xwAzfeeCN33nmnAaFK7AIpSaqqRCJBIpGodhkq\nwiMJkiSpKEOCJEkqKqiQkAVev+zxsYC2JUmSAhDUmoQLwCHg9xY99+2AtiVJkgIQ5MLFfwROBfj+\nkiQpQEGuSfhvwGngK8CvAnblkCSpjgR1JOG3gAngW8CPAP8LeCvwHwPaniRJKrNSjiTcxxsXI17+\naJsfez/wFHAceAj4T8CHgTeXo2hJkhS8Uo4kfAo4usyY2SWe//L81x8GxpeafODAATZt2nTJc95k\nQ5KkgmQySTKZvOS5s2fPBra9UkLCN+cfq/Ev57+evNKg+++/n7a2tisNkSSpaRX7wXlycpL29vZA\nthfEmoTlyrRcAAAG90lEQVRbgFuBFPAK0AH8JvBHwIkAtidJkgIQREg4D+wD+oCrKZyCOAL8RgDb\nkiRJAQkiJHyFwpEESZJUx+wCKUlqSosXAZ565RT8DXz0zz9K67WFttQunDckSJKa1OIQ8PDjD/Pl\n93yZX/nVX+ED//oDVa6sdtgFUpIkFWVIkCRJRRkSJElSUYYESVLTymaz9Pb2cvAjBwE4+JGD9Pb2\nks1mq1tYjXDhoiSp6eTzeeLxOOl0mlwu973nT8ye4LOf/SwjIyPEYjGGhoYIhUJVrLS6DAmSpKaS\nz+fp7Oxkenp6yTG5XI5cLkdXVxejo6NNGxQ83SBJairxePyKAWGxTCZDPB4PuKLaZUiQJDWNmZkZ\n0ul0SXPS6XTTrlEwJEiSmsbAwMAlaxBWIpfL0d/fH1BFtc2QIElqGuPj4xWdV+8MCZKkpjE3N1fR\nefXOkCBJahotLS0VnVfvDAmSpKbR0dGxqnl79uwpcyX1wZAgSWoafX19hMPhkuaEw2EOHToUUEW1\nzZAgSWoakUiEWCxW0pxYLEYkEgmmoBpnSJAkNZWhoSGi0eiKxkajUYaHhwOuqHYZEiRJTSUUCjE6\nOkp3d/eSpx7C4TDd3d0cO3aM1tbWCldYOwwJkqSmEwqFSKVSjI2N0dPTw7bINgC2RbbR09PD2NgY\nqVSqqQMCGBIkSU0sEokwODjIxz/zcQA+/pmPMzg42LRrEC5nSJAkSUUZEiRJUlGGBEmSVNSGahcg\nSVI1JJNJkskkAKdeOQXXwac+9imGf7twyWMikSCRSFSzxKozJEiSmtLiEDB5cpL2I+38zp2/Q9vW\ntipXVjs83SBJkooyJEiSpKKCDAn/Bvgy8B3g74A/DHBb0ootnIOUgua+pnoXVEh4P/AHwEPATUAn\n8HBA25JK4ge3KsV9TfUuiIWLG4DfAu4BPrvo+a8HsC1JkhSQII4ktAHXAxeArwAvA48BNwawraqr\n9E8K5dzeWt6r1LmljF/J2OXGNOJPcO5r5R/vvlZcs+5rPBfctup1XwsiJOyY/3of0A/8NPAt4Ang\nzQFsr6qa9R+TH9yV575W/vHua8U1675mSHijUk433Af0LTOmg4vB438CX5j/vgc4AfwCcGSpyVNT\nUyWUUxvOnj3L5ORkXW5vLe9V6txSxq9k7HJjrvR6pf/OysV9rfzj3deKa8Z9bervpuAcTD07BSfL\nv60g97Ug/+9cV8LY6+YfVzJLYZHinwHvBo4teu1p4E+AQ0XmbQXGgbeUUI8kSSr4BoUf1FcYcVam\nlCMJ35x/LGcCOA/EuBgSWoAIhRBRzEkKv7mtJdQjSZIKTlLmgBCkTwIvAT8BvA14kELx11azKEmS\nVH0bgE8AOeAV4HFgV1UrkiRJkiRJkiRJkiRJeqMfBP6Kwh0cjwO/XN1y1MBuoHDjr78BngF+vqrV\nqNF9ATgD/N9qF6KG9dNAGngB+HCVawnMVcDG+e+/D5gG/ln1ylEDC1NoSgaFfewlCvucFIQfpfAh\nbkhQEDYAX6Nwe4EfoBAUNpfyBkG2ii6n14Fz899/PzC36NdSOeWAZ+e//zsKP+WV9I9KKsFfAP9Y\n7SLUsPZQOCp6ksJ+9hjwk6W8Qb2EBCjcY+EZ4EUKXSb/obrlqAm8i8JdSb9R7UIkaRWu59LPrxOU\neGfjegoJrwA3A28F7gJ+uLrlqMFdB/xv4M5qFyJJq3RhrW8QVEi4HXiUQoJ5HfjZImM+CswA3wX+\nmkKvhwW/QmGR4iSFWzovdorCwrJ3lrVi1asg9rWrgc8DH6PQc0SC4D7X1vxBroa11n3uZS49cnAD\nNXJk9D0U2kT/HIXf2Hsve/0XKfR36KVw2+ZPUjh9cMMS79cK/ND89z9E4Zzx28pbsupUufe1dUAS\n+B9BFKu6Vu59bUE3LlxUcWvd5zZQWKx4PYWrBF8A3hx41SUq9hv7MvDblz33PIWf3Ippo5DAvzr/\n6ClngWoY5djX3g28RuGnva/MP24sY41qDOXY16Bwy/pTwLcpXEnTXq4C1XBWu8/9DIUrHL4O7A+s\nujW4/Df2JgpXJ1x+2OR+CqcRpNVyX1OluK+p0qqyz1Vj4eIWYD2Qv+z5UxSuUZfKxX1NleK+pkqr\nyD5XT1c3SJKkCqpGSDhN4Zxv6LLnQxRu+CCVi/uaKsV9TZVWkX2uGiHhn4AJ3njXp58AjlW+HDUw\n9zVVivuaKq2u97lrKNzH4J0UFlscmP9+4bKMfRQu2+gBdlG4bOPvWf5SIely7muqFPc1VVrD7nPd\nFH5Dr1M4HLLw/eCiMb9E4QYQ54BxLr0BhLRS3bivqTK6cV9TZXXjPidJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJklQH/j956uHhBWxPygAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f7365078710>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xscale('log'); ylim(-6,2)\n",
|
|
"errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n",
|
|
"errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 3.996e+02 1.150e+01 inf -- 1.244e+03 -- -0.48732 -1.13061 -2.29972 -2.54606 -3.32938 -3.55056 -4.36198 -7.01756 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n",
|
|
" 3 1.146e+02 1.274e+01 2.644e+00 -- 1.247e+03 -- -0.46592 -1.09839 -2.27929 -2.51606 -3.2945 -3.53263 -4.40205 -7.31756 0.173375 0.179509 0.201787 0.171316 0.150055 0.152867 0.0990853 -2.1868\n",
|
|
" 5 6.107e+01 1.422e+01 2.363e+00 -- 1.249e+03 -- -0.445096 -1.06944 -2.25767 -2.48924 -3.26504 -3.51627 -4.44162 -7.01756 0.23367 0.240665 0.283299 0.22705 0.187337 0.196036 0.0982347 -2.11553\n",
|
|
" 7 2.105e+01 1.585e+01 2.131e+00 -- 1.251e+03 -- -0.425484 -1.04389 -2.23659 -2.46561 -3.24012 -3.50157 -4.48059 -6.71756 0.283283 0.288529 0.348404 0.27129 0.21583 0.231595 0.0974289 -2.46919\n",
|
|
" 9 2.358e+01 1.743e+01 1.909e+00 -- 1.253e+03 -- -0.40737 -1.02151 -2.21687 -2.44489 -3.21894 -3.48846 -4.51886 -6.41756 0.324291 0.326635 0.400676 0.306939 0.238059 0.261125 0.0966177 -1.38312\n",
|
|
" 11 4.074e+01 1.911e+01 1.751e+00 -- 1.255e+03 -- -0.390833 -1.00195 -2.19886 -2.42677 -3.20086 -3.47683 -4.55632 -6.71756 0.358383 0.357437 0.443033 0.336042 0.255704 0.285884 0.0957404 1.63909\n",
|
|
" 13 1.370e+01 2.129e+01 1.587e+00 -- 1.256e+03 -- -0.375838 -0.984839 -2.18261 -2.41092 -3.18537 -3.46656 -4.59286 -6.41756 0.386914 0.382651 0.477698 0.360091 0.269847 0.306761 0.095098 2.03338\n",
|
|
" 15 1.158e+01 2.351e+01 1.408e+00 -- 1.258e+03 -- -0.362294 -0.96986 -2.16805 -2.39704 -3.17203 -3.45749 -4.62837 -6.11756 0.410934 0.403523 0.506367 0.380155 0.281317 0.324474 0.0944395 -1.46371\n",
|
|
" 16 1.607e+03 7.266e+02 8.010e+00 -- 1.266e+03 -- -0.240266 -0.83846 -2.03814 -2.27523 -3.05681 -3.37736 -4.97188 -8 0.614202 0.577977 0.745974 0.548634 0.37576 0.476151 0.0813258 0.437418\n",
|
|
" 17 9.038e+02 4.128e+00 3.834e+00 -- 1.270e+03 -- -0.232783 -0.852575 -2.04678 -2.29283 -3.08252 -3.39513 -5.04543 -8 0.548929 0.498486 0.710668 0.487552 0.327531 0.450717 -0.157389 -0.565487\n",
|
|
" 18 2.647e+02 5.497e-01 2.932e-02 -- 1.270e+03 -- -0.23322 -0.852233 -2.04339 -2.2905 -3.07964 -3.39057 -5.07095 -8 0.552004 0.51698 0.698282 0.491552 0.331349 0.451833 -0.156166 -2.69909\n",
|
|
" 19 9.652e-01 2.219e+00 6.531e-01 -- 1.269e+03 -- -0.233246 -0.852217 -2.0438 -2.29075 -3.08035 -3.39107 -5.06163 -5 0.551423 0.515009 0.700327 0.490665 0.330402 0.452209 -0.176384 -0.814953\n",
|
|
" 20 7.789e+00 7.955e-01 6.402e-01 -- 1.270e+03 -- -0.233412 -0.852282 -2.04423 -2.29033 -3.07948 -3.38989 -5.09639 -5.98364 0.551849 0.515428 0.700779 0.489124 0.333636 0.45985 -0.205833 -1.60153\n",
|
|
" 21 8.557e+01 4.082e-02 1.163e-02 -- 1.270e+03 -- -0.233294 -0.852207 -2.04379 -2.29075 -3.08047 -3.39073 -5.05794 -7.0122 0.551775 0.515347 0.699486 0.490646 0.330835 0.451633 -0.186288 -1.50956\n",
|
|
" 22 1.000e+03 9.633e-02 1.325e-03 -- 1.270e+03 -- -0.233263 -0.852211 -2.04374 -2.29072 -3.08027 -3.39085 -5.06491 -8 0.551627 0.515234 0.700132 0.49056 0.330468 0.452479 -0.17545 1.26429\n",
|
|
" 23 6.947e+01 7.583e-02 5.012e-04 -- 1.270e+03 -- -0.23325 -0.852208 -2.04374 -2.29072 -3.08029 -3.39091 -5.06372 -8 0.551664 0.515214 0.700074 0.490679 0.330402 0.452326 -0.175132 2.98034\n",
|
|
" 24 1.062e+00 2.147e+00 6.150e-01 -- 1.269e+03 -- -0.23325 -0.852208 -2.04374 -2.29072 -3.08028 -3.39091 -5.06387 -5 0.551636 0.515215 0.70009 0.490675 0.330405 0.452326 -0.175244 -0.97755\n",
|
|
" 25 5.159e+00 7.693e-01 6.227e-01 -- 1.270e+03 -- -0.233412 -0.852294 -2.04429 -2.29036 -3.07951 -3.38938 -5.09276 -5.9203 0.551804 0.515509 0.700612 0.48922 0.334134 0.458766 -0.237317 -2.01536\n",
|
|
" 26 3.256e+00 2.577e+00 8.259e-01 -- 1.269e+03 -- -0.233292 -0.852208 -2.04377 -2.29076 -3.08053 -3.3906 -5.0573 -4.88481 0.551755 0.515396 0.699418 0.490641 0.330803 0.451361 -0.185258 0.154178\n",
|
|
" 27 8.306e+00 8.513e-01 7.419e-01 -- 1.269e+03 -- -0.2334 -0.85217 -2.04371 -2.2903 -3.07979 -3.394 -5.12588 -5.6438 0.551608 0.514436 0.70228 0.489167 0.329463 0.464863 0.0259555 0.65621\n",
|
|
" 28 3.018e+02 2.512e-01 7.557e-02 -- 1.270e+03 -- -0.23325 -0.852177 -2.04375 -2.29075 -3.08018 -3.3918 -5.06768 -7.58414 0.552082 0.51496 0.699848 0.491275 0.330113 0.452176 -0.189638 -1.62114\n",
|
|
" 29 9.648e+02 1.054e-01 5.781e-05 -- 1.270e+03 -- -0.233258 -0.852207 -2.04374 -2.29072 -3.08024 -3.39094 -5.06451 -8 0.551479 0.515219 0.700113 0.49073 0.330409 0.452292 -0.172337 -0.754914\n",
|
|
"********************\n",
|
|
"-0.233258 -0.852207 -2.04374 -2.29072 -3.08024 -3.39094 -5.06451 -8 0.551479 0.515219 0.700113 0.49073 0.330409 0.452292 -0.172337 -0.754914\n",
|
|
"0.0271527 0.0112859 0.0294371 0.0238447 0.0419821 0.0761252 1.60955 678.342 0.189103 0.111853 0.196777 0.152506 0.193957 0.252076 3.72644 1583.62\n",
|
|
"0.0121717 -0.0302322 -0.0279866 -0.0393548 -0.105374 -0.0168605 -0.00293106 -0.000917936 0.00679344 -3.13658e-05 -4.94438e-05 -0.00117381 0.00319937 0.00794062 0.00314398 -0.000234878\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n",
|
|
"p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n",
|
|
"p, pe = clag.optimize(Cx, p)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"phi, phie = p[nfq:], pe[nfq:]\n",
|
|
"lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n",
|
|
"cx, cxe = p[:nfq], pe[:nfq]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([ 9.0966594 , 2.8412865 , 2.00075511, 0.90476609, 0.39301911,\n",
|
|
" 0.34709626, -0.08532525, -0.24113739])"
|
|
]
|
|
},
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhkAAAFtCAYAAACqQXjBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGUhJREFUeJzt3X2QXWd9H/Cvg2REUFL5Be+aNLbwBnkdogzZHTm11aFr\n6jKFBhhSELoDQ1kB9jTMOGqTP8wfFow8kwYynVGnk6YVRe5MoFdWQtyh8YiaNKvCyJqg0cL4pV7K\nrCXHxd4NRgiMi7DA6h9n11qtd6W7q/vcc+/u5zNzZ3fPyz0/SY92v3vO85IAAAAAAAAAAAAAAAAA\nAAAAAAAAAAC9Z32SzyR5KMl3k7yU5JMLHPdfZvbNf/3vjlQJALTNmg5d5+okH0vyzSQPJPlokrOL\nHPvjJLctsA0A6CGdChknklwx8/lVqULGYn6W5OulCwIAyvq5Gq552SXuBwB6QB0h42Jek+TZJD9N\n8nSSf59zd0EAgB7Rqcclrfpmkm8keWzm65Ek/yrJP06yJckL9ZQFACxVt4WMPfO+/p+pQsefp+rH\n8e8WOOfamRcAsDTPzryK6LaQsZAHUt3B+M0F9l37+te//plnnnmmwyUBwIrwnVRPCooEjV4IGZdl\n8b4j1z7zzDP5/Oc/n5tuuqmTNbXFzp07s2fP/Js33X+tS3mv5Zzb6jmtHHexYy60v5P/Xu2mrbX3\nHG1tcautrT3xxBP54Ac/uOSfQ93Q1mZq/6VUTwNWbch4b6rOoEcWO+Cmm27K0NBQ5ypqkw0bNnSs\n7nZe61LeaznntnpOK8dd7JgL7e/kv1e7aWvtPUdbW9xqbGvJ0n8OdUtbK+1VHbzW25O8OcnmJO9O\nNfNnkvxqkuNJfinJXyZZl2oujTcm+UiSP0wykeR3Uo04mevaJHfeeeedufba3uyWsXnz5p681qW8\n13LObfWcVo672DGL7W82m2k0Gi3V0Y20tfaeo60tbjW1tWeffTZ79+7Ncn4O1d3WZmtPsjeF7mR0\nck6K40mun/n87Jxrn03yhiQ/TPK5JL+RpC9VADqRqk/GHyR5foH3HEpy7NixYz2b+ukd73rXu/Kl\nL32p7jJYBbS13jE+Pp7h4eH04s+h2dqTDCcZL3GNTj4ueUMLx/zz4lUAAB3RjZNxQVfq5dvX9BZt\njZVCyIAW+cZPp2hrrBRCBgBQhJABABQhZAAARQgZAEARQgYAUISQAQAUIWQAAEUIGQBAEUIGAFCE\nkAEAFCFkAABFCBkAQBFCBgBQhJABABQhZAAARQgZAEARQgYAUISQAQAUIWQAAEUIGQBAEUIGAFCE\nkAEAFCFkAABFCBkAQBFCBgBQhJABABSxpu4CoNs0m800m80kyenTp/PUU0/l+uuvz7p165IkjUYj\njUajzhIBeoKQAfPMDRHj4+MZHh5Os9nM0NBQzZUB9BaPSwCAIoQMAKAIIQMAKELIAACKEDIAgCKE\nDACgCCEDAChCyAAAihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKE\nDACgCCEDACiiEyFjfZLPJHkoyXeTvJTkk4scO5Tkr5I8n+T7Sb6Y5A0dqBEAaLNOhIyrk3wsydok\nD8xsO7vAcYNJDiVZk+R9SXYk2ZTkazPvAQD0kDUduMaJJFfMfH5Vko8uctzuJD9O8ltJfjSz7ViS\nbyf5/SR3lysRAGi3TvfJuGyR7WtShYsv5lzASJK/TTKW5D2F6wIA2qxbOn4OJFmX5JEF9j2a5FeS\nXN7RigCAS9ItIeOqmY8nF9h3MtUdkCsW2AcAdKluCRkAwArTiY6frfjezMcrF9h3ZarRKN9f7OSd\nO3dmw4YN521rNBppNBptKxAAelWz2Uyz2Txv26lTp4pft1tCxmSqkSW/vsC+zalGmLy42Ml79uzJ\n0NBQodIAoLct9Iv3+Ph4hoeHi163Wx6X/DTJf0/y26km75p1XZLbkvxFHUUBAMvXqTsZb0/y2iS/\nMPP1m5K8d+bzB1PdxfhkkqNJ/jLJHyZ5Taq5M/4uyb/tUJ0AQJt06k7Gf0hyIMnnUvWveN/M1/cn\ned3MMd9KMpLkTJI/T3Jfkv+T5C0512cDOuLEiRPZsWNHtm3bliTZtm1bduzYkRMnTtRbGEAP6dSd\njFbXHxlP8k9KFgIXMj09ne3bt2diYiJTU1Mvb5+cnMzk5GQOHjyYwcHB7N+/P319fTVWCtD9uqXj\nJ9Rueno6t956a5588slFj5mamsrU1FS2bt2aw4cPCxoAF9AtHT+hdtu3b79gwJhrcnIy27dvL1wR\nQG8TMiDJ8ePHMzExsaRzJiYm9NEAuAAhA5Lce++95/XBaMXU1FR2795dqCKA3idkQJKjR4929DyA\n1UDIgCRnzpzp6HkAq4GQAUnWrl3b0fMAVgMhA5Js2bJlWefdfPPNba4EYOUQMiDJrl270t/fv6Rz\n+vv7c8899xSqCKD3CRmQZOPGjRkcHFzSOYODg9m4cWOZggBWACEDZuzfvz8DAwMtHTswMJD777+/\ncEUAvU3IgBl9fX05fPhwRkZGFn100t/fn5GRkTz88MO55pprOlwhQG8RMmCOvr6+jI2N5ciRIxkd\nHX35zsbAwEBGR0dz5MiRjI2NCRgALbBAGixg48aN2bdvX8bHxzM8PJwDBw5kaGio7rIAeoo7GQBA\nEUIGAFCEkAEAFCFkAABFCBkAQBFCBgBQhJABABQhZAAARQgZAEARQgYAUISQAQAUIWQAAEUIGQBA\nEUIGAFCEkAEAFCFkAABFCBkAQBFCBgBQhJABABQhZAAARQgZAEARQgYAUISQAQAUIWQAAEUIGQBA\nEUIGAFCEkAEAFCFkAABFCBkAQBFr6i4Auk2z2Uyz2UySnD59Ops2bcrdd9+ddevWJUkajUYajUad\nJQL0BCED5hEiANrD4xIAoAghAwAoQsgAAIoQMgCAIrotZIwkeWmR1831lQUALFW3ji75RJKxedse\nr6MQAGB5ujVkfDvJ1+suAgBYvm57XDLrsroLAAAuTbeGjD9OcibJD5J8OcnWessBAJaq20LGqSR7\nktyRqhPo7yb55SSHkryttqoAgCXrtj4Z35x5zTqc5IEkjyb5dJKH6igKAFi6bgsZC/lBkgeT3Jnk\n1Ul+Mv+AnTt3ZsOGDedts/4EAFTmLvw469SpU8Wv2wshY66zC23cs2dPhoaGOl0LAPSEhX7xHh8f\nz/DwcNHrdlufjIVckeSdSb6R5MWaawEAWtRtdzK+kOR4kvEkJ5O8McnvJXldkg/VWBcAsETdFjIe\nSfL+JB9Psj5V0Phakg8kOVZjXQDAEnVbyPj0zAsA6HG90CcDAOhBQgYAUISQAQAUIWQAAEUIGQBA\nEUIGAFCEkAEAFCFkAABFCBkAQBFCBgBQhJABABQhZAAARQgZAEARQgawZM1mM7fffnuuu+66rF+/\nPpdffnnWr1+f6667LrfffnuazWbdJQJdoNuWege63PT0dPbu3ZuJiYlMTU29vP3MmTN54YUXcubM\nmezduzdvfetb09fXV2OlQN2EDKBl09PTufXWW/Pkk08ueszU1FSmpqaydevWHD58WNCAVczjEqBl\n27dvv2DAmGtycjLbt28vXBHQzYQMoCXHjx/PxMTEks6ZmJjIiRMnyhQEdD0hA2jJvffee14fjFZM\nTU1l9+7dhSoCup2QAbTk6NGjHT0P6H1CBtCSM2fOdPQ8oPcJGUBL1q5d29HzgN4nZAAt2bJly7LO\nu/nmm9tcCdArhAygJbt27Up/f/+Szunv788999xTqCKg2wkZQEs2btyYwcHBJZ0zODiYjRs3lilo\niUyFDp0nZAAt279/fwYGBlo6dmBgIPfff3/hilozOxX6448/nqeffvrl6c9feOGFPP3003n88cez\nd+/eTE9P110qrChCBtCyvr6+HD58OCMjI4s+Ounv78/IyEgefvjhXHPNNR2u8JVmp0I/dOjQovN8\nTE1N5dChQ9m6daugAW0kZABL0tfXl7GxsRw5ciSjo6Mv39kYGBjI6Ohojhw5krGxsa4IGImp0KFO\nQgawZM1mM3fddVeee+653HDDDdm0aVNuuOGGPPfcc7nrrru6pn+DqdChXlZhBZas0Wik0WjUXcZF\nXcpU6Pv27StUFawe7mQAK5ap0KFeQgawYpkKHeolZAArlqnQoV5CBrBimQod6qXjJ7Bi7dq1KwcP\nHlxS509TofeWZrP58mim06dP56mnnsr111+fdevWJemdTsorlZABrFizU6EvJWR001ToXNzcEDE+\nPp7h4eE0m80MDQ3VXBmJxyXACterU6HDSiBkACta3VOhnzhxIjt27MjmzZszODiYzZs3Z8eOHSb8\nYlXwuARY8fr6+nLHHXfkc5/7XNauXZuTJ0/mxRdfzOWXX54rr7wymzZtykc+8pG2Bozp6els3749\nExMTr3hc89hjj+XgwYMZHBzM/v3709fX17brQjcRMoBVoZMdAGcXZbvQmilTU1OZmprK1q1bc/jw\nYUGDFcnjEoA2sygbVIQMgDayKBucI2QAtNGlLMoGK42QAdBGFmWDc4QMgDbqlkXZ6hg6a7gu8xld\nAtBGdS/KVsfQWcN1WYyQAdBGW7ZsyWOPPbbk89qxKFsdQ2cN1+VCPC4BaKNdu3YtOrPoYtq1KFsd\nQ2cN1+VChAyANppdlG0p2rEoWx1DZw3X5WK6LWSsT7InyXeS/DjJN5K8v9aKAJaojkXZ6hg6a7gu\nF9NtIeMvknwoyaeS/NMkR5M0k3RmLmCANqhjUbY6hs52y3Dd2VEt27ZtS5Js27bNqJYu0U0dP9+R\n5PZUgWI21v+vJNcn+aOZbS/VUxrA0vT19WVsbCwnTpzI7t27c/To0Zw5cyZr167Nli1bsmvXrkt+\nRDJXHUNn6x6uu9iolsnJyUxOThrV0gW6KWS8J8nzSf5s3vb7kvzXJL+Z5EiniwK4FBs3bsy+ffuK\nX6eOobN1Dtete1TLbHj86le/mqS6e/KWt7yl7eGx13XT45JfS/JEXnm34tGZj2/qbDkAvWPLli3L\nOu9Shs7Wcc1ZdY1qmZ6ezm233ZZbbrkl9913XyYnJ1++xn333Zdbbrklt912W6anp9tyvV7XTSHj\nqiQnF9h+cs5+ABZQx9DZuobr1jWqZfbuyaFDhxbt8Do1NZVDhw5l69atgka6K2QAsEx1DJ2ta7hu\nXaNazAmydN3UJ+N7WfhuxZVz9i9o586d2bBhw3nbGo1GGg2DUoDVY//+/dm6devLt/AvpF1DZ+u4\nZh2jWi7l7kk39NFoNptpNpvnbTt16lRN1dTjPyX5YV55d2V7qn4a/2CBc4aSnD127NhZAM6enZqa\nOjsyMnK2v7//bJJXvPr7+8+OjIycnZ6e7tlr3njjjQte52KvG2+8cdnXHB0dXdY1R0dH2/JnLuHY\nsWOzdQ4t+yf3RXTTnYwHknwsyXuTHJiz/cOpJuf6mxpqAugpnR46W8c16xjV0i1zgvSabgoZX07y\nlSR/kuQXk0ymmjPjbUk+kCptAdCCTg2dreOadSxCV/ecIL2q2zp+/naSP02yO8nBJFtSPS5pXugk\nAFaPOka11DknSC/rtpDxQpKdSV6fZF2S38j5j04AWOXqGNVS55wgvazbQgYAXFSnF6Gra06QXidk\nANBzOr0IXV1zgvQ6IQOAnjQ7quXIkSMZHR19+c7GwMBARkdHc+TIkYyNjbVllduk83dPVgIhA4Ce\nNjuq5cCBqgvfgQMHsm/fviJDdTt592QlEDIAoEWdvnvS67ppngwA6Amzd0/Gx8czPDycAwcOZGio\n2MSZPcudDACgCCEDAChCyAAAihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACK\nsHYJAD2r2Wym2WwmSU6fPp1Nmzbl7rvvzrp165IkjUYjjUajzhJXNSEDgJ4lRHQ3j0sAgCKEDACg\nCCEDAChCyAAAihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACg\nCCEDAChCyAAAihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACg\nCCEDAChCyAAAihAyAIAihAwAoIhuChkjSV5a5HVzfWUBAMuxpu4CFvCJJGPztj1eRyEAwPJ1Y8j4\ndpKv110EAHBpuulxyazL6i4AALh03Rgy/jjJmSQ/SPLlJFvrLQcAWI5uChmnkuxJckeqTqC/m+SX\nkxxK8rbaqgIAlqVUn4yRJH/d4rFvTvJIkm/OvGYdTvJAkkeTfDrJQ22sDwAorFTImEjy0RaPffoC\n+36Q5MEkdyZ5dZKfLHTQzp07s2HDhvO2NRqNNBqNFksAgJWr2Wym2Wyet+3UqVPFr1sqZEwl2dfm\n9zy72I49e/ZkaGiozZcDgJVhoV+8x8fHMzw8XPS63dQnYyFXJHlnkm8kebHmWgCAJeimeTK+kOR4\nkvEkJ5O8McnvJXldkg/VWBcAsAzdFDIeSfL+JB9Psj5V0Phakg8kOVZjXQDAMnRTyPj0zAsAWAG6\nvU8GANCjhAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACgCCEDAChCyAAA\nihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACgCCEDAChCyAAA\nihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACgCCEDAChCyAAA\nihAyAIAihAwAoAghAwAoQsgAAIoQMgCAIoQMAKAIIQMAKELIAACKEDIAgCKEDACgCCEDAChCyAAA\nihAyAIAiSoeM9Uk+k+ShJN9N8lKST17g+KEkf5Xk+STfT/LFJG8oXCMAUEDpkHF1ko8lWZvkgZlt\nZxc5djDJoSRrkrwvyY4km5J8beZ9oFbNZrPuElgltDVWitIh40SSK5LcluQTFzl2d5IfJ/mtJF9O\nFUr+WZLXJfn9ciVCa3zjp1O0NVaKTvbJuOwC+9akChdfTPKjOdv/NslYkvcUrAsAKKBbOn4OJFmX\n5JEF9j2a5FeSXN7Rijqgk7+ttPNal/Jeyzm31XNaOe5ix6zU3yC1tfaeo60tbjW2tZLX6/W21i0h\n46qZjycX2Hcy1V2QKzpXTmesxv+MvvHXQ1tr7zna2uJWY1sreb1eb2trlnDsSJK/bvHYN2fhuxJF\nPPHEE526VFudOnUq4+PjPXetS3mv5Zzb6jmtHHexYy60v5P/Xu2mrbX3HG1tcautrc3+/Fnqz6Fu\naGud+Nl5oX4S8/UneUeLxz6QagjqXFcn+bskn0rVyXOuG5M8keR3kvzHefv+KMm/TvKaJC/O23dt\nkqNJfqnFugCAc76TZEuSZ0u8+VLuZEwl2VeiiCSTqUaW/PoC+zYn+XZeGTCS6i9lS6qwAQAszbMp\nFDA67epUk3HtWmT//lRBZv2cbdcl+UmSPyhbGgDQbq/qwDXenqqPxuYk704182eS/GqS40l+OvP1\no0k+nmpOjamZ4/9zkp8l+Rep7nQAALzseKo7GC+lCgxzP79u3rFDSb6Saq6MUzGtOAAAAAAAAABA\nt5sdvfLDJN9KtTostNvlSe5Lte7OD5IcSXJLrRWxkv3LJOOphvh/suZaWJlel+TBVH0lv5Xk9nrL\n6V435dy8IFtSjVbRqZR2+/kk9yT5+zNffyjViKrX1FYRK9m7Uy0ueSCLTw8Al+JAks+mWl/snamW\n+riy1op6wFCS6VRzd0Bp30s1JBtK+WzcyaD91qeaq+r1c7aNJRlt9Q26ZYG0TvlCqjsYh5PckeS5\nesthFRhMdRdjsu5CAJbojakekzwzZ9ujSd7U6hustpDxgSSvTdJI9dx8/jwd0E4/n+RPk9yb5P/V\nXAvAUq1P1Y9xrh/m/Jm5L2ilhowPJHl+5vXgvH0vJflvqe5mvKvDdbHyLNbW1ib5sySPJfk3NdTF\nynOh72tQwo+S/OK8bX8vVRvsKeuTfCbJQ6k6yb2UxZ8vrk+yJ9XKcT9O8o0k71/GNQ8m+fAyzqO3\ndaKt/Vyq0UwPZOUGeS6uk9/XPhsdP2l/m1uoT8ah9ODPzo2ploYfS7I3F15I7aFUvVs/luQfzTm+\ncYH370vy3lSPStYk2TbzHpaIX302pmxbS6pv+GNJXn3p5dLDNqZ8W3tVql7/96V6LLcugu1qtjHt\nb3MrbnTJVVn8L+YdM/vmp63/keT/ZvH/XH1JvppqPZSTM5//w3YUS08r0daunznvhZy7tf18kq1t\nqJfeVaKtJcmncm49qNnXhy6xVlaGdrW5q1M9nnshK2SejAstCf/ZVBMczf9Pt33mHJMesRTaGp2i\nrdFpXdHmeu222q8leSLVX8Jcj858bHlYDVyEtkanaGt0WsfaXK+FjKtSPe6Y7+Sc/dAO2hqdoq3R\naR1rc70WMgCAHtFrIeN7WThhXTlnP7SDtkanaGt0WsfaXK+FjEdSLXQ2v+7ZdSEe62w5rGDaGp2i\nrdFpHWtzvRYyHkg1Och7523/cKoJRf6m0wWxYmlrdIq2Rqd1rM2tufghHfP2VJNl/cLM12/Kub+A\nB1PNSPblJF9J8ieppjqdTDVxyNtSTbl7toP10ru0NTpFW6PTtLlFHM+5yWR+Nu/zuQuZvTbVVKjP\nJDmdairUbR2tlF6nrdEp2hqdps0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtfv//jLVr3Q315IA\nAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f736317bf10>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"xscale('log'); ylim(-10,15)\n",
|
|
"errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n",
|
|
"\n",
|
|
"lag"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x7f7363203250>]"
|
|
]
|
|
},
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGYCAYAAABPgZiFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XmcHGWd+PHP5IBwhwQ5lXsDSQBhonguBK9FwAME11FW\nAos/d1dZo4BGRIOCoGLceIAHkqDgjqtccigIyuG6CJgRucJhQBDDmQMSIOSY/v3xraZrOt3T3VPV\n0zM9n/fr1a/qrnrqqaerpqe//VwFkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJKnkz\n8EtgKfAC8ABwalmaTuB6YAWwDLgE2KVKficA9wGrgIeALwBjci+1JElSFR8E1gI/AQ4FDgT+lb4B\nzp7Ac8CNwMHA4cBdwGPAVmX5fQ5YB5wBHACcRAQ632/WG5AkSUrbAVgJfKdGup8BTwKbptbtCLwE\nfCW1biLwIvDdsv0/SwQ9k7MUVpIkqR6zgV7gVf2kGUM0W51bYds1wP2p1x9K8tu/LN22yfrPDrik\nkiQpk1GtLsAgOgBYAkwB7gDWEDU13wU2S9LsBowD7qyw/13A7sAGyeu9UuvTngCeAabmVXBJktSY\nkRTg7ABsQjRBdQNvBc4GPkx0OoZodoLogFxuKdABbJlK+xLRTFVuWSovSZI0yEbSaJ9RRO3MacDX\nknU3A6uBucBbiA7Cg2W75CFJkhrzePKoaiQFOEuIJqZry9Zfkyz3A65Mnk+osP8EoEDUzhTz25AI\nmsoDownA7f2UZbvtt99+8eLFi+sruSRJSltItMRUDXJGUoBzB/C6frYXgEVEk9M+FbbvDTxI1PhA\nqZ/OPsBtqXTbEs1Td/dzrO0WL17MRRddxOTJtQdbzZw5k7lz59ZMp5LheM5aXeZmH78Z+eeR50Dz\nGMh+je7T6r+J4Wg4nrNWl3m4ffYXLlzI0UcfPZloBTHAISbr+yhwCPDn1PpDk+WtxPDuK4EjgE8T\nw8ohhokfBMxJ7XcNUXMzg74BzgwiWLq8VoEmT55MZ2dnzYKPHz++rnQqGY7nrNVlbvbxm5F/HnkO\nNI+B7NfoPq3+mxiOhuM5a3WZh+Nnvx4jKcC5HriKmGl4FBHQvCZ5fSXw+yTdbKJ56Spi3puNgC8B\nT9E3wFlGTPB3OtEB+Trgtcn+5xGzG6tFurq6Wl2EhrW6zM0+fjPyzyPPgeYxkP1afY1HguF4jltd\n5uH42a9HR0uO2jrjiADkg0TV1t+JWY2/SAwbL+oEvgq8gZj5+DfELMUPV8jzBOBjwM5EVdl84MtE\nbVA1ncCCBQsW1BXVvvvd7+aKK66omU5Se/GzL62vp6eHadOmAUwDeqqlG0k1OBBNSp+l9iR8PcDb\n68zz28lDkiQNESNpHpxhq9XVl5Jaw8++NHAGOMOA/+SkkcnPvjRwBjiSJKntGOBIkqS2Y4AjSZLa\njgGOJElqOwY4kiSp7RjgSJKktmOAI0mS2o4BjiRJajsGOJIkqe0Y4EiSpLZjgCNJktqOAY4kSWo7\nBjiSJKntGOBIkqS2Y4AjSZLajgGOJElqO2NaXQBJktQ+uru76e7uBmDVqlU88sgj7LTTTowbNw6A\nrq4uurq6ml4OAxxJkpSbdADT09PDtGnT6O7uprOzc1DLYROVJElqOwY4kiSp7RjgSJKktmOAI0mS\n2o4BjiRJajsGOJIkqe0Y4EiSpLZjgCNJktqOAY4kSWo7BjiSJKntGOBIkqS2Y4AjSZLajgGOJElq\nOwY4kiSp7RjgSJKktmOAI0mS2o4BjiRJajsGOJIkqe0Y4EiSpLYz0gOc44FeYEWFbZ3A9cm2ZcAl\nwC5V8jkBuA9YBTwEfAEYk3dhJUlSffL4Et4EeBPwOmAb4BXAFsBy4GngCeBW4P+AF3I4Xl52AL4O\nLAY2L9u2J3Aj0AMcBWwEfAn4HbAv8Ewq7eeSbWcBvwb2B85I8v9o00ovSZKqGmiA8wrgaOD9RE3H\nGKCjxj5rgAXAz4CfEMFPK30PuIEIxI4s2/Yl4EXgMGBlsm4B8CBwEjArWTcROBX4QbIEuBkYSwQ5\nc4GFzSm+JEmqptEmqt2AecCjwByi1mYsfYOblUStyPNl+44FXg98A3gEOD/JrxWOBv4R+BjrB2Zj\niMDmEkrBDcR7vgE4PLXuYGBDYH5ZHvOTfN+bX5ElSVK96g1wJgLfJWojZhBf6i8BvwJmE1/02yXr\nNwdeCWyWvN4BOBT4InANsBoYBxwL3JvkOyGPN1OnbYialVlEIFZuN6J8d1bYdhewO7BB8nqv1Pq0\nJ4hmrKlZCytJkhpXbxPVA8CWyfObgIuAnwPP1dhvDfB48vhVsm4Lol/Lh4ADiX4qRwFb1V3qbM4h\nAqvvVdk+MVkurbBtKVEzsyXwZJL2JaI5q9yyVF6SJGkQ1RvgbAlcDZxG9EXJ4lngh8ljWpLnoRnz\nrNeRRPPTqwfpeP2aOXMm48eP77Ouq6uLrq6uFpVIkqSho7u7m+7u7j7rli9fXte+9QY4+wN/bKxY\ndVkAvAt4TRPyLrcp8B3gW0TtSzGyKDY3bQGsBZYkrys1m00ACkTtDEnaDYkmrVUV0t7eX4Hmzp1L\nZ2dn/e9AkqQRpNKP/p6eHqZNm1Zz33r74DQjuBnM/CGawLYmRkEtTT0+QAx1XwZcCPyFaHLap0Ie\nexMjqVYnr4v9dMrTbks0T92dX/ElSVK9RtJkdI8DBxE1MEUdRGfjA4mO0s8A64ArgSOAT1MaSbVj\nsv+c1P7XEDU3M4DbUutnJMe5PN+3IEmS6jGSApyXiA7S5Y4lgpqbU+tmE81LVwFfoTTR31P0DXCW\nEfPdnE7UBl0HvDbZ/zxidmNJkjTIst6qYQNgSvIYV2H7RsS8N48RzT73Erc1GEoK9K3VAbgfmE6M\nAruYmNfmAeAASn10is4EZhIdmK8l5tY5K1lKkqQWyFqD817gp8SsxK+qsP1S4J9Sr/cEvgn8A/Cf\nGY+dl2OTR7ke4O115vHt5CFJkoaArDU4xeDlMkodb4sOTW1/jOiPUpxY72PAGzIeW5IkqaKsAU5x\nnNbNFbYVa0UeIGb0PSJZ3kd07j0+47ElSZIqyhrgbE30X1lUId9i8853gBXJ82eT1wBvzHhsSZKk\nirIGOMXbK5RPcrcvcS+qAjEDclpxbphKfXYkSZIyyxrgFPvdlN9H6oBk+RjwcNm2Ym3O6IzHliRJ\nqihrgPNXoj/N68vWvytZ/q7CPsVbIDyd8diSJEkVZQ1wbkiWHyfmwgF4NzGHDMAvK+wzNVk+nvHY\nkiRJFWUNcL5NTIa3DXAXcauDy4lanb8Dl1TY5x3J8q6Mx5YkSaooa4DzAHA08AIR1BSbn5YDXcTt\nEdK2pRTg/DbjsSVJkirK415UPyfmwTmUCGAWA1cQ92Yqtw/w38ToqkrNV5IkSZnldbPNJ4F5daT7\ndfKQJElqmqxNVJIkSUNO1gDnPuDTRCdjSZKkISFrgDMJ+ArwN+AXwHtwAj9JktRiWQOcPyXLMcTk\nfpcRsxefDeyZMW9JkqQByeNu4vsC3wSWJOu2AU4E7gH+j7hr+KYZjyNJklS3PDoZ3wl8EtgeOJK4\nueY6Srdw+AExa/F84B9zOJ4kSVK/8hxFtQa4lGiqehUwC7g/2bYJcAxwEzE54CxguxyPLUmS9LJm\nDRN/AvgaMBl4I/BDSncR3x04E3gEuAo4HDsmS5KkHA3GPDh/AP4f8CEi8CkaAxxC3K/qEaKZK6+J\nByVJ0gjW7ABnJ2A2sIgYRr5tsn4tcA0xvByi/84c4FZgyyaXSZIktblmBDgbETfg/A0R2MwGdiE6\nHT9I9L95JVF7swvwT8D1yb77Aac1oUySJGkEyTPAeQOlEVM/Bg5K8l8F/ASYDuxB9M15KtmnF7iO\nuMP4t5N178qxTJIkaQTK2udle+BfgBlE8JL2Z6Jz8UXAs3Xk9SPgBGIEliRJ0oBlDXAepW8t0Aqg\nmwhs/thgXs8lS0dUSZKkTLIGOMXg5hbgPOBnwAsDzOsJ4DigkLFMkiRphMsa4MwlApuFOZRlJXBB\nDvlIkqQRLmuA86lcSiFJkpSjwZjoT5IkaVAZ4EiSpLaT560R3gK8F9gH2IqY8K+jxj675nh8SZIk\nIJ8AZxvgp8CBOeQlSZKUWdYAZyzwS+IWCwB3AIuJ2zAAXAhMADqB7ZJ1PcDdOBxckiQ1SdY+ODMo\nBTfHEYHMrOR1ATiGuPXCK4HDids4TAauBI7NeGxJkqSKsgY470uW19D/HDYF4m7iBwBriNsyTMp4\nbEmSpIqyBjj7JsuLqmwv72S8iJgccGPgExmPLUmSVFHWAGcCUTvzUGrd6tTzjSvs89tk+baMx5Yk\nSaooa4CzumwJpZtmAuxQYZ9V/WyTJEnKLGuA8yjRDLVNat2TxH2lOoDXVdhnSrIc7FFUbyX6/jwA\nPA88BlxOdIwu1wlcT9wdfRlwCbBLlXxPAO4jAreHgC+Q7/xCkiSpQVkDnJ5kuV9qXQG4OXk+E9gw\ntW088OnkeR436GzER4Edgf8C3kn0Adoa+ANwUCrdnsCNRJByFDE6bBLwO2ICw7TPEX2KLgbeAZwL\nnAKc06T3IEmS6pC1puE3wAeBw4AzU+u/S8yFsx9wFzGCahNiyHixaerHGY/dqI8DT5Wtuwb4CxGU\n3JCs+xLwIvGeVibrFgAPAidRGgY/ETgV+EGyhAjsxgJnEIHPYAdxkiSJ7DU4lxPNVK8EdkutvxqY\nlzzfHTgR+DdKwc2viSBoMJUHNxBNVQuJ8kMEfIcRTVIrU+keJQKgw1PrDiZqp+aX5TmfaJ57b/Yi\nS5Kkgcga4CwDdiaafhaVbftI8riNCCReImpzTiaCiHUZj52HLYj+Nvckr3cDxgF3Vkh7FxGsbZC8\n3iu1Pu0J4Blgaq4llSRJdWtmZ9gCcH7yGKrOIW4K+uXk9cRkubRC2qVEzcyWREfqiUTQ9mKFtMtS\neUmSpEE2kkf7nE70H/o48KcWl0WSJOVopAY4s4kRUKcQI5+KliTLCRX2KU5quCyVdkOiSWtVhbS3\n1yrEzJkzGT9+fJ91XV1ddHV11dpVkqS2193dTXd3d591y5cvr2vfkRjgzE49vlK2bRHR5LRPhf32\nJkZSFSc1LPbT2YfoZ1S0LdE8dXetgsydO5fOzkrT8EiSpEo/+nt6epg2bVrNfesNcB6mORPz7dqE\nPPvzeSKwOT15lFtL3On8CGK+nuJIqh2JuXLmpNJeQ9TczKBvgDODOFeX51dsSZLUiHoDnJ2aWorB\ncSLwRSIw+SXw+rLtf0iWs4nmpauIGp6NiLlxnqJvgLOMmO/mdKID8nXAa5P9zyNmN5YkSS1Qb4BT\na1K+VycPgOVEp93ivDPbEHcdL3Y2+TNwRwNlzMthRM3KwckjrQCMTp7fD0wHvkrMULyWmNDwJEp9\ndIrOJG7n8LFk++PAWZRGZUmSpBaoN8CZ0c+2Y4Eu4t5OJwKXEUFB+XEOB75O3Ivq25QmAhwsB9VO\n8rIe4O11pv128pAkSUNE1on+XgN8n6jZeD3wc9YPbkjW/TxJs4SYxfi1GY8tSZJUUdYA55NE7cyZ\nwOI60j+epB0LfCrjsSVJkirKGuAcQPRf+UOthCm3Jss3ZTy2JElSRVkDnFckyw0b2Kd4L6dX9JtK\nkiRpgLIGOE8T92c6pIF9immfyXhsSZKkirIGOL9Nlp8E3lxH+jcladP7SpIk5SprgPNVYA1xP6br\ngW8Sc950pNJ0APsBc4mgZhxxu4Py2yRIkiTlIuu9qO4FjgEuJPrWnEDcnXs1Mbtvgbgv0waUgp61\nxLw6CzMeW5IkqaKsNTgAPyWap3qS1x1Ep+PtgO2T58XgpidJ+9McjitJklRRXncTv5WY9G9/4G3E\nnbe3TLYtBe4imrBuz+l4kiRJVeUV4BTdRt87a0uSJA26PJqoJEmShhQDHEmS1HbqDXCafWNMb7wp\nSZJyU2+AcytwBTHHTZ46gato7F5WkiRJ/ao3wFkGHAYsAK4DPgxsMsBjbg4cR0z690fi1g3LBpiX\nJEnSeuodRTUJOAM4Hnhr8jiXGPp9KzFy6k5gCdCb2m8UcVPNfYkh5K8HpgMbJdvXAj8ETs3wHiRJ\nkvqoN8BZAvw7MAf4HPBBYGPg3cmjkEr7HLCCqKnZLFmXvnUDwEvAT4CzgEUDKbgkSVI1jY6i+gtw\nLLAjcDIxcV8vEcAUH1sAryQCnOI6knS3AScl+x+PwY0kSWqCgU709yRRmzOHqKV5E9EEtR3RJLUF\nsBx4GlhMBDa/B57PWF5JkqSa8pjJeAVwTfKQJElqOSf6kyRJbccAR5IktR0DHEmS1HYMcCRJUtsx\nwJEkSW3HAEeSJLUdAxxJktR2DHAkSVLbMcCRJEltxwBHkiS1HQMcSZLUdgxwJElS28l6s83ZQKHB\nfQrAKuBZ4EFgAfBcxnJIkiS9LI8AJ6vVwBXAKcBfcshPkiSNcEOhiWoD4EjgDuBtLS6LJElqA1kD\nnFHALsBtyevLgMOBVwEbJY8dgSOAy5M0twK7AxOAA4DvAr3AxsDPgYkZyyRJkka4rAHOZsCvgWnA\nUcD7gF8AfwdeSh6PEcHNEUma1yT7FID/BT4GHEoEOVsAH89YJkmSNMJlDXBmAv9A1MJcUkf6S4Dv\nAbsCJ6XWXwtclDw/OGOZJEnSCJc1wHl/srysgX0uTZaHl62/IlnunqlErbEpMJeouXoR+BPwzy0t\nkSRJI1jWAGcXoqnp2Qb2KQ4J36ls/SPJcvOMZWqFS4EPA6cRNVC3A91AVyOZzJs3j6lTp7LHHnsw\ndepU5s2bl3tBJUkaCbIOE19DdA7eG+ipc5+9UvumFYOt5RnLNNgOIUZ/dQH/k6y7iQjgzk7W9dbK\nZN68eZx88sksXbr05XUnn3wyAMcdd1y+JZYkqc1lrcG5K1meBIyrI/1GwMnJ87vLtu2aLJ/OWKbB\ndjiwghgBljYf2B54XT2ZzJkzp09wA7B06VLmzJmTRxk1hFhT1z/Pj6Q8ZK3BOR94MzAVuAH4COsH\nLkV7A+cBU1L7phXnwLmL4WUvYCHr19IU38dU4Jb+Muju7uaRR4otdF1Ea1cBKHD//aPo7Pw722+/\nAx0d1HxA7TTNSNfKYw+n93z99dcxf/51rFy5M7AOWMfMmVdw//3b8u53H8Lo0VR9jBlTfVt5mlGj\nSscdTtqlJnPevHnMmTOHtWvXMmbMGE488UTLP8iG+3sY7uWHeA9nnHEGAEceeSSnnnrqoL6HrAHO\nj4lJ+g4lair+TEzYtwB4KkmzDTE0/NWp/a4CfpR6PZ5Sh+VfZSzTYJtI5RmYl6a219Tx8rfRGuB5\noCN5jGXUqAKjR0OhEI/e3tLz9AMqrx9oumbkORTTDa63J4+SFSvga1+LR55GjcoWJDVre39pvv71\np1m69EPAWiIA7GXp0nV8/vN/YYMN+s+z0vvNM+2oOuu7mxWkFT/7jTwGss/ll/+Cb36zm+ee24z4\nH1Tgk5/s5q9/nch73vOel4PnUaPI9Hwg+9VruAfKw738sP57ePjhhwf9PeTxG28D4NtE7U0tBaIW\n5wT69sGZSNTwFIA/Et/ww8UDRIBzSNn67YhRVZ8Fvlq2rRNYsGDBAjo7O4HKf9ATJkzg7LPPHjZ/\n0MPZYARXn/3sKVxwwY/o7e0lPnqjX36MGrUBH/jAh5g161TWraPmY+3afNIMpbxWrnyB1avXpc7L\nmGQ5dNQKhFavfoHly5dQKBQDNIieAKPo6BjNlltOZMMNNx5QEKL+g6P0uueee5be3jVExXrpV8zo\n0aPZaqut+uRXnn+rt61cuYKnn36KQp9fX4UkTQdbb70Nm222WdV8KqknOMyaR/n2RYsWsXr1S8mr\ny4BTAZgyZQr33HNP7QL1o6enh2nTpkHMwVe1/2/WGhyIe0l9FPg+8P+AtwK7laVZBPwG+EGVwiwB\nbsyhLK2whMq1NBNS2yuaOXMm48ePf/n1q171KjbaaCM22WSTYVslOVylm5Ka5fzzz+QPf/gF9957\n73rb9txzCj/5yanNLcCQtzFTp06tcH46mDx5b3p6/txv4NTbW18QVm+6geR5xx2LuOKKq1mzphio\nFYgv2V7GjBnDQQcdxj777P3yF/FAHukv8rz3P/vsr3LxxT9LBQdx/qGDUaPGctRR7+fkkz+zXmCW\nrlmuFLjVuz2PvC699DJuueXW5Nz3DZB7e0ezyy77c9hh7+pTe1vteX/bmrX/vff+jV/96lesWVOs\nAyj9YxozZiz7738wkydPqbhvJfXUUmfNo9L2+fNvZvXqZcmrUs+VtWvX1i5QSnd3N93d3X3WLV/e\n2rFI44Btk0c9nY+Hs+8TQ9/LK7A/QPyHeH2FfTqBwoIFCwoaWc4///zChAkTCsDLjwkTJhTOP//8\nVhdtSGiH8zNlypQ+5S8+pkyZ0uqi1WW4l79QGP7vYbiXv1Bo7ntYsGBBMb/O/r6cm3WzzVXAE8lj\nVZOOMVRcRkz0d2TZ+hlEE9Wtg10gDV3HHXccZ599NlOmTGHSpElMmTLFZsiUdjg/J554IhMmTOiz\nbsKECZx44oktKlFjhnv5Yfi/h+FefmiP96BwLdEUdTxwENEU10v1if6swZHa2Pnnn1+YMmVKYdKk\nSYUpU6YMqxqoQmH4l79QGP7vYbiXv1CI97DrrrsWgMKuu+6a23uotwZnGA4kHZI2Ab5MjASbQAwb\nPwv4WZX063UyliSp3RQ7BOf5fTeYnYyL3gK8F9gH2IqY1K9WALVrje3DxfPEjUdntrogkiQpnwBn\nG+CnwIE55CVJkpRZ1gBnLPBLYL/k9R3AYkpzwlxINNl0EvPCQFQn3U16cgJJkqQcZR1FNYNScHMc\nEcjMSl4XgGOAdwGvJO7Z9DgwGbgSODbjsSVJkirKGuC8L1leA1zQT7oC8AvgAGIG4x8BkzIeW5Ik\nqaKsAc6+yfKiKtvLOxkvAuYCGwOfyHhsSZKkirIGOBOI2pmHUutWp55vXGGf3ybLt1XYJkmSlFnW\nAGd12RLitgVFO1TYZ1U/2yRJkjLLGuA8SjRDbZNa9ySwMln/ugr7FO8S5igqSZLUFFkDnOIMgvul\n1hWAm5PnM4ENU9vGA59Oni/MeGxJkqSKsgY4v0mWh5Wt/26y3A+4CzgbODd5vmey7ccZjy1JklRR\n1gDncqKZ6pXAbqn1VwPzkue7AycC/0ap382vKQVBkiRJuco6k/EyYOcq2z4C3JIspybHeoCoufkm\nsC7jsSVJkirK82ab5QrA+clDkiRp0DQzwKlmG6IfTrozsiRJUm5aEeAcDMwnApzRLTi+JElqc1k7\nGQ9E+e0bJEmSctWKAEeSJKmpDHAkSVLbMcCRJEltxwBHkiS1HQMcSZLUdgxwJElS2zHAkSRJbaeR\nif6OISbny+pNOeQhSZJUVSMBTnH2YSfqkyRJQ1qjTVR5BjcGSpIkqSkaqcE5Ludj59HcJUmStJ5G\nApwLmlUISZKkPDmKSpIktR0DHEmS1HYMcCRJUtsxwJEkSW3HAEeSJLUdAxxJktR2DHAkSVLbMcCR\nJEltxwBHkiS1HQMcSZLUdgxwJElS28k7wNkNOBo4Cfg88Iqc88/ircCPgAeA54HHgMuBzirpO4Hr\ngRXAMuASYJcqaU8A7gNWAQ8BX6Cx+3xJkqQc5RXg7AvcRAQPPwK+BpzG+gHOCcDTwF+AsTkdu14f\nBXYE/gt4J/AJYGvgD8BBZWn3BG4kgpSjiDupTwJ+B2xVlvZzwFzgYuAdwLnAKcA5TXgPkiSpDnnU\nMrwTuBTYsGx9R4W0Pwa+AkwEDgMuy+H49fo48FTZumuIYOsU4IbU+i8BLxJlXJmsWwA8SNROzUrW\nTQROBX6QLAFuJoK3M4jAZ2Geb0KSJNWWtQZnG+CnRHCzEDgU2DzZVqiQ/lngyuT5OzMeu1HlwQ1E\nU9VC4JWpdWOIwOYSSsENwKNEEHR4at3BxHufX5bvfCLAe2+2IkuSpIHIGuDMBDYj+rO8GfgVfYOC\nSm5MltMyHjsPWxB9be5JrdsNGAfcWSH9XcDuwAbJ671S69OeAJ4BpuZWUkmSVLesAU6xFua/iI64\n9Sg22eyc8dh5OAfYCPhyat3EZLm0QvqlRM3Mlqm0LxHNWeWWpfKSJEmDKGsfnF2Ipqj/a2CfZ5Pl\nZhmOOx34bZ1p96VybczpwAeJvjl/ylCWAZs5cybjx4/vs66rq4uurq5WFEeSpCGlu7ub7u7uPuuW\nL19e175ZA5xiU81LDeyzabJ8PsNx7wOOrzPt3yqsm02MfjqFGPWUtiRZTqiw3wQioFuWSrsh0aS1\nqkLa2/sr2Ny5c+nsrDZKXZKkka3Sj/6enh6mTavdyyVrgPMkMfR6R+COOvfZL1n+PcNxnwDmDXDf\n2anHVypsX0Q0Oe1TYdvexEiq1cnrYs3QPsBtqXTbEs1Tdw+wjJIkKYOsfXBuSZaH1Zm+g1LNy+8y\nHnsgPk8ENqcnj0rWEiO9jqBU2wQRxB1EDIkvuoaouZlRlscMoqbn8qwFliRJjcsa4FyULI8B9q8j\n/TeIWhCACzIeu1EnAl8kgpJfAq8ve6TNBjYGriKGgh8OXE0MNZ+TSreMmO/mo8nyQGKenNnAeURT\nmiRJGmRZm6iuBn5NzOD7a+KL/X9S28cCOwBvAv4TeGOy/n+AWzMeu1GHEbUqByePtAIwOvX6fqIj\n81eJGYrXAr8hgpclZfueSdzO4WPJ9seBs+g7MkuSJA2iPGYy/mfink3TiOHi30jWdwA9qedFt1B/\nB+E8ld+OoZYe4O11pv128pAkSUNAHveiepaoofky8Bx9g5mO1OvniU6908k2gkqSJKlfed3xejXR\ngferRD+U1xA3shxN3FzzT0QTz7PVMpAkScpLXgFO0UqiX87VOecrSZJUtzyaqCRJkoYUAxxJktR2\n8myi2gp4A3F/qs3oO+y6mi/leHxJkiQgnwBnO2Jo+PuIoKaj/+QvK2CAI0mSmiBrgPMK4k7iOw1g\n33oDIUmSpIZk7YPzRUrBzc+BtxBNVWOSvGs9JEmScpe1Bqd4k80LiftRSZIktVzWWpStib4083Io\niyRJUi46kObeAAAYNElEQVSyBjiLk+XKrAWRJEnKS9YA5yais/A+OZRFkiQpF1kDnDnAGuBEYFz2\n4kiSJGWXNcC5G/hXYE/gOmCPzCWSJEnKKI+J/i4CHgauBO4B7gQeAF6oY9/jcji+JElSH3kEOHsT\nMxmPT17vmzxqKWCAI0mSmiBrgLMLcAMwIbVuJbAc6K2xbyHjsSVJkirKGuB8nghuCsDXgXOBR7IW\nSpIkKYusAc5bk+Vc4DMZ85IkScpFXjMZX5JDWSRJknKRNcB5PFmuzloQSZKkvGQNcK4lZjLeP4ey\nSJIk5SJrgPN1YAXwaWBi9uJIkiRllzXAWQS8D9gc+D3wjswlkiRJyijrKKobiE7GTwOTgGuAZcCD\n1DeT8VsyHl+SJGk9WQOcAyus25L6+uQ40Z8kSWqKrAHOzRn2NcCRJElNkTXAmZ5HISRJkvKUtZOx\nJEnSkGOAI0mS2o4BjiRJajv19sHZMfX80SrrB+LR2kkkSZIaU2+A81dKo55GV1nfiI5kv9G1EkqS\nJDWqkVFUHQ2uH2h+kiRJmdQb4BxH5Zqa4zIc23lwJElSU9Qb4FwA9BJBye3Avan1kiRJQ0qjo6hs\nVpIkSUNeowFOOzUrHU/USq2osr0TuD7Zvgy4BNilStoTgPuAVcBDwBfIPku0JEkaoJE6D84OwNeB\nxVQO2vYEbiSClKOIvkaTgN8BW5Wl/RwwF7gYeAdwLnAKcE4Tyi1JkuowUmsZvgfcACwHjqyw/UvA\ni8BhwMpk3QLgQeAkYFaybiJwKvCDZAlxA9KxwBlE4LMw/+JLkqT+jMQanKOBfwQ+RuU+RWOIwOYS\nSsENxKSENwCHp9YdDGwIzC/LY36S93vzKbIkSWrESAtwtiFqVWYRzVOV7AaMA+6ssO0uYHdgg+T1\nXqn1aU8AzwBTsxRWkiQNTKNNVB3AtcCajMctzmS8a8Z8GnUOMcT9e/2kmZgsl1bYtpQo+5bAk0na\nl4jmrHLLUnlJkqRBNJA+ODvkdOwsI7KmA7+tM+2+RG3MkUTT06szHFeSJA0DAwlwFgNrczh2lgDn\nPmKYdz0eBTYFvgN8i6h5GZ9sKzY1bUG8p+eBJcm6CRXymkCUe1nyegnRB2ccMUS8PO3t/RVs5syZ\njB8/vs+6rq4uurq6+n1DkiSNBN3d3XR3d/dZt3z58rr2bTTAKQD/BNzT4H55ewKY10D6nYGtiRFQ\nJ1XYvgy4HDgCWEQ0Oe1TId3exEiq1cnrYj+dfYDbUum2JZqn7u6vUHPnzqWzs7OuNyBJ0khT6Ud/\nT08P06ZNq7nvQGpwhuNkf48DB9G37B1EZ+MDidFQzyTr1wJXEsHOpymNpNoxyWNOKo9riJqbGfQN\ncGYkx7o8v7cgSZLqNVLmwXkJuKnC+mOBdcTcNWmziealq4CvABsRc+M8Rd8AZxkx383pRAfk64DX\nJvufRzSlSZKkQTbShomXK1C5Rup+oiPzGmKG4vnAA8ABlProFJ0JzCQ6MV9LzK9zVrKUJEktMFJq\ncKo5NnlU0gO8vc58vp08JEnSEDDSa3AkSVIbajTAqXRrA0mSpCGlkSaq4qzDjzWjIJIkSXlpJMD5\na7MKIUmSlCf74EiSpLZjgCNJktqOAY4kSWo7BjiSJKntGOBIkqS2Y4AjSZLajgGOJElqOwY4kiSp\n7RjgSJKktmOAI0mS2o4BjiRJajsGOJIkqe0Y4EiSpLZjgCNJktqOAY4kSWo7BjiSJKntGOBIkqS2\nY4AjSZLazphWF0CSJLWP7u5uuru7AVi1ahWTJk1i1qxZjBs3DoCuri66urqaXg4DHEmSlJvBCmBq\nsYlKkiS1HQMcSZLUdgxwJElS2zHAkSRJbccAR5IktR0DHEmS1HYMcCRJUtsxwJEkSW3HAEeSJLUd\nAxxJktR2DHAkSVLbMcCRJEltxwBHkiS1HQMcSZLUdgxwJElS2xmJAc6bgV8CS4EXgAeAUyuk6wSu\nB1YAy4BLgF2q5HkCcB+wCngI+AIwJtdSS5Kkuo20AOeDwI1EwPIvwDuBr1ZIt2eSbgxwFHAcMAn4\nHbBVWdrPAXOBi4F3AOcCpwDn5FXo7u7uvLKSNIz42ZcGbiQFODsAPwC+B3wIuBq4CTgfOKMs7ZeA\nF4HDgGuAy4BDgVcAJ6XSTSRqf36QLG8Gvg58ETgemJxHwf0nJ41MfvalgRtJAc7xwMZUrrFJG0ME\nNpcAK1PrHwVuAA5PrTsY2BCYX5bHfKADeG+G8kqSpAEaSQHOAcASYApwB7AGeBL4LrBZKt1uwDjg\nzgp53AXsDmyQvN4rtT7tCeAZYGoeBVfjhuMv31aXudnHb0b+eeQ50DwGsl+rr/FIMBzPcavLPBw/\n+/UYSQHODsAmwM+AbuCtwNnAh4lOx0UTk+XSCnksJWpmtkylfYloziq3LJWXBlmr/2EMRKvLPBz/\nyRngqNxwPMetLvNw/OzXY7iO9JkO/LbOtPsStTGjiJqZ04CvJdtuBlYTnYTf0kCeuVi4cGFd6ZYv\nX05PT0+TS9NehuM5a3WZm338ZuSfR54DzWMg+zW6T6v/Joaj4XjOWl3m4fbZr/e7syO3Iw6ubYFD\n6kx7KbAcuAV4HbAf8OfU9knEEO+TgTnAHsBC4D+IDslpZwOfAjYiAqOzgM8QfXtWlaV9GrgWOLpC\nmbYDbidqlSRJUmMWEi0xj1dLMFxrcJ4A5jW4zx1EgFNNIVkuIpqc9qmQZm/gQSK4gVI/nX2A21Lp\ntiWap+6ucqzHgdcSgY4kSWrM4/QT3Iw0bwN6gc+Wrf9ksv5NqXU/JYKoTVPrdiT625yZWrclMVng\nuWV5zgLWEfPpSJIkNdUVRO3M54iAZxYRoPyiLN0ewHPEZH8HE0PD7wL+xvodh08hgpkzgAOJeXJe\nZP3mLUmSpKYYR/SbeYRoZnqYCEzGVkjbCVxHzIWznPpv1fAwcauG0XkWXJIkSZIkSZIkSZIkSVLT\nbUDcA+tR4Fli3p83tLREkgbLvwM9RN/C2S0uizQkjKRbNbS7McBDwBuBLYh7bF1BTEooqb0tJgY3\nXE5pTi9JaltLiMkJJY0M52ENjgRYg9PO9iRqbxa1uiCSJA02A5z2tDFwIXA6MZGhJEkjigHO8PUh\nYEXyuDq1fizwc+I+WGe1oFySmqvaZ1+SWmJT4GvAr4k7jfdSva18U2Au8Hfitg9/Av65jmOMIu6j\ndRkGr9JQMRif/aLziM7G0ojnl+Dg2Qr4CFHDclmyrtpoh0uBDwOnEffCuh3oBrpqHOP7wDbAB4h/\nopJabzA++6OJW9GMSY4zDv+/S2qBiUQAUumX1iHJtvJfbdcCj1H9n9ZOyX7PU6q+XkHfu6RLaq1m\nfPYhAqLesseHM5ZVkhq2FdX/yZ1HTNRX/s+sWCvj5H3S8OVnXxokVmEOPXsBC1m/iemuZDl1cIsj\naZD42ZdyZIAz9EwEllZYvzS1XVL78bMv5cgAR5IktR0DnKFnCZV/qU1IbZfUfvzsSzkywBl67gQm\ns/61Kd5T6u7BLY6kQeJnX8qRAc7Qcxkx2deRZetnEJN/3TrYBZI0KPzsSzka0+oCjDDvBDYBNkte\nT6X0z+xqYubSa4DrgO8CmxM3y+wC3kFM0V5tgjBJQ5effUlt7WFKk3CtK3u+YyrdJsR07YuBVcR0\n7e8f1JJKypOffUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElta2fg\n4lYXYigb1eoCSJKkhrwduAmY0OqCDGVjWl0ASZJUl2nA6cCjwIstLoukNjAD6E0eO7a2KNKQtwFw\nP/F5OXKAeczAz1wtNwK/bSD9d4jz+eOmlGYIsolKjZpO6R9PPY9jWlLK5ii0ugANms7IvVZqnU8C\n/wDcSfY+IsPtMzeUnQm8BHwIeH2LyzIoDHCUVaGOx3DXDu8BRsa1UmuNB2YRf0uzW1wW9bUYOA/o\nAM5qcVkGhX1wlMW5yaM/fx+MgjTZj5LHcDZSrpVa6xPAFsBfgF+0uCxa3zeAjwMHAgcAN7e2OM1l\ngKMsngLubXUhVBevlZptQ+A/kucXtbIgquqvwO+BNwEzafMAxyYqSVIeDgNeQTRPGeAMXcVrcyhx\nvdqWAY5aYQPil94NwNPAauAJ4GqiA1xHP/teQHSIfbjGMWbQ/yiM01LbIarVPw/8CVhO3063tfJK\nezMwj6iifx5YCSwEvgXs2s9+jZRnsAy0TAM9B0VbAl8B7iOGwj4FXEdpRM4M+r8eF5DP30hRXtd0\nHHAy0AOsSB63Ah8DRtcoa9GbgB8So5SeIz47jwFXEp+pLZJ0Y4nPVC/wqzry3StV1ll1lqXc+5Pl\nXcBDNdLWusb12As4FbiWOAcvEdfmQeJv4HVV9svz3GxPvI8e4FlK/8vuAv6b+HxsVrbP/sAtDTwO\nq6OMjbg0WY4Fjsg5b2lYm07pw/6FAey/M/HlkB69s67s9c3EP8BKLkjS1PoHOiOVd38Bzjpgd+LL\nsLxMH64zL4jq+R9VyCP93l4Cjq2yfyPlqdd0sl2rRsuU9RwATCE6Q1bb/4fEl0Z/1+MC8vkbyfOa\nbg3cUZZPOt9f0H9gvxHxhdlfWXrp27H3q8m6NcQXcX++kaRdDWxXI201xaDh+zXS1XONZ9D/tZlO\n3/dd7XycWaUMeZybfySCmlplOLRG/gN1I40NE09bRJStO7fSDEH2wdFg2hT4DbBL8voy4pfxYuKX\ncLHz25uJX6QHUPr12ywdwCXEP65vAVcAy4hhro80kM/PgHcR5b0E+DnxBTsK6CTau/ck/nk/Cfxy\nAOV5tIHy5KneMmU9B1sQv8a3TV7/lAgwngL2AD4FHAfsneeb60ee1/SyJO03ib/tpcnrzwOTk+N8\nBPhBhf1HEQHQ25LXDxAdxv8IvEB8Qb8ROIq+I+F+SNQYjSYC0a9UKd9Y4Ojk+a+Bx6uk68+eRBAH\ncFs/6fK6xmOI2rSriC/5+4gara2JGpf/BHYialweIILetKznZsOk7Jslx/0uUSP9VLLPzsAbiBqS\noTg68Vbi//ABrS6INJRMp/TL5BxgKvEPpdKjvH337NS+X6yS/4WpNP9WYfsF5FuDU/wV97YKaerN\n618p/Zp/V5U8xhH/AHuJX0/lzcONlKde0xn4tWq0THmcgzmp432mwv5jgGtSaZpZg5P3NV1F5S+T\nLYkvzV6ihqeST6TyuZj4Aq2kg/VrX25M9ruvyj4Ah6fyP7yfdP35MKVz+dp+0uV1jScCm/dznLFE\nINVL1DxW6o5xIwM/N29JrT+kn/1Hs34TVV7+QAQqA/EZSuf3VbmVSBrmprN+1XC1R7q6fEPiV38v\n0T5drTp+M6JfTi9wd4XtF5B/gHNehrw6iDb/XuC/auQzOZXPWzOUp17TGdi1arRMeZyDDYlajV6i\nj081OxBBRzMDnGZc07P7yePMJM1a1v/SHkX0L+klass2rlGeckenyvDGKmmuSLY/Sf19gcqlvzB3\nqZImz2tcj31SeXRW2J7l3HwwlfemAyzfQOxIBG7FmaLXEX3DriVqjep1fGr/1+RbxKHDTsbKqt6J\n46ZR6gB5AdWrbVcQTQMQXx7bVkmXp59k2HcKsBvxfv6nRtqFxD/4DqL6uhnl6U+WSf76K1Me52Aa\nMUkc9D/n0N+JpoJmyvuaFuj//C1Ilh2s/yW1L6U+IucRTVKNuJjoEA6V+wptA7wzeX4R8YU3EOka\nwKVV0jTzGm9IfPlPIWokp1L6fusAXl1hnyznZnEq7+MaLGsWjwL/RDTnjSKCrt2TdX9tIJ/iNeqg\njUdSGeAoi9OID1i1x5dSafdKlgVqV6umt+9VNVU+CsSU8gNV/PXTAfwftWtKinf/rRa4ZS1PNadR\n/7VqtEx5nINin4sCcHuN99JfH4885H1Nof9mkGWp5+XNGfslywIDm7NkFdE5GWKU00Zl2/+FuP4F\noj/cQG2Rer6iSpq8r/EmwGeBPxP9cf5K1PreSdQS96TSTqywf5Zz87+UagjnEv+zZhFBbrUmxKHk\nudTzLaqmGuYMcDRYJqSeP1kjbXF7B9VHU+VpWe0kVW2del7vrRAKrP/PNK/yNEt/ZcrjHKSv81M1\nylJre1bNuKar+tnWm3pe3kS0Ver5QDr/Qql5cTPWH4ZdrLm4HbhngPlDqSYEqveNyfMa70wEMV8m\nAqcO+q+VrHZtBnpu1hJ9sxYmr19LNDX+nhhZ9Uugi6H7HZsOapZXTTXMOYpKyjbKIf2F9C7qrybu\n75/KUBx10V+Z8j4HrX7/zbimrfRnohlsGvGlfWGy/nVEMzBkq72B6DdXNIHa5yLrNb6QCHJ6gfnE\niKaFSTnWJGk6KDUrVevzl+XcLCSCq3cljwOJ0aDjgIOTx6eITshPV8mjVYo/OAsMvbLlxgBHg2VJ\n6vm2RCfOatJV/eXt+cVfu7V+GW1SZ7myKv5zKBC/3Ebi7RDyOAfp67wt0XGymm1q5JX1b2QoXdP0\nl8/2xJDngfgh8SV+IBEY/JVSDcULZJ8PZXHq+Suo3ME7r2u8JzHhIcRNIz9fJd2EKuvLZTk3vcQQ\n/uJ9t7Yl+u38R5LnNGJeoKE2oV66ZvCJlpWiyYZq9ZnaT3FEVAfVZxgt2j9ZFlh/JFWxfX88/duj\n/qJlUhwN0kHpn+5Ik8c5uCuVR3/DjKlje9a/kaF0TYv9SDrINmfJfxNf1h3E6LFxwAeSbZdSvd9M\nvYp9ZjqIjtGV5HWNpybLAlFzU029o4PyPDdPEDVKb6B07Q4lOkEPJcVrtJg2vsmuAY4GywJK1dbH\nUP1vbzNKU77fy/r9dR5KpZtUJY8NgPcNrJgN+xPwt+T5Rxl6/8gGQx7nYAGlfj7/0k+6HYB31Mgr\n69/IULqmf06V5XgGXjOZHp14DDEp4OZEkHB+lgImHqD0Wd2/Spq8rnG65aG/81FpHq1KmnFu1lLq\nFD6G2sH2YCteo9+1tBRNZoCjwbKaqAqG+AVWad6VDuA7lEY8fKdCmptSaU+sksc3Gfh0840qEB0d\nIeb/uJD+vxDHETM2t1MglMc5WE388oX4dXlyhf3GEJ1Ca41Syfo3MpSuaYHSHDqvBH5M9fc/iv7/\n7oufv52IWxVABIM3VU7esGI+r6+yPa9rXGym66D6/dn+HXhPP3mUa/TcvJmYSqCaDYgmL4j7Yw2l\nfi7bEO8TYrJDSYnplIbHfqHBfTcl2t2L+19CVN92Er+mb0ht+1+qdwz8fSrd/KRMncA/p/Iopqnn\nXlS1zKiRF8QvwGKZFgGfJv7B7Uv8MzyW6KxYnOywfMK2RspTr+kM/FpB42XKeg42J+b5KObxE2J+\nj06iyeC2ZP2t1L4eefyNDNY1nZ5KV6kZqoPSrLy9xJDz/ySaz/Yj+nx8kfjir/TDIe2eVD69wOdq\npG/EEZTeR7Was7yu8Z1leRyS5PEe4pYavUQNSiN//42cm9OSst0AnETUOHUS1+TYVPl7idmbh5J/\nI8r1En374kgj3nSyfWnuRDQ99TevyM30X6W7B6Ub+5U/1hG/eI9JrcsrwKmWF8TIm7lE1XSteVOe\nY/1f+42Up17TyXatTqOxMmU9B7D+jRjLr209N9uEfP5GBuuaTk/lUynAgRjmnA64qr2vWtf5U6n0\na4jmoLyMpXTbif7mVWrkGle7Nq8mBi5UOxd3EB1+G/n7b+TczO7n2On38nOiNmco+V+ifJfWSiiN\nNAdS/z/TasYSowyKN6dbRfzDu5qYAr0e2xP3V3oYeJH4MruaGJoJtb8EZ6e211LPF2rRZOLuwwuA\nZ4hq+WXEL84fAR+icr+BRspTr6zXaqBlGug5KNqSuPnh/UTnzyeB64naF6ivRg2y/41kfT/1nr/0\ndaoW4BRNT475F6Lp40Vi1M/l1NdHZ2tKX8DVbg6axalJ3otqpKt1jeu5Nq8ibjr6MPE/5GngFuCT\nlIKKRv7+Gzk3mxD3pjqHqAl8mJhs8Hnivf83pb+zoWRnSufkH1tbFElSuRnUH3Cqr7dS+hIvn9gu\nD1tQut/UUBsaXUuzz81Q8C3i/d3Q6oJIktY3AwOcgfoJce6eonm3FPh0coxm3HKkmQbj3LTSDkRN\n1zqqdwSXJLXQDAxwBmJnonmtl9JIoWYYSzQ9rSOGXA8HOzM456aVvkNck/5udCpJaqEZGODUawfg\nH4hRPj3EeXuewZtGYSjz3EiShpQZ1B7VpnAj64/sqTQ30Eh0I56btua9qCQNN4Wypaor3lX7BWKe\nnLmUbig50nluJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSpCHq/wM8tnJ4\nPLHuYQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f7362fc36d0>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"from scipy.optimize import curve_fit\n",
|
|
"\n",
|
|
"# Define model function to be used to fit to the data above:\n",
|
|
"def tophat_time(x, *p):\n",
|
|
" mean, width = p\n",
|
|
" if x>(mean+width): y=0\n",
|
|
" if x<(mean-width): y=0\n",
|
|
" if x==(mean+width) | x==(mean-width): y=5\n",
|
|
" return y\n",
|
|
"\n",
|
|
"def tophat_freq(f, *pars):\n",
|
|
" A,T,t0 = pars\n",
|
|
" #return A*T*sinc(pi*f*T)*exp(-i*2*pi*f*t0)\n",
|
|
" return A*T*sinc(pi*f*T)*cos(2*pi*f*t0)\n",
|
|
"\n",
|
|
"x=np.logspace(fqd[0],fqd[-1],200)\n",
|
|
"\n",
|
|
"# p0 is the initial guess for the fitting coefficients\n",
|
|
"p0 = [3, 3, 3]\n",
|
|
"coeff, var_matrix = curve_fit(tophat_freq, fqd, lag, p0)\n",
|
|
"fit = tophat_freq(fqd, *coeff)\n",
|
|
"\n",
|
|
"\n",
|
|
"mpl.rcParams['xtick.labelsize']=12\n",
|
|
"mpl.rcParams['ytick.labelsize']=12\n",
|
|
"xscale('log'); xlim(.009,.6)\n",
|
|
"xlabel(\"Fourier Frequency (days$^{-1}$)\",fontsize=20)\n",
|
|
"ylabel(\"Time Lag (days)\",fontsize=20)\n",
|
|
"\n",
|
|
"\n",
|
|
"errorbar(fqd, lag, yerr=lage, fmt='o', ms=5,color=\"black\")\n",
|
|
"plot(fqd,fit)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 2",
|
|
"language": "python",
|
|
"name": "python2"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|