mirror of
https://asciireactor.com/otho/phy-4660.git
synced 2024-11-25 00:35:09 +00:00
702 lines
147 KiB
Plaintext
702 lines
147 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Populating the interactive namespace from numpy and matplotlib\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X18VPWd9/9XSAKSRBRwbFEoxFBYg1pNKhD6s+qCqFBy\n1UI35PGzbbjorle73V2vSzK22u7P31W07aRre117tbXXlpL21zWmWnYXoevderNU7mro9sb4kxID\nyO2MiDcQhNyc64/vHOcmM8lM5szMOTPv5+ORR2BmMufkmzPnfM73+/l+viAiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIjJm+4GhBF//K4/7JCIiIi42Fbg46msxJnj4\neD53SkRERLzju8DefO+EiIiIeMN44A3gy/neEREREXFOWRbf+5PABUD7CK+ZFv4SERGR9BwNf+Vc\nSRbf+0ngPeA/JXl+2iWXXHLkyJEjWdwFERGRgnUYuJY8BBDZ6nmYiUmWvG2E10w7cuQIP/vZz7j8\n8suztBsS78477+S73/1uvnejqKjNc09tnntq89x65ZVXuP322y/F9N4XTPCwBjgObB3thZdffjl1\ndXVZ2g2Jd+GFF6q9c0xtnntq89xTmxeXcVl6zzXATzDTNEVERKSAZCN4WAJMB36chfcWERGRPMvG\nsMVTQGkW3ldERERcIBs9D+Jizc3N+d6FoqM2zz21ee6pzYtLNqdqjqYO6Orq6lKSjYiISBr27NlD\nfX09QD2wJ9fbV8+DiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiI\npEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpEXBg4iIiKRFwYOIiIik\nRcGDiIiIpEXBg4iIiKRFwYOIiIikRcGDiIiIpKUs3zsgIlJIOjrMF8B778GBAzBzJpx3nnmsudl8\niXiZeh5ERBzU3AybN5vvZ8/C3r3wzjvw6qsmmOjogMbGSIAh4kXqeRARcVgoFOKppwK8/no3UMqh\nQ4McPlzL97/vZ/FiX753TyRj6nkQEXFQMBikoaGJ9vaV9PZuBOZy+LAF/Ae33HIDzc1/RSgUyvdu\nimREwYOIiIPuvruNnp4HgMuA1cBKYCvwNAMDv+eRR5ppaGhSACGepuBBRMRBu3d3AwuANuABYCFQ\nEn52HLCInp778fsDedpDkcwpeBARcdDAQCkmWLCDiEQWhIMMEW9S8CAi4qCyskHAAuwgIpFx4SBD\nxJsUPIiIOGj+/FpgF2AHEYkMhYMMEW9S8CAi4qBAwE9NzT3ARcDOJK/aFQ4yRLxJwYOIiIN8Ph87\ndnSyenUVZWX/GXgRGAo/OwTsoKbmXgIBf/52UiRDCh5ERBzm8/no6PgeTzzx78A/c+mlK4BGqqtX\n0NKyiR07OvH5VCxKvEsVJkVEHBS7toWPOXPamDwZDh+GGTNg6VJQ3CBep54HEREHRa9tcd55MHcu\nTJoEc+bAhAla20IKg3oeRESyQKtnSiFTz4OIiIikRcGDiIiIpEXDFiIiWRSbQAkHDsDMmSYfAjS8\nId6k4EFExCGjBQo33AD33mteU1eXt90UyZiCBxERh0T3IuzZA/X1JlCYMSOE3x/gRz/qBkpZtWqQ\n66+vJRDwq96DeJKCBxERB4VCJlB44QUTKNx2Wx8nT4Z4990fAgGghN7eIXp7d7NtW5MKRoknKWFS\nRMQhwWCQhoYm2ttX0tu7BdjMwYNX8+67DwELiayyOQ5YSE/P/fj9gbztr8hYKXgQEXHI3Xe30dPz\nALGBwivh/yeygN27u3OybyJOUvAgIuIQEwgsiHu0lEggEW8cAwOl2d0pkSxQ8CAi4hATCMQHCoOA\nleQnhigrG8zuTolkgYIHERGHmEAgPlCoBXYl+YldzJ9fm92dEskCBQ8iIg4xgUB8oOAH7gG2A0Ph\nx4aAHdTU3Esg4M/hHoo4Q8GDiIhDAgE/NTX3ADuIBApTgXVUVd3BzJm3Ao1UV6+gpWWTpmmKZ6nO\ng4iIQ3w+Hzt2dIbrPKynt7eU6mq7INSzvP66j/p6eOwxVZgUb1PwICLiIJ/Px8aNbe9XmPz852Hn\nTli71pSsnjMHvvxlrW0h3paN4OFS4FvALcBEYC+wFtiThW2JiLhG/NoWc+bA889HAoU1axQoSGFw\nOniYDLwI/BsmeAgCNcBbDm9HRMR11IsgxcLp4OFu4ACmp8F20OFtiIiISB45PduiEegCHgWOY4Yq\nPu/wNkRERCSPnA4eLgO+ALwKLAV+APxP4LMOb0dERETyxOlhi3HAbuCr4f//FrgC+C/ATxP9wJ13\n3smFF14Y81hzczPNGjgUERGho6ODDjsTN+ytt/KbSphstZax2g88BfxF1GNfAO4Fpse9tg7o6urq\nok4TnkVERFK2Z88e6uvrAerJw2xGp3seXgT+JO6xOZigQkSkaMVP4zxwAGbOVL0H8Sang4fvYAq4\nfwWTNDkf+PPwl4hI0WpuhiVLQuHqk9309pbS329Xn/SrTLV4itPBw0vAbcA3gL8FXgP+BugY6YdE\nRApdMBhk0aLV9PQ8AASAEnp7h+jt3c22bU1a50I8JRsLY20FrsJUl5wHbMjCNkREPOXuu9vCgcNC\nIulm44CF9PTcj98fyN/OiaRJq2qKiOTA7t3dwIIkzy4IPy/iDQoeRERyYGCglOQT3MaFnxfxBgUP\nIiI5UFY2CFhJnh0KPy/iDQoeRERyYP78WmBXkmd3hZ8X8QYFDyIiORAI+KmpuQfYAQyFHx0CdlBT\ncy+BgD9/OyeSJgUPIiI54PP52LGjk49/fBMVFSuARiZOXMGkSZuYPr2TtWt9NDZGCkmJuJnTdR5E\nRCQJn8/HCy+0sWcP1NfDP/wD3H47PPggqEq/eImCBxGRHIguT/3OOyEmTQrw53/eDZRy3XWDfPSj\ntTz2mCpNijdo2EJEJAeam2HzZvjRj4IcOtTEO++s5MyZLcBm+voe59//fSUNDU2EQqF876rIqBQ8\niIjkkCpNSiHQsIVIBrRSoqTLVJJMFiAsYPfu9bncHZExUfAgkoHo4MBOguvoUPKbJKdKk1IINGwh\nkqFQKMSaNa2sWrUcaGTVquWsWdOqsWtJSJUmpRCo50EkA1pmWdI1f34t3d27MDkP8VRpUrxBPQ8i\nGVDym6RLlSalEKjnQSQDSn4TSC9x1q406fcHeOGF9fT2llJdPcj119cSCKinSrxBwYNIBpT8JpBe\n4qwJNHxAG7NnQ3m5CTROnIC1azVDR7xBwxYiGVDym9hSTZy1i0U1N5ueiblzzeOvvmp6LTo60BoX\n4nrqeRDJgJLfBMaWONvcDEuWhMLDF9309pbS328PX6hMtbibeh5EMqDkN4GxJc4Gg0EaGppob19J\nb68pU93b+zjt7SpTLe6n4EEkA1pmWcBOnF2Q5NkF4edjaaaOeJmGLUTSEJ9V//vfw8CAj9LSNioq\nYNIkk/y2axdYlpLfCp19PBw4kH7irGbqiJcpeBBJQ6Ks+q4uk1UfCkXGr6GU118f5KmnalmyROPX\nhcrOW/jwh49gEmcTBRCJE2c1U0e8TMGDSJrig4RVqwaZP38mu3a9zP7930KVJouHnSj59tvzgJ1A\nQ4JXJU6cjczUST3gEHEL5TyIpKijA26+OcisWcOT3Do7T7N//zfQ+HVxieQtfBu4l+GJsy8mTZw1\nAcWuJO+smTribgoeRFLU3AxTpnydvr71DA8S3iDxXSckS5gT74skSvqATmATYBJn4RNccMFfJu11\nCgT8XHxx4pk6FRX3cuSIX4m24loKHkRSFAwG+cUvniVxkKDx62IUm7dgqkbCVmAz8EsGBj7E2rW+\nhEGAz+fjD3/oZPXqn1FVVQdcCXyUqqq/orFxHj/7mZJtxb2U8yCSorvvbqO//xISBwkavy5Go+Ut\nzJw5yObNyX/esix+/etXOHXqIUwPRgmnTg3xyCO7+fWvlSsj7qWeB5EUmS7q8SQuR12LSZhLROPX\nhSqTvIWODqivV60H8SYFDyIpMl3UyS4WfuAu4EVUaTLCXqehsRGWLjXrOCxdGnnM62P6mVQYbW6G\nSZPSLy4l4gYKHkRSZLqoW4FEF4s/UlYWYvXqR6iuNglz1dUraGnZVNRdz83NsGFDiKlTW9m3bzl7\n9zayb99ypk5tZcOGkOfH9O0Koy0tm8b0d1etB/Eq5TyIpMgsgvUaJqs+AKzHJEoOAhfh8y3l9Om/\n1zLLUcayYJQXxFYa9XHgQBsXXwy9vTBjhuldSeXXUq0H8SoFDyIpCgT8/PKXTQSD9wPfwnTcDQG7\nqKi4lyuv7CzaICGZ2PUbbLFj+hs3tuVp78bOriy5alWAl17qpq+vlIkTB5k0qZaSEj8dHWaGxWjH\ng1ZlFa9S8CCSIntqnakuuZ7e3lKqq+0llL15B51thbp+Q6IelTNnhjhzZjeHDqXeoxII+Nm2rYme\nnvsxuQ+RgNTkTHRm9fcQGSsFDyJp8Pl8bNzY9v66Fo89Zta1sMUvnHXggBm+OO8881ix9UwU6pi+\nUz0qds6EAlLxGgUPIimKDgx6e6GyEm6+2fz/zBm47DKYNQvOng3x3nsBXn+9m97eUvr77YtB8S2Q\nVahj+k71qJhjyhSXUq6MeImCB5EUJTuR270Q7e0wfXphJgiOVaGO6TvVo6LgQLxKUzVFxigUCrFm\nTSurVi0HGlm1ajkf+9ifhcevVfQHMquD4GaRHpVEvNujIpIqBQ8iYxAMBmloGL665r59JlBIrPiK\n/mRaB8GttCKmFDsNW4iMQfKEuSoKMUEwE6MlmXqRZklIsVPwIDIGyRPmCjNBcKziZ5/MmQNf/rL3\nZ59oloQUOwUPImOQPGHO7s4urATBsfJqcJCKQuxREUmVggeRMUg+BdEPNAFfBxqI7s6eOPFejhzp\npLGxsC+qxaBQe1REUqXgQWQMkk9B9AHrmD37Xs6dK+PgwROUlQ0wMFDFxRdP4pJLAkVZ76HQOB0c\nqLiYeI2CB5ExGClhrqLi21x66ffZvftLwA8YGFgAlHDgwBDt7cVR70EXw/TYa2WYHAoVFxP3S5YW\nngt1QFdXVxd1GigUDwqFYk/2kYQ5P35/gPb2lSTOfdhBS8smVy0IlY2L/Ujto4thrNi1MkywaYLR\n3dTU3FPwwaakb8+ePdTX1wPUA3tyvX0FDyJjMNrFds+e5Rw+vIVksy5qa1fw8stbc7W7KXHyYq+L\nYXrWrGn1VLAp+Zfv4EHDFiJjMNqd+Ny53loQKtEqkZmU1S7UpbizpVBXH5XCpQqTIlnglfLFHR3Q\n2Aj19dEX+8zLapuL4YIkzxZfpc3RFOrqo1K4FDyIZIFXyhc3N8OGDSHeffc5RrrYP/poN42NJtCw\nh2tGMtrFcP/+0rTer9B5JdgUsSl4EMkCrywIZa/R8fbbk4m92IeAVmA58EnOnj3I1KmtbNgQSilx\ncvjFMPr9Gunv703r/QqdV4JNEZvTwcN9mDNk9NcRh7ch4npeWRAqkpswnsjFPogpdLUSMIt+DQz8\nlvb2lTQ0NBEKhUZ939iL4fD36+9P7/3cwh7maWyEpUth7lzzPdNeFK8EmyI2p2db3Ad8ClgS9dgg\ncCLBazXbQgqWV+oczJu3nO7uLZjKmCuBGuDTwAPAogQ/kVrmfygUoqHBroPxC2AVhTKTIFtTUDW1\nVdJRiLMtBjG3GiJFyy3BQbz4oOaPf7RzE/zAbZi73fMwpbUTSS3zP3rhqH/8xyfp708WHHhrJoHT\ns1Js5u/iA9qYPRvKy02weeIErF3r3uNJilc2gocPA4eBs5h+y3uA3ixsR0TSZFcyXLUqwEsvddPf\nfxAzXOEDrgGagW+SaeZ/9MWwvPxV+vsLYyZBtqagKjgQr3E6eNgJfAbYC3wQ+CqwHZgHvOnwtkRc\nzY1DF7F3zq3An2HG2RcBr2F6HDJfVjz6d5s3b5Du7uTvd+TIYFqLhdntevgwHDwIZ87AhAlw9ixM\nnAgf+hBceml22lf1GEQMp4OHJ6L+/TLmrNQDfA74TqIfuPPOO7nwwgtjHmtubqZZYbh4nBvXK4jc\nOV8GrAbuxsT49wP2EIazy4rHLiIWwlx8u8Pbe5cPftBiw4ZQyu0R3a5vvPEb3njjBGfPmsXHLrpo\nEldddVXW2lf1GCQfOjo66IjLxn3rrbfytDe58xTwvQSP1wFWV1eXJVKIjh8/btXU3GjBDguGLLAs\nGLRgh1VTc6MVDAZzvk+1tcvC+7IuvF+WBcHw/68IPxe04EYLtof3197vX41pv4PBYLgdtoTfN749\ntqf1vpF23erI+6Uj0n5Wgq9Bq7Z2mePbFEmkq6vLwnQR5mXGQbbrPEzA3MYczfJ2RFwndnw886qN\nTojcOUdXgDS5CXALpsfBB3QCmwAzzRQWM3v2vWNKCLSTJ2fPbgPWM7w9GtJqj0i7PoeZFZLZ+6VD\n9RhEDKeDh28DHweqMWemx4Aq4CcOb0fE9dxYojlSvClR97sfk9+8A5iKCSgeB77CxIklXHbZo6xd\n60u7lkFHB6xd6+PYsUpGmsXx2GPdKb13pF1z376qxyBiOJ3zcCnQAVyEGdzcgbkteN3h7Yi4nhvH\nxyP5B4mSIu0eh29RXv4X9PdXR9UaGHthKztxce7cUvbuLWF43sMgUMvFFw+klOAYadfct2/0FNQX\nXlgfV4/BPcW/RLLN6eBBWY4iYZG7/LHPWnBSRwccOeKnoqKJvr4ZmMlR8T0BPmAlF11Uwvnntzla\na8D8vscxp4lInQRz576L11/fQig0euJkpF1z376qxyBiaEnuAuTGKYLFKHaWQbzcj4+bWQrw1399\nOY8//gKnT38GM6LYgBnBNBfxmho7t8HZ7Zv28BPJU7CZPIX+/h+lVCch0q7OzgpJhT47IobT5anT\nofLUWaRSt/kXW6J5AYkv0Ln7WwSDQa68cjXB4APh/XkD+Bamsu1JJk68mGuvvYrHHsvOMRIKhbj0\n0hvo7/8DyXoLamtX8PLLW0d9H9Ou6zBpVvHtu5OKiq9y7bWdHD3qcyRwVkAubpPv8tQKHgpQbCGg\nBUS6hndTU3OPqxZmKnRuCuLWrGmlvX0lydaYmDZtEx/9qLnrz9bFcPbs5fT0JA8O5sxp5NVXN4/6\nPna7Pvvsbzh48ARlZabOw8yZk2homA2MY9eu1+jtLaWiYpApU2qpqfFnFEy46W8pku/gQcMWBShb\nJXQlPW4bHx+tOuLkyevZPPp1e8w6OuD4ccg0T8Fu18OH2+jrg8rKSIXJd98NsmnTas6diwTOfX3H\n6evzc+zYDQwMzKK/n7Qv+tla00JE0qciUVkyWiGbysrF1vTp66zKymVWefkKq7JymTV9+jpr6dKg\n9fDD+d57yZY5c1YkOSbM15w5K7K+Dy0t0cWp4r+2Wy0t6xx+/+NJCkmlV6gr2/udiYcftqwVK8zX\nTTdZ1pw55rv9mD7ThanQi0RJHow8RfAN+voOc+jQSk6f3kJ//2ZOn36cQ4dW8vzzTbS3h2hsJO25\n/OJ+kVkKieRm9ke26yQMr63RRuJCUukV6nJjzQ5bczNs2BBi6tRW9u1bzt69jezbt5ypU1vZsCGk\nXAzJCg1bFKCRpwj+dyxrA4nWGTh3zuK11z7N9u2Pqgu2ALlh9keqdRLGmqA4PHB2ZiErN9bssI00\npNLZ2cR113UyYYJPSZ3iKAUPBSj5RSIIPAv8ffjfq4mfb79v304aGjSGW4gCAT/btiWf/REIdGZ9\nH1LNAxnromLDA+fML/qmPoa7anZEi81xir0hOHNGNwSSHQoeClDyi0QrpghoCbHdubZxwCIlVRYo\nN1RHTPXud6wJisMD59Qv+iP1dpx//mWcOmUvXR4vv2taRBJhi+OGQNNm3UE5DwXIvki0tGyiutos\nbFRdvYILLngZGI85mbp3DFeyw15j4sSJNmbP3sqcOZuZPXsrJ060jWnNimxKZ1Gxjg5obDRfvb1+\nysujcypqMZU0E4m96CfLHaio+CJlZS8B64DtxOZqvMisWV/O65oWkSGVZPkdi/K2EFs2KMfDHdTz\nUICSdQ1v394IzMVU5Ru5O/fNN0tpbDT/U3SfGbfcKXnpbzbatNLoXIXoIY4//KGb/v5yqqq+AJRx\n6tSFlJVtYWDgRySqpBk9VJO8t2MN8HfAh8OP309kTY6LWLjwirze0UeGapzJ73A7TZsVTdXMMTOF\n0566dsOI0zlra5dZwWDQamlZZ1VXL7NghVVdvcxqaVmX8vQ2iVBbpiedaaXHjx+3amoST8csL7/R\namjotqZPX2dVVIzc9smnY4489bmqallep0NG9jv/U3Fzwc3TZnMp31M180nBQ45FPnRBC6634MWk\nH8Cmpi8kPSGnMz9eRr64ub0t81VDYLRaJdEX7NEuJhMmrLMqKy1ryhTLqqy0rIsusqy6uuH7n3yb\n7r4oB4PB8PE1+g1BIRjt2CiU33M0+Q4elPNQRAIBPxdffA+wD7P08lcZPoZr5tuXlJSmPOYsI0tn\n/N5t8jW+bHIRdmFmD7QCy4HG8Pc1fOITs97fdvIaDCHgF5w79wSnTzdywQXL+fSnW+nuDtHVBZs3\nxw7jJJ+Omf/6GCOxc5xmz7YwuR6J5Dep00lunjZbTJTzUER8Ph9/+IPJtt+6tZtQqJzS0i9SUlIG\nfIAJE2Dy5FpqajrZtq2FkRMqC2P8NBfSGb93m2yNL4+WB7J8uZ/nnruNAweGgAeJXb57Jzt3fuX9\n5bsjF5PoaYoDwEFgI5bVltJ+J6+PYiddxi9fDm64KNs5Tpdd9iiHDzdx5kz+puLmgtuWupfc07BF\njjz8sGUtXRq0pkxZZ5WWLrNKSlZY48Yts8rK1llTpgQTduG6oZRxofBqWz78sGVNm/alEYe3Mhlf\nHikPJJ1tm27sY1ZsGep1FmxPa7+TD38ELWiw4Ffh4SZ72Gm748NOmQ4TFUNujXIejHwPW+STgocs\ns4OGadO+YJWU/MmIY+7xJ63x4zWu6BSvjtEeP37cKi+vzcq+p5IHkmq7mYvJZ+MuKOm3eSR3YPuw\nIOG88z5mTZv2pVGTLp0w1gCgWNa4GOnv5PYcIiflO3jQsEUBW7w4yNe+tpqjR2cAP2a0VTajK/qd\nO3cEM37qvqI4XuOGstBjcffdbfT3X8JI48sHDpSydGn6009HW/m1ri7Am2+mNrYdCPj5x3+8gf7+\n6GG29MfFn3nGR01NJ2fPBnjzza9x5swJYADLquLcuUmcPXse117b/v6y3tlYHTWTYSIvTcXNRPTf\n6eTJ9Zw7V8r48YPvD7k+84yvKNqhmKnnIcsi3Xuj34UNvxMMhruBXyya6D5bd25evVMyd/4jHTvH\nrLKyj4zpbnzkXoVj1gUXfMQqL78ipd6Dhx+2wvsQ/fzYe3vyOTtGXfKSKvU8iGPik9BeeMFO1Bv9\nLmz4naAPMyMjANwLvEd19ZScljLONbvY0KpVAV56qZu+vlJef32Q8vJarrnGT0eHqcKY7h1evstC\nZ7bIlF1ULH7dhAFgPwMDP2FgYAHRd8g//3kT117b+f4deqLtJM+YDwLNvP32Q8BjUduOF+mxaW6G\n9euhu9uKes/alH42kdF6RbJZuj0XybVuKVomMlbqeciC2PHSupTvwkYbXx4/fllBjp9Gi73jPG6Z\npLtbLVhilZXVWqtXf2lMd51uGIseyzh6bFGxLVZqCYlBCz5rVVXVj7id5Mdb9PvavV+j99gMv2NP\n/WcT/975yVHJVXJtvhMr3fCZ8Lp89zzkk4IHhw3vbrVPgqN3hXp1RoCTIhcg+4IZ3239oquHGZIZ\nazf8yEXFEl1gk7Xb8O2kXs0xGD5+zUWupOQKa/r0ddbSpcGYC0zioaFjFnzWKiurtWBZyhfIfH4W\nchG4uKVoWb4DGK9T8KDgwTHDT8jRJ/9Ed2G/SjuzvZBF2qCwxp3HOo4eDAatiy+2j5tb446PRBfY\n1LeTPA9kyZgv3PEXo4qKZdb06eus668PWnPmWNYVV1jWBz5gvq68MnK3W1dnHqury/9Mo1zkPLgh\nr8ItAYyX5Tt4UIXJAjK80p4fsCtKdgCbgE8AN1FWdiWrVz/yfvZ2pKIfDK/qt5j9+09z880hV628\n6LTIOHxhrTiavAIjjPT72EXFWlo2UVZ2jNgchURVF1Pfjp0xP336JiorV1Be3khl5QrKyk4meF9b\n8gJAiVYM/djHtnLNNW1MmuTjvvvg97+H3/8+xK23tnLqVKRa5lVXtfLcc69w1VWmimZkplEiu3jn\nndqsfQ4CAT81NdGrgkJ05VcnVu9MfDzYn/mv097+b1RVLWfGjNasfea9XHVV8k89Dw5L3N0a3e1b\nZ02cuMyaNMncjUWPL0buBOPHtlMfK/a6SM9DYQ3hjLUbPnpcurIy/m480d1r5u2Wzbvi5He7W62y\nsrlRj9s9dVssuMuyh0zgBquq6gqru7t7zPuQiky78+36LtOnr7MqK5dZpaUrrNLSZVZ5+TqrvDyY\n4O+U+nCTU9TTmbl89zzkk4IHh9gn+aqqsSc92iecior4sW1vd9mnI52prV7ixIk6tYTE+KGN9LeT\nzWmtyQOTRMmfL1twVYILanaDaCcSCY8fPx4ebored5P/AXMsmBv1+OiL5GXjM68cq8wpeFDw4Ihg\nMGjNnp35SaCY7wgiF67PJriYeDeAcuJuPvaifix8wf1TC64MX5DmW5WVVzlyEUp25/3QQ8GYO+ry\n8hVWZeWyhAmUiSQ/thM9nv+8gLGKTXRdZ8F1Fsy2YKtlAj77+LZ7HG7M+We+mM8zTlHwoOAhY5Hu\n2F9aiRMjU58lUMx3BJFy3l8Ml/PO/loGueDE3Xwqpc7PO+9j1sSJH894O8nuvJcuTXRHnXr3evJj\nO9Hj+b+4jbUXInatj60WXBH+m8QnUNtBRO4/825I2vQ6BQ8KHjIW+0GMndoGN1gVFdendGdmWboj\nsBXSNLL4MfB079ijjXbSnzbti45sZyzbHu2Ck17PgzuC6JF6YZIFFpWVK6IChXVWpGch+vcMWlCf\n4PHcfOar2oiKAAAgAElEQVQT92SZmiolJbXWtGlfcuSYKWT5Dh5UYbIAxFal8wHR1e+GmDVrBU8+\nmVoVQ6+uw+Ake4ljaGP2bCgvJ2trGeSC2d/442JsRquAOHnyel5+eWvG24lmV0R87rnMqi8mP7YT\nLbmd32WfOzrghz/s5le/amZw8IfErnOxi1/+sonnn/8egcCPeeGFbnp7S+nvN1VLL730LHv32m31\ndaAq/HtEV/X0Afa6JWOvxjlW9mybvr7/h2PHnsOyNr7/O1rWEEeP7qaiooklSzrD+yoSoZ4Hhzg5\n1ODVdRgkN0Y71ioqVmSlSmAwGLQmTVqY0XGe/Njeapkkwuh1XO6y8pn3cvz4cauq6ooR9mGLdf75\niRI6d4R/zq6XsSKqZyG+h8H+/+h1YLJFwxdjp54HyZi5C3LmLinf6zCIuw0/1qLXuyilv7+XqVNb\nCQT8KR0rqayzsHixWWnynXcmkslxHn1sP/vs1zh48ASlpe8xOGi/3+cpKRkHnM95553HuXNPMzj4\nA8wd+ThMvYVd4XoLnaP+bpm4++42Tp3ykbg3AOA53n33ByRaf+PUqW8xbtx/Y2jIwvSgXI7pWYjv\nYYj+v72OzXpMD8W7zJ5tsX37o45+5pOvv5NIbG+S1uRwFxWJKgCxBZ7ipdftGF9s54Mf3Mzbb7fz\nyCMwbVoLZWWNWS8gI+4Ve6wFgSZgJbAF2Ex//29pb19JQ0MToVBo1PdrboYNG0JMnWoKNNmFm6ZO\nbWXDhhDNzdEFherJ5Di3j+0jR1oJhYaA+xkcnIZZrv4VoBvL+h2W9SDnn1/Cddc9wvTp/xRTxGr6\n9E3vL/ucTWZ4yB5uSOQVYodZot1CVdV4TKGpWmAxpljcjeHvdgEqu4jcdmAqZljrceArTJxYwmWX\nPcratT5HP+Pxf+9z5+KLj0WLXTo9lWNFioOGLRySzaEGlZGVaLHH2l0ZdzmncnxFEh2d6V6PdJW7\nt8vcDA+NlMg42vDRUquiwp5tYX+/y4LFFlxtQa0FV1olJddZ48dfb02cuNTKRWJw8vV3Rk/W1Lko\nVr6HLfJJwYODsjU7QGOSEi165kZJyRUpn/iTGe34MjM3oi+U8bOJllmTJl2d1nEeCUbcO7PI7ONI\nwdkNI+77pZcus5YuDVpTpqyzxo2zA4YrLFhojRu31JoyZZ115ZVBq64utytbJl9/Z/Tzi85FsfId\nPCjnoQBkc3bAaNn1o2W4S2GJnrkxd+6r7N2bWpdzMrHHV2z+BAzw7rtHuPTSD7B3r4Xp3h4+m2ho\naAVr1/pSPs4ja5hEzz4Y2/5ni5kZ8qeYYYX7MWtR2HkXOykrO8zAQPwMEdsubrqplo0bnZlh46Th\n5xM/Zugr/nccnluic5G7KHgoANlMFIqcaBPJ7wlW8suJRN3I8RUEVgMPYE/ZgyHefnsng4N3MHwq\npW0Xq1bVsnHjWPY7v9MxRxII+Nm2rYmennXAL4hOZKyqeoMnntjI5z53Lz09o1903WT4+cRHbLLm\nMaqrP5gwQVvnIndRwqSMKHKiTSS/J1gndXTAzTeHmDGjlaqq5Ywfr8TQ0TiRqBs5vtowgUP8KouL\nOHXqW5x//n/BqZUmI/vtXKKx03w+H62tnUyf/hwVFa8ApZSVDTJt2kdZtOhZ/vqvP0ZFxfBVSXOV\n0DlWic8ndg/J44wf/0Fmz97KiRNtw5I1i+VcJKNTzoMHFMs4o5Kx0udEom6qi5FVVi52rHJlZL/t\nZMKxl3PPFicWyEp3e05VIR1JJueTYjkXpSrfOQ/5pODBA4qlaJROTOlz4oITOb6WJGl78+V0OWg7\nwfhDHzLJhGVlJplw5sylritDnotAIlfBcybnk2I5F6VKwYOCB9crpHUektGaHvlhByBlZfU5a3/7\nYlxXZ1kXXWRZlZWWNWWK+X7RRdb7MxDctK5Ctj+DuQyeM/ldiuFclKp8Bw/Jsk9yoQ7o6urqoq6u\n6AInzyiWqm5z5zayd+/mpM/PmdPIq68mf14ys2ZNK+3tK0lcUXEHLS2b2LjRXTMHciUYNBU2TaGs\nBdjJpLCbiRPvYdq0TmpqfBl9JufNW0539xaSJY/W1q5wZM2STM4nxXIuStWePXuor68HUz1tT663\nr9kWMqJi+UA6WeJb0heZXeCt2QO5EKmwGR1YnQB+wZkzFq+91ohlTQnPUEitLHi8XM1kyOR8Uizn\nIq9Q8CCjKoaIvxBXE/XS381eZfHs2QAnT67n3LlSxo8fZPLk2vdnD7hlX3NteH2D4dNazWqbu9m2\nrYkdO9Jfg0bBs3iJch48pNDHGgs1GSsXf7dcZeoXq+ErmTqfn6CEYe/Jd85DPil48IhimcZYaAFS\nrv5uxXJ85MvwZF7nk3sLNXguZPkOHlQkysM6OqCx0XwtXQpz55rv9mNOFTaKHXONLuCzkJ6e+/H7\nk5WM9Y741UTnzNmctFiNV+Tq71YMx0c+xRbjCgFv4nR+gr1ceUvLJqqrVwCNTJy4lIqKr3D0aDmX\nXro2b0XTVMBN4qnnwQG5uFvWNEZn5Kp7P9fTH3V8ZFekV2CLZYpa3eh4e0dPX50yJWiVln7Bgj/J\nWW/SSLUsli49bl18sXq24qnnQcYsGAzS0NBEe/tKenu3AJvp7X2c9vaVNDQ0EQqFHNmOaso7Y/Hi\nID09TRw6tJLTp7fQ37+Z06cf59ChlfT0NLFkiTN/L3s7AwOTycXfTcdHdtnJpBUVbZj1H+pxuqx2\nczNs3gz/+q9BJk9uYnDwNPBjctWb1NwMGzaEmDq1lX37lrN3byP79i1n6tRWpkz5OsGgerYkQj0P\nGcpVkpPuLJ2Rjb9Xoju2adNSK/msngdvibRz0EpcVvtXGd+Jp1ou3Om/6Uh5MyUltTq+ElDPg4yZ\nmcK1IMmzC8LPZ86JBZAkO3+vRHdsb7zxRHg7ufm76fjIjUgPj70S5SbA5CfACsrKvpTxoliRYzS6\nNykEtALL39/W3r1HHM03iM2beSO8vRXAA1jWeNSzVVy+jKny8p0kz6vnIUPDp3BlZz0AZWI7Ixt/\nr8R3bPZ2sneHGk3HR27koocncoza2zoePobiewScXTws8rsl2t6t6nlIoFB7Hq4F/gL4HSRdQ1Uy\nlKslau0xV68t/+s22fh7JZ7pYG8n0R3qJygr+0tH/26JMvWrq1fQ0rJpTAWLJLFc9PBEjlF7W8mX\nSncy3yDSq5Joe/NQz5b7ZKPCZBXwM+DzwNey8P4SlquqiKYSoQ/zwS4sHR3Q3h6iuzvAyZPdMZUN\na2v9tLQ4V9kwG3+v4dUHIXLiX4gJIKL/bju4/fZNbNzo3AXdVLI025k9G8rLTSXLEydg7Vp3VbL0\nslyU8I4co36gCRNIJAsQFrB79/qMtwnRQYt9PIfC37uBAWAL8COgAZUuL1w/Af4u/O/ngQeTvE7D\nFhlSd3HmclngKBt/r8RDIcmGK3RceFkupvrGHqPHLFiYk6HRSKLmiiRDF8cs+KwFc6yysmWqYGrl\nf9jC6Z6H1cDVmGEL0JBFVmk9gMwlXnQodhqYU6s5ZuPvlXhNAnu44luUlPwFllVNRcUgH/1oLY89\npmEEr8pFD6A9BOX3B3jhhW56e08x/PiyOTc0GulVsXs64j+TH8Dcl77I7bf/c9GusOomTgYPM4D/\nASwBzoUfK2GUZb/vvPNOLrzwwpjHmpubadZVb1SFPJyQK4m7/W3OdcuCc3+v6AWvTp6MHqKA2O7e\nc4wbN4HKyrlcc42fSZN8GkaQEcUPQZ040co772R/aNQOrI8e/TR9fV0k/4w0sHv3A45s00s6Ojro\niJva8tZbb+Vpb5z3ScxAVH/U1xAme+scw4MIDVtI3uVqxorT7MqiH/rQYstUAvyVBUeTZMYXdyU+\nGbtcD40Gg0GrvPxqT34mcy3fwxZOzrZ4BrgC+Ej462rgJUzy5NVoCENcKFczVpzS0QE33NDNtGlL\naG9fycGDTwP/DvwTptNvParEJ07J9UyaZ57xMX78xXjpM1msnAweTmH6Su2vl4E+zCouzlQrEnGY\nVwoc2YsD3XXXF3nhhUYGBx8iEiT4gG8DMzHZ6Ik4VzRMioe9YNzvftfG22+3U1Y2lwMH4Cc/eZVp\n01qYOtXZxamam+HTn74KL3wmi122K0za3SoirhQI+KmpuQfYgRllI/x9R3gamD9/OxfFXq/i6NHT\nmPSiRGPQWmNCnBW/5sXAwEqGhrZgWZsZHHycN990dl0W8M5nsthlO3i4EfhvWd6GyJh5pQBWZFbI\nG8D5JA4SvDUEI96Ry2XXVXTMG7JRJErEM7wyYyUyK6SUSJAQH0DUAjtJPHSh7l4Zu1zOSlLRMW9Q\n8CDiAZHyvYPA5cROzwQzRbMPaMEspaxKfOKcXC67ruDAG7SqpsfYiXMzZrRSVbWc8eMbqapazowZ\nziYuibvErjmwGIgeEw5iSgl/BtgG/DPwCeAmSkquZNq0h101BCPe47VZSZJ96nnwmMWLg3zta6s5\ndOgBTDdiCf39Q5w+vZsJE5pYsqQTk30vI4kutPTee3DggOkaPe8885jb7n6GrzmwDvgFZmrmEeB7\nRHoiIkMwlrWDm292di0LKT6R46+GSBEyewjtIk6enEVHx8ifmVyuIyOFTUWi0vDww5a1YoVlTZ9u\n14BPVEBlu9XSsi7fu+oZdqGl6uplFqywqquXWS0t61xZTGn4mgPrwksVL7FgjpYslqwKBoPWzJkf\ns6AhQRGyF61Zsz4+6ucml+vIFINCKhIlWdTcDBs2hHj33ecwK+olkt25/IU0ZBIMBmloaKK9fSW9\nvVuAzfT2Pk57+0oaGpoIhZybeuaE2Az0/wy8SnV1CS0tV1NTMxtN0ZRs8vl8NDRcg6knMnx57v37\nvznqjItcztiQ7NOwhUcEg0EWLVrN229PJl8XikIaMsnlglhOGCkD/fjx5eRi8SIpXh0dsGXLa4xc\nhGzkGRfpztjw2tBisVHPg0dELnbjyVfiUiHdOZgTWX56cBIZrVcHTLGezZvhqafg1VfN982bYdUq\nb1TJFO9qboZLLslsxkW6Mzbs3tapU1vZt285e/c2sm/fcqZObWXDhpAChzxT8OARkYtd/i4Ubrvg\nZiKXU89SYVeQPHRoJadPb6G/fzOnTz/OoUOjV/BTRT7JhdgZFyGgFVgONALLeO21gyMOX6Y7Y8Nr\nQ4vFRsGDR0Qudn5ip+kR/v5i1i8UbrvgZsJtU88y6dXxSpVM8bbIOjD21OCVgLmowxYGBr4/YqCb\n7joyhdTTKc7SbIs01NYui8pQDoaz7c0sAbjVKiv7iLV0adB6+OFc7YO3s/pbWtw1a6WQ2lYKU2TG\nz2fDs37S++yku7y3PhMj02wLSUls1G6XU96Kifq/xu2338STT2Z3nrRXVqBMhdu6+gupV0cKk93D\nVVb2MokXZoORhi/T7SHTZ8LdNNvCIwIBP9u2NdHTcz8m7yD3pYfdsA9OsU9kZ88GOHlyfUzBGvtE\nlsuErMgwimZMiDvZ68DMnXsJe/emf1FPdx0ZfSbcTcGDR7jhYueGfXCK2xbEilTwS3RH561eHSls\nubqo6zPhbgoePMINFzs37EMhSFSmt7y8j9LSpxgc/AHmZOndXh0pbLm6qBdST2chUs6DSI4lmpbZ\n1/cUg4PfpKrqDmbOvBVopLp6BS0tm9ixoxOfTzMmxB1ylS+kWUTulmzgKhfqgK6uri7q6vKSLCqS\nF2vWtNLevpLEd247mDZtE5bVxrlzIfr6AvT3m0WIzjtPiwiJO4RCIfz+AC+80E1vbynV1YNcf30t\ngYBfgW6O7Nmzh/r6eoB6YE+ut6+eBykqblifY7RiW5Mnd/Pb3waZPLmJ995byeDgRgYH53L6tMWh\nQ//B00/fwF13/ZXn1hORwtDRAWvX+jhxoo3Zs7cyZ85mZs/eyokTbaxd69MxWSSU8yBFxQ3rc6Qy\nBS1SIOcyYDUQ2V/LGuLo0Z1UVHhrPREpDPaaEnbuTl9fgO3bI0ts/+Y3tbS3q3es0KnnweXccKdc\nSNxQtS5xdUu73O8y9u49xE9+8gSmd6INEzgMX8lQVfYknzIpqS7ep+DB5dz4AY0PaMrKGiktXUJp\n6Q2Ult5MWZl7Axw3rM8xvNhWdLnfrcAeLKsaEyzkf39FEnFDIC75o+DB5dz4AY0PaAYHf8TQ0BBD\nQ99kaOgJBgfzH+Ak44aqdcOz1duA+4n9G9u9E/nfX5FE3BCIS/4oeHA5N35Ahwc0ybrW3XcH4oYF\nseKnoMETDJ95YfdO5H9/RRJxQyAu+aPgweXc+AGNDWhCwHO4LcBJxg3rczQ3w5NP+nj99TZOndrK\nnDn2EEU0e/XUi4CdSd5JVfYkf9wQiEv+KHhwOTd+QCMBjT1WPxm3BTjJuG1BLEj2N/YBnUAl8Bng\nRdyyvyKQeiCupO/CpODB5dxwpxwvcrGzhyvGE7n42bMGlgONwDJee+2ga04SbqpaZ59U9+8/jQlm\n4vmAzzBt2s1Mn/7Ped9fkWipBuJuTPoWb6sDrK6urnwvi+5qwWDQqqm50YLtFgy+v5Y9bLdqam60\ngsFgzveppWWdBTssWGbBkAX2/49bcGP430NR+/pi3vbVzY4fPx7+2/4y3G7xf2O1m7jXww9b1tKl\nQWvKlHXWuHGLLbjagissWGjBDVZJyfXWuHFLw4+/GD6u47+2Wy0t6/L9q3hSV1eXhblry0uJZvU8\nuJyb7pRtkTuOc5jhCnt8vpXhswZUkyCZSOLprZghik3ACkyPzWIqKu5R74K4lp2788orrVRXDwE/\nAH4H/AummJmZfQWXAA1J3sVdOVGSOlWYdDk3rmRpBzQHDtzKwIBFZHz+VhKv1wDmJLE+Z/voBeak\naQdU8X/jIWbNWsGTTypwEHeLnX0FsbOvQNONC5N6HiRt9h3H7bffSCQfw4e5w9BJIlVunEkjkq7R\nZ1+5L+lbMqfgQcZseMKUThLpcONMGpF0jT77yn1J35I5BQ8yZvH5GCUlR0g8awB0khjOjTNpRNI1\n8uwriOREuWd6tGROwYOMWXyxo+PHn6Km5qvoJJEaN9acEElXJAi2hy+ig+IQJq9nHPBF4ErgGsaN\nu5UpUzTd2MuUMCmOsXsizp4NcPLk+veX6J08ufb9k4SW6I1Qe0khCAT8bNvWRE+PPXzhxwxf3AX8\nHdHLyZvgeBfV1feyY4cfn0+Bg1cly9bKhTqgq6uri7q6vExTFRGRDHV0QHt7iGefvZWBgV9jLish\n4NOYwGFRgp/aQUvLJjZudM8sMq/Zs2cP9fX1APXAnlxvX8MWIiIyZslnX1Wi+g6FS8GDiIhkbHgO\nj6YiFzIFD1JUQqEQa9a0Mm/ecubObWTevOWsWdNKKKT6+iKZGL7UfC+aily4FDxI0XjooSCzZjXR\n3r6S7u4t7N27me7ux2lvX8msWU388IcKIETGKn72VUvLLWgqcuFS8CBFY9euNvr67LK50WtvLKSv\n73527tTaGyJO0VTkwqbgQYpGbBndeErgEnGSGxf1E+eozoMUDa0lIZI7blzUT5yjngcpGlpLQkTE\nGQoexHFundGgtSRERJyh4EEc5eYZDUrgEhFxhoIHcZSbZzQogUtExBlKmBRHmRkLyQKEBezevT6X\nuxNDCVwiIs5Qz4M4SjMaREQKn4IHcZRmNIiIFD4FD+Ko2BkNIaAVWA40AovZv/80N98coqMjX3so\nIiKZUvAgjorMaNgKNAErgS3AZuDf6Ov7Bj09TSxZonUkRES8yung4QvAb4G3w1/bgVsc3oa4mD2j\noaKiDVjP8FkXDfT03I/fr3UkRES8yung4XXgbqAOqAeexdxyznN4O+JS9sp6s2ZVAg1JXqV1JERE\nvMzpqZpb4v7/VUxvxHzgZYe3JS6mWRciIoUrm3UeSoFPAxOAbVncjrhQZNZFogBCsy5ERLwsG8HD\nlZj6vxOAM8CfAfuysB1xsfnza+nu3gXUYIpGdWPiyUHgIk6enEVHhxnmEBERb0nWr5yJcmAGcAGm\n5+FLwA3AnrjX1QFd1113HRdeeGHME83NzTTrquJpoVCIa6+9jQMHhoAHgQWYw20I2MmsWV9h9+7H\n8PlUElpEZCQdHR10xM1vf+utt9i2bRuY/ML462vWZSN4iPc0sB/487jH64Curq4u6urqcrAbkksd\nHXDXXX/F0aPNwKIEr9hBS8smNm5UqWgRkXTt2bOH+vp6yFPwkIs6D+NytB1xkeZmmDz5NTTjQkSk\n8Did8/AN4JeYKZvnA6uB64H7Hd6OeIBmXIiIFCangwcf8FNgGqZI1G+BmzH1HqTIaMaFiEhhcjp4\n+LzD7yceFplxsTDBs7vC62CIiIjXKBdBsmbhQj8VFfdgZu4OhR8dAnZQUXEvCxf687dzIiIyZtks\nEiVF7o47fHzqU534/QF2717PwEApZWWDzJ9fSyDQqWmaIiIepeBBssrn82k6pohIgdGwhYiIiKRF\nwYOIiIikRcMWUhRCoVA496I7LvfCr9wLEZE0KXiQgvfQQ0Huums1fX0PYBbpMmtsdHfv5uc/b+LB\nBzu54w4FECIiqdKwhRS8XbvawoHDQiIFq8YBC+nru5+dOwP52zkREQ9S8CAFz6yhsSDJs1pjQ0Qk\nXQoepOBpjQ0REWcpeJCCF1ljIxGtsSEiki4FD5IzHR1w880hZsxopapqOePHN1JVtZwZM1q5+eYQ\nHR3Z2a5ZQ2NXkme1xoaISLoUPEjOLF4cpKeniUOHVnL69Bb6+zdz+vTjHDq0kp6eJpYsCWVlu4GA\nn5qaxGts1NTcSyCgNTZERNKh4EFy5u672+jpSTzroafnfvz+7Mx6eOYZHzU1nUyfvonKyhWUlzdS\nWbmC6dM3UVPTyTPPaJqmiEg6VOdBcsbMakgWICxg9+71WdluczM0N/sArbEhIuIE9TxIzgyf9RAC\nWoHlwCfZt+8ga9a0EgplZ/hCREScoeBBciZ21kMQaAJWAluAzZw791va21cya1YTP/yhAggREbdS\n8CA5EzvroQ1Q1UcRES9S8CA5s3Chn4oKe9bDy6jqo4iINyl4kJy54w4f+/d30tKyifHjj6GqjyIi\n3qTgQXLK5/OxcWMbs2dPQ1UfRUS8ScGD5IWqPoqIeJeCB8mLXFR9zFc5bBGRQqciUZIXdtXHs2cD\nnDy5nnPnShk/fpDJk2vfr/rY3Dy29w6FQvj9AbZv/w29vYfp79+IKU5VQn//EKdP72bChCaWLOkE\nVF1SRCRdCh4kL5ys+mgHC7t3dxMKDfDGGwexrI2YnIr1mOmgtthy2Bs3quqkiEi6NGwhnvbQQ0Fm\nzWqivX0l3d1bCIWuwrJ+DNQAz6PpoCIizlPwIJ62a1cbfX12sak3gOeAyzDVKyej6aAiIs5T8CCe\nZnoPFhApdz0Z+DameuV4NB1URMR5Ch7Es0KhEIcOvYnpXbDLXY8H7IBC00FFRLJBwYPkVSgUYs2a\nVubNW87cuY3Mm7c8pZU17VyHd96ZiOldiA4YzmECCj+QaDroi1RU3MvChZlPBxURKUaabSF589BD\nQe66a3U4Z8FMpYQhurt38/OfN/Hgg53ccUfiqZSRXIdfYHoX7OW+/cANmIDCB3SG33t9+DUDXHDB\nEf74x6fx+TRNU0RkLNTzIHkTm+yY3sqakVwHu3fhXSIBw59iehsI/78N2ApsBr7GbbfdpMBBRCQD\nCh4kbyIBQCIjT6U0MyVKiPQuWEQChr8Fvko2q1eKiBQzBQ+SN5EAIJHkUylDoRDHjx8hMpPCBzxK\nJGCYigkofgEsBq6houJWpk/f9H71ShERGTvlPEjemKmSFokDiNiplHYVySee+A3Hjx/GsuYDO4GG\n8Cui8xvuoaTkPSoqpjB58keprfXT0jL2ctciIhJLwYPkzfz5tXR37yK2fLQtMpUyNrHSLjldg6nr\ncD9m6GMcpsfhk1RUdPHgg5uTJluKiEhmFDxI3ixc6OfnP2+iry86ABgCdoWnUnYC0YmVdsnpNkxv\nhWZSiIjkg4IHyZs77vDxqU91hhe1Ws/AQCllZYPMn19LIND5fgBgEifXMbzk9PCFtT7wgUYFDiIi\nWaaESckrn8/Hxo1tPP98O4sWzQVg+/ZXueGGlveLRZnESZWcFhFxC/U8SN6NVizqggvKMRUkA0RK\nTo+cJyEiItmjngfJu9GKRVVWniWVktOq4SAikhvqeZC8MzkNdjXJUPjf3dhJkIcPv0FJiYVlJS85\nXVZ2hJqap3nmGU3JFBHJNgUPkneRYlFBYDUmtyEyfHHmzE5KSz/P4OAOYBHDEyV3cPvtm9i4UYmS\nIiK5oGELybtIsSh7We344YtFDA5+m9LSL5Co5LRWyBQRyS31PEjeRYpFRQ9fxLuFmpoHWbRo04jT\nOkVEJPsUPEjeBQJ+tm1roqdn5LUuoIKNG9uSPC8iIrmiYQvJu2ee8VFT00lZ2UlUw0FExP0UPEje\nNTfDk0/6uP32GzE1HBJRDQcREbdQ8CCusXChn4qKRDUclBQpIuImynkQ10h1rQsREckv9TwUmY6O\njnzvwojstS5efnkrr766mZdf3srGjW2eDhzc3uaFSG2ee2rz4uJ08PAV4NfAO8Bx4J+AOQ5vQzKg\nD3juqc1zT22ee2rz4uJ08PBx4O+BBcBNmGGRp4AKh7cjIiIieeJ0zsOtcf9fg6k5XAf8yuFtiYiI\nSB5kO+fhwvD3N7O8HREREcmRbM62KAG+A2zD1B1O6JVXXsniLki8t956iz179uR7N4qK2jz31Oa5\npzbPrXxfO5PVAnbC9zDDGP8XcCTB89MwyZWXZnEfRERECtVh4FrgaK43nK3g4e+BRkwC5YERXjct\n/CUiIiLpOUoeAodsKAH+F/A6UJPnfREREREP+D5wEtPj8MGor/PyuVMiIiLiXkPAYPh79Ndn87lT\nIiIiIiIiIiIiIiIiIiIiUtTuY3guQ3z9hsuBzcBbmMWxdgAz4l7TADwLnMIkVz5HbELl/gTbeSDu\nPaAc+f8AAAV6SURBVD4EPB5+jxDwP4DyMf5ebnYfmbX5rAQ/b3+tjHqPycD/F36Pt4CfAhfEbUdt\nHuFEm+9P8LyO87GfWy4BHgaOYdprD7HtDTrOo91Hbtp8f4Lt6Dgfe5vXYBacDAJvA53AxXHv4brj\n/D7gd+Edtb+mRj1fA5wAvgl8BHMSvRWIXku5AfPL+DGNVAN8Chgf9Zpe4N647VRGPV8K/B54Jryd\nxcAh4H9m+gu60H1k1ubj4n72YuBrmIMuerGyfwV+i1nQbGF4m5ujnlebRzjV5jrOI+4j83PLc8BO\n4KPh5+8FBoCro16j4zziPnLT5jrOI+4jszavBHqAx4B5wBWYQGIXsTWbXHec3wf8ZoTnHwF+Msp7\n7AT+31Fe0wv8zQjP34o5QD8Y9VgTcAaoGuW9veY+Mm/zeL8B/iHq/5djIuBrox5bEH7sw+H/q80j\nnGhz0HEe7T4yb/N3gf877rE3MIvzgY7zePeR/TYHHefR7iOzNl+KaavodrkQcwwvDv8/Z8d5ugtj\nfRhTDvM1oAOojnqfZcAfgSeB45hA4T9F/ezFwHxMF8l2TFfX88DHEmznbsxB+BvgHmK7UxowUdOx\nqMeeAiYA9Wn+Pl6QSZvHq8dEmhuiHmvA3BX/OuqxXeHHFkW9Rm3uXJvbdJxHZNrmW4DVmC7bceF/\nj8ecY0DHeSLZbnObjvOITNp8AmAB56IeO4sJDOzrqCuP81uA2zDdJYsxXVZHgSmYCGYIM37yN8BV\nmANmEFMwCkz3yRDmIPoc5oT6IPAeMDtqO3cC12G6ZNZixnai79r+N/BEgv17DxM9FZJM2zze94E/\nxD12D/Bqgte+Gn4/UJs73eag4zyaE20+EdMNO4Q5ub5F5G4MdJzHy0Wbg47zaJm2+UWYNv4Opu0r\nMRWdh4AfhF/jieO8AvOL/1fM+hRDwM/iXvMvmIQaMFHPELA+7jW/ZXgCTbRPhX9ucvj//xsTmcUr\nxIMtXrptHm0i5sD7r3GPp3qwqc2da/NEdJxHjKXNN2GSy24ErgT+FpOQfUX4eR3nI8tGmyei4zxi\nLG1+E7APE1T0Y4Y5XsIsRAk5PM7THbaI1ofp+piN6U0YYPjS2/8/JqsTIot3xL/mlajXJLIr/N3u\nnTgGfCDuNZMx3WXHKGzptnm0VZiL2U/jHj/G8Gxdwo8di3qN2ty5Nk9Ex3lEum1+OfBJzJ3tc+Gf\n/e+Yk+pfhl+j43xk2WjzRHScR4zl3PJ0+PU+TLLl54DpmGEQyOFxnknwMAGoxQQF/Zgxlj+Je80c\nzFQdwt+PJHjN3KjXJHJN+LsdfGzHRLbRv/xSzNhPV4r77lXptnm0tZgo9kTc4zsw03jiE2wuwLQ1\nqM2dbvNEdJxHpNvm9nlsMO41Q0Sy0HWcjywbbZ6IjvOITM4tb2Kmci7GBBL2bApXHuffxoy9VId3\n5nFMl6w9B/WT4Y1/HhMZfQnTIIui3uNvwj+zMvyarwOniSSNLMR04VwdfuzPMFNI/inqPcZhpp48\nHX7dYuAgZp5qoXGizQk/N4g5QBL5JfAfxE7t+Zeo59Xmzra5jvNYmbZ5KeaO7QXMSbMGuAvT/rdE\nbUfHeUQu2rwBHefRnDi3rMEcuzXA7Zgei7a47bjuOO/AZImexRwAjzI8SloD7MV0x+wBViR4n7vD\nO3oK+BWxDXMNJnI6GX6PVzDjaPGrcs7ANPxpTON9l8IsKuJUmz/AyL07F2KKirwd/vopMCnuNWrz\niEzbXMd5LCfa/LLwzx3FnFt+w/BphDrOI3LR5jrOYznR5t/AtPdZzJDGnQm2o+NcRERERERERERE\nRERERERERERERERERERERERERERERERERERERERERERERERERERE8ur/ANBpVY9jW9RvAAAAAElF\nTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f64bc2a5d10>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import sys\n",
|
|
"import getopt\n",
|
|
"sys.path.insert(1,\"/usr/local/science/clag/\")\n",
|
|
"import clag\n",
|
|
"%pylab inline\n",
|
|
"\n",
|
|
"from scipy.stats import norm\n",
|
|
"from scipy.stats import lognorm\n",
|
|
"from scipy.optimize import curve_fit\n",
|
|
"import numpy.fft\n",
|
|
"\n",
|
|
"ref_file=\"lc/1367A.lc\"\n",
|
|
"echo_file=\"lc/4775A.lc\"\n",
|
|
"\n",
|
|
"dt = 0.01\n",
|
|
"t1, l1, l1e = np.loadtxt(ref_file).T\n",
|
|
"errorbar(t1, l1, yerr=l1e, fmt='o')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([ 0.005 , 0.01861938, 0.04473305, 0.06933623, 0.10747115,\n",
|
|
" 0.16658029, 0.25819945, 0.40020915, 0.62032418])"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"fqL = np.array([0.0049999999, 0.018619375, 0.044733049, 0.069336227, 0.10747115, 0.16658029, \n",
|
|
" 0.25819945, 0.40020915, 0.62032418])\n",
|
|
"# fqL = np.logspace(np.log10(0.0006),np.log10(1.2),11)\n",
|
|
"nfq = len(fqL) - 1\n",
|
|
"fqd = 10**(np.log10( (fqL[:-1]*fqL[1:]) )/2.)\n",
|
|
"\n",
|
|
"\n",
|
|
"fqL\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 4.342e-01 5.077e+01 inf -- -5.530e+02 -- 1 1 1 1 1 1 1 1\n",
|
|
" 2 7.674e-01 5.065e+01 8.300e+01 -- -4.700e+02 -- 0.653018 0.587019 0.568277 0.567457 0.566281 0.566085 0.565773 0.566163\n",
|
|
" 3 3.298e+00 5.043e+01 8.075e+01 -- -3.893e+02 -- 0.414806 0.209135 0.141159 0.13784 0.133393 0.132728 0.131612 0.132761\n",
|
|
" 4 1.572e+00 5.010e+01 7.754e+01 -- -3.117e+02 -- 0.322539 -0.0834456 -0.273066 -0.284295 -0.297612 -0.299435 -0.302479 -0.300412\n",
|
|
" 5 5.908e-01 4.964e+01 7.386e+01 -- -2.379e+02 -- 0.302357 -0.214604 -0.654658 -0.688754 -0.723838 -0.729279 -0.736418 -0.733888\n",
|
|
" 6 3.713e-01 4.877e+01 6.953e+01 -- -1.683e+02 -- 0.284419 -0.200357 -0.96379 -1.05472 -1.13798 -1.15477 -1.17031 -1.16748\n",
|
|
" 7 2.709e-01 4.671e+01 6.269e+01 -- -1.056e+02 -- 0.277768 -0.185001 -1.13047 -1.34026 -1.52128 -1.56845 -1.6043 -1.60101\n",
|
|
" 8 2.135e-01 4.361e+01 5.281e+01 -- -5.282e+01 -- 0.277012 -0.185189 -1.16375 -1.49463 -1.83211 -1.9477 -2.03737 -2.03476\n",
|
|
" 9 1.764e-01 3.767e+01 4.019e+01 -- -1.264e+01 -- 0.282161 -0.184207 -1.17891 -1.53049 -2.01851 -2.24569 -2.46562 -2.46922\n",
|
|
" 10 1.508e-01 2.738e+01 2.645e+01 -- 1.382e+01 -- 0.289545 -0.182463 -1.18795 -1.52893 -2.08812 -2.41103 -2.87498 -2.90486\n",
|
|
" 11 1.349e-01 1.468e+01 1.390e+01 -- 2.772e+01 -- 0.293547 -0.180898 -1.1897 -1.52803 -2.10944 -2.46526 -3.22702 -3.34288\n",
|
|
" 12 1.358e-01 5.365e+00 5.378e+00 -- 3.309e+01 -- 0.295456 -0.179941 -1.19052 -1.52801 -2.11928 -2.48294 -3.46233 -3.79368\n",
|
|
" 13 1.868e-01 1.338e+00 1.633e+00 -- 3.473e+01 -- 0.297315 -0.17923 -1.19104 -1.52666 -2.12491 -2.48975 -3.55567 -4.30889\n",
|
|
" 14 6.248e-01 2.604e-01 4.517e-01 -- 3.518e+01 -- 0.299091 -0.178645 -1.191 -1.52463 -2.12805 -2.4915 -3.5672 -5.11363\n",
|
|
" 15 2.744e+02 2.611e-01 7.022e-02 -- 3.525e+01 -- 0.300248 -0.178286 -1.19075 -1.52307 -2.12961 -2.49161 -3.56337 -8\n",
|
|
" 16 2.745e+02 2.782e-01 4.368e-04 -- 3.525e+01 -- 0.300566 -0.178158 -1.19062 -1.52252 -2.13009 -2.49151 -3.5617 -8\n",
|
|
" 17 2.745e+02 2.805e-01 6.410e-05 -- 3.525e+01 -- 0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n",
|
|
"********************\n",
|
|
"0.300599 -0.178134 -1.19059 -1.52242 -2.13017 -2.49148 -3.56148 -8\n",
|
|
"0.238931 0.202434 0.232634 0.177249 0.153039 0.132988 0.297259 3285.23\n",
|
|
"-0.000915535 -0.00131061 -0.00195128 -0.00497899 -0.0226059 -0.0776175 -0.280541 -0.000206646\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"P1 = clag.clag('psd10r', [t1], [l1], [l1e], dt, fqL)\n",
|
|
"p1 = np.ones(nfq)\n",
|
|
"p1, p1e = clag.optimize(P1, p1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\t### errors for param 0 ###\n",
|
|
"+++ 3.525e+01 3.480e+01 3.006e-01 5.395e-01 0.891 +++\n",
|
|
"+++ 3.525e+01 3.431e+01 3.006e-01 6.590e-01 1.87 +++\n",
|
|
"+++ 3.525e+01 3.458e+01 3.006e-01 5.993e-01 1.34 +++\n",
|
|
"+++ 3.525e+01 3.469e+01 3.006e-01 5.694e-01 1.11 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 3.006e-01 5.545e-01 0.997 +++\n",
|
|
"\t### errors for param 1 ###\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.781e-01 2.430e-02 0.973 +++\n",
|
|
"+++ 3.525e+01 3.421e+01 -1.781e-01 1.255e-01 2.07 +++\n",
|
|
"+++ 3.525e+01 3.451e+01 -1.781e-01 7.491e-02 1.48 +++\n",
|
|
"+++ 3.525e+01 3.464e+01 -1.781e-01 4.961e-02 1.21 +++\n",
|
|
"+++ 3.525e+01 3.470e+01 -1.781e-01 3.696e-02 1.09 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -1.781e-01 3.063e-02 1.03 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.781e-01 2.747e-02 1 +++\n",
|
|
"\t### errors for param 2 ###\n",
|
|
"+++ 3.525e+01 3.511e+01 -1.191e+00 -1.074e+00 0.276 +++\n",
|
|
"+++ 3.525e+01 3.495e+01 -1.191e+00 -1.016e+00 0.598 +++\n",
|
|
"+++ 3.525e+01 3.485e+01 -1.191e+00 -9.870e-01 0.8 +++\n",
|
|
"+++ 3.525e+01 3.479e+01 -1.191e+00 -9.725e-01 0.91 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.191e+00 -9.652e-01 0.968 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.191e+00 -9.616e-01 0.997 +++\n",
|
|
"\t### errors for param 3 ###\n",
|
|
"+++ 3.525e+01 3.482e+01 -1.522e+00 -1.345e+00 0.865 +++\n",
|
|
"+++ 3.525e+01 3.432e+01 -1.522e+00 -1.257e+00 1.86 +++\n",
|
|
"+++ 3.525e+01 3.459e+01 -1.522e+00 -1.301e+00 1.32 +++\n",
|
|
"+++ 3.525e+01 3.471e+01 -1.522e+00 -1.323e+00 1.08 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -1.522e+00 -1.334e+00 0.97 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -1.522e+00 -1.329e+00 1.03 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -1.522e+00 -1.331e+00 0.998 +++\n",
|
|
"\t### errors for param 4 ###\n",
|
|
"+++ 3.525e+01 3.481e+01 -2.130e+00 -1.977e+00 0.874 +++\n",
|
|
"+++ 3.525e+01 3.429e+01 -2.130e+00 -1.901e+00 1.91 +++\n",
|
|
"+++ 3.525e+01 3.457e+01 -2.130e+00 -1.939e+00 1.35 +++\n",
|
|
"+++ 3.525e+01 3.470e+01 -2.130e+00 -1.958e+00 1.1 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -2.130e+00 -1.968e+00 0.983 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -2.130e+00 -1.963e+00 1.04 +++\n",
|
|
"+++ 3.525e+01 3.474e+01 -2.130e+00 -1.965e+00 1.01 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -2.130e+00 -1.966e+00 0.997 +++\n",
|
|
"\t### errors for param 5 ###\n",
|
|
"+++ 3.525e+01 3.474e+01 -2.491e+00 -2.358e+00 1.01 +++\n",
|
|
"+++ 3.525e+01 3.512e+01 -2.491e+00 -2.425e+00 0.263 +++\n",
|
|
"+++ 3.525e+01 3.496e+01 -2.491e+00 -2.392e+00 0.579 +++\n",
|
|
"+++ 3.525e+01 3.486e+01 -2.491e+00 -2.375e+00 0.781 +++\n",
|
|
"+++ 3.525e+01 3.480e+01 -2.491e+00 -2.367e+00 0.893 +++\n",
|
|
"+++ 3.525e+01 3.477e+01 -2.491e+00 -2.363e+00 0.952 +++\n",
|
|
"+++ 3.525e+01 3.476e+01 -2.491e+00 -2.361e+00 0.982 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -2.491e+00 -2.360e+00 0.997 +++\n",
|
|
"\t### errors for param 6 ###\n",
|
|
"+++ 3.525e+01 3.507e+01 -3.561e+00 -3.413e+00 0.363 +++\n",
|
|
"+++ 3.525e+01 3.484e+01 -3.561e+00 -3.339e+00 0.814 +++\n",
|
|
"+++ 3.525e+01 3.468e+01 -3.561e+00 -3.301e+00 1.13 +++\n",
|
|
"+++ 3.525e+01 3.477e+01 -3.561e+00 -3.320e+00 0.962 +++\n",
|
|
"+++ 3.525e+01 3.473e+01 -3.561e+00 -3.311e+00 1.04 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -3.561e+00 -3.315e+00 1 +++\n",
|
|
"\t### errors for param 7 ###\n",
|
|
"+++ 3.525e+01 3.524e+01 -8.000e+00 -6.000e+00 0.0178 +++\n",
|
|
"+++ 3.525e+01 3.515e+01 -8.000e+00 -5.000e+00 0.187 +++\n",
|
|
"+++ 3.525e+01 3.494e+01 -8.000e+00 -4.500e+00 0.618 +++\n",
|
|
"+++ 3.525e+01 3.466e+01 -8.000e+00 -4.250e+00 1.18 +++\n",
|
|
"+++ 3.525e+01 3.482e+01 -8.000e+00 -4.375e+00 0.851 +++\n",
|
|
"+++ 3.525e+01 3.475e+01 -8.000e+00 -4.312e+00 1 +++\n",
|
|
"********************\n",
|
|
"0.300605 -0.178131 -1.19059 -1.52241 -2.13019 -2.49148 -3.56144 -8\n",
|
|
"0.253864 0.205597 0.228999 0.191096 0.1638 0.131949 0.246154 3.6875\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"p1, p1e = clag.errors(P1, p1, p1e)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAGp1JREFUeJzt3X9s4/d93/HnxZaj5dxOi12RZ+98bLhdaBhJDbLSHzrb\n5TIn2IY26dBOIbFsiLTCQdoOuHUrcMMgzZCAYS2G9uqua3FbD9kQjNQNaDYH2LXFUKW5UVqnimm7\nbmadUT+W5kxmTXvr6kSpVnt/UHeR1I9+8I7fL389HwAhivx8vp+3cJ+TXvx+P9/vFyRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSA/iGwBvwh0AQ+A1zsakWSJKkn3AT+NvA08H7gs8AW\n8K4u1iRJknrQ48BbwHPdLkSSJJ3sHTGONbb39fdjHFOSJPW4M7QON/xqtwuRJEmn83BM4/xz4BmO\nP9Rwbu8hSZLa88beo6PiCAk/DXw38AJw+4g255544onbt28f9bYkSTrGl4EJOhwUogwJZ2gFhI8A\neWD7mLbnbt++zac//WmefvrpCEvqvMuXL3P16tW+HO9BttVu33ban6btSW2Oez/uf7NOca51vr1z\nLcy51vn2Uc611157jY997GNP0tob3zch4WeAIq2Q8CaQ3Hv9DrAT6vD000+TzWYjLKnzxsbGYq25\nk+M9yLba7dtO+9O0PanNce/H/W/WKc61zrd3roU51zrfPuq5FpWHItz2Z4F3AjPA39/3+CLwm4fa\nngM+8YlPfIJz5/pvWcL73ve+vh3vQbbVbt922p+m7Ultjnq/VCpRLBZPXUsvca51vr1zLcy51vn2\nUc21N954g2vXrgFco8N7Es50cmMPIAusr6+v92XqVn/58Ic/zKuvvtrtMjQEnGuKQ7VaJZfLAeSA\naie3Hed1EiRJUh8xJGjo9OvuX/Uf55r6nSFBQ8df3IqLc039zpAgSZKCDAmSJCnIkCBJkoIMCZIk\nKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnI\nkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAg\nSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJkoIMCZIkKciQIEmS\nggwJkiQpyJAgSZKCDAmSJCkoypDwAvBZ4MvAW8BHIhxLkiR1WJQh4V3AF4Af2vv+7QjHkiRJHfZw\nhNv+xb2HJEnqQ65JkCRJQYYESZIUZEiQJElBUa5JaNvly5cZGxs78FqxWKRYLHapIkmSekepVKJU\nKh147c6dO5GNdyayLR/0FvC9wKtHvJ8F1tfX18lmszGVJElS/6tWq+RyOYAcUO3ktqPck3AW+Iv7\nvn8P8CzwVeBLEY4rSZI6IMqQMAH8yt7zt4Gf2Hv+KWA2wnElSVIHRBkSPocLIyVJ6lv+EZckSUGG\nBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJ\nkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhT0cLcLkKJQKpUolUoA7OzssL29zYUL\nFxgdHQWgWCxSLBa7WaIk9TxDggbS/hBQrVbJ5XKUSiWy2WyXK5Ok/uHhBkmSFGRIkCRJQYYESZIU\nZEiQJElBhgQNrK2tLWZnZ5mengZgenqa2dlZtra2uluYJPUJz27QwGk2mxQKBWq1Go1G497r9Xqd\ner3OzZs3yWQylMtlEolEFyuVpN5mSNBAaTabTE1NsbGxcWSbRqNBo9Hg0qVLVCoVg4IkHcHDDRoo\nhULh2ICwX71ep1AoRFyRJPUvQ4IGxubmJrVara0+tVrNNQqSdARDggbG4uLigTUIp9FoNFhYWIio\nIknqb4YEDYy1tbVY+0nSoDMkaGDs7u7G2k+SBp0hQQNjZGQk1n6SNOgMCRoYExMT99VvcnKyw5VI\n0mAwJGhgzM/Pk0wm2+qTTCaZm5uLqCJJ6m+GBA2MVCpFJpNpq08mkyGVSkVTkCT1OUOCBkq5XCad\nTp+qbTqdZmlpKeKKJKl/GRI0UBKJBJVKhXw+f+Shh2QyST6fZ2VlhfHx8ZgrlKT+YUjQwEkkEiwv\nL7O6usrMzMy9PQvpdJqZmRlWV1dZXl42IEjSCbzBkwZWKpXi+vXrVKtVcrkcN27cIJvNdrssSeob\nUe9J+EFgE/g68OvAcxGPJ0mSOiTKkPBR4CeBReBZ4BZwEzgf4ZiSJKlDogwJPwL8K+A68DvA3wO+\nBHwywjElSVKHRBUSHgGywC8fev2XgamIxpQkSR0U1cLFx4GHgOah178CtHdJPOk+lEolSqUSADs7\nO1y8eJErV64wOjoKQLFYpFgsdrNESep5nt2ggWQIOJ3DYWp7e5sLFy4YpiQBcCai7T4CvAl8P/Af\n9r3+U8D7gb90qH0WWH/++ecZGxs78Ia/pKR43D1VdH193VNFpR61P9jfdefOHW7dugWQA6qdHC+q\nPQl/DKwDH+JgSPgg8JmjOl29etVfTpIkHSH0wfluwI9ClGc3/ATwA8AM8DSt0yH/PPBzEY4pqU1b\nW1vMzs4yPT0NwPT0NLOzs2xtbXW3MEldF+WahBvAY8A8cA74b8Bfo3UapKQuazabFAoFarUajUbj\n3uv1ep16vc7NmzfJZDKUy2USiUQXK5XULVEvXPzZvYekHtJsNpmammJjY+PINo1Gg0ajwaVLl6hU\nKgYFaQh5gydpCBUKhWMDwn71ep1CoRBxRZJ6kSFBGjKbm5vUarW2+tRqNdcoSEPIkCANmcXFxQNr\nEE6j0WiwsLAQUUWSepUhQRoya2trsfaT1L8MCdKQ2d3djbWfpP5lSJCGzMjISKz9JPUvQ4I0ZCYm\nJu6r3+TkZIcrkdTrDAnSkJmfnyeZbO9mrMlkkrm5uYgqktSrDAnSkEmlUmQymbb6ZDIZUqlUNAVJ\n6lmGBGkIlctl0un0qdqm02mWlpYirkhSLzIkSEMokUhQqVTI5/NHHnpIJpPk83lWVlYYHx+PuUJJ\nvcCQIA2pRCLB8vIyq6urzMzM3NuzkE6nmZmZYXV1leXlZQOCNMSivsGTpB6XSqW4fv36vXvS37hx\ng2w22+2yJPUA9yRIkqQgQ4IkSQrycIM0xEqlEqVSCYCdnR0uXrzIlStXGB0dBaBYLFIsFrtZoqQu\nMiRIQ8wQIOk4Hm6QJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAk\nSUGGBEmSFGRIkCRJQYYESZIUZEiQJElBhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUZEiQJElB\nhgRJkhRkSJAkSUGGBEmSFGRIkCRJQYYESZIUFFVI+EfACvA14A8iGkOSJEUoqpAwAiwB/yKi7UuS\npIg9HNF2X977+vGIti9JkiLmmgRJkhQU1Z4ESeq4UqlEqVQCYGdnh+3tbS5cuMDo6CgAxWKRYrHY\nzRKlgdJOSHgZmD+hzXcC1fuuRpKOsT8EVKtVcrkcpVKJbDbb5cqkwdROSPhp4N+e0Gb7AWrh8uXL\njI2NHXjNTwaSJLXs35t21507dyIbr52Q8NW9R2SuXr3qJwJJko4Q+uB8d69aFKJak/AU8O69rw8B\n3wGcAb4IvBnRmJIkqYOiOrthgdbahJeBs8AXgHUgmqgjaWhsbW0xOzvL9PQ0ANPT08zOzrK1tdXd\nwqQBFNWehI/jNRIkdVCz2aRQKFCr1Wg0Gvder9fr1Ot1bt68SSaToVwuk0gkulipNDg8BVJSz2s2\nm0xNTbGxsXFkm0ajQaPR4NKlS1QqFYOC1AFeTElSzysUCscGhP3q9TqFQiHiiqThYEiQ1NM2Nzep\n1Wpt9anVaq5RkDrAkCCppy0uLh5Yg3AajUaDhYWFiCqShochQVJPW1tbi7WfpG8yJEjqabu7u7H2\nk/RNhgRJPW1kZCTWfpK+yZAgqadNTEzcV7/JyckOVyINH0OCpJ42Pz9PMplsq08ymWRubi6iiqTh\nYUiQ1NNSqRSZTKatPplMhlQqFU1B0hAxJEjqeeVymXQ6faq26XSapaWliCuShoMhQVLPSyQSVCoV\n8vn8kYcekskk+XyelZUVxsfHY65QGkzeu0FSX0gkEiwvL7O1tcXCwgKf//znqdfrpNNpXnjhBebn\n5yM7xFAqlSiVSgDs7Oywvb3NhQsXGB0dBaBYLFIsFiMZW+qmM90uYE8WWF9fXyebzXa7Fkl9oFqt\nksvliPv3RrfGlY5yd04COaDayW17uEGSJAUZEiTpFLa2tpidnWV6ehqA6elpZmdnvZGUBpprEiTp\nGM1mk0KhQK1WO3CjqXq9Tr1e5+bNm2QyGcrlMolEoouVSp1nSJDUNw4vILx48SJXrlyJbAFhs9lk\namqKjY2NI9s0Gg0ajQaXLl2iUqkYFDRQDAmS+kbcZxEUCoVjA8J+9XqdQqHA8vJyxFVJ8XFNgiQF\nbG5uUqvV2upTq9Vco6CBYkiQpIDFxcUDaxBOo9FosLCwEFFFUvwMCZIUsLa2Fms/qRcZEiQpYHd3\nN9Z+Ui8yJEhSwMjISKz9pF5kSJCkgImJifvqNzk52eFKpO4xJEhSwPz8/JF3nDxKMplkbm4uooqk\n+BkSJCkglUqRyWTa6pPJZCK7E6XUDYYESTpCuVwmnU6fqm06nWZpaSniiqR4GRIk6QiJRIJKpUI+\nnz/y0EMymSSfz7OyssL4+HjMFUrRMiRI0jESiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQga\nSN67QZJOIZVKcf36darVKrlcjhs3bpDNZrtdlhQp9yRIkqQg9yRI0gnivkW11CsMCZJ0AkOAhpWH\nGyRJUpAhQZIkBRkSJElSkCFBkiQFGRIkSVKQIUGSJAUZEiRJUlBUISEF/DywAXwN+J/Ay8BIRONJ\nkqQOi+piSu8FzgAv0QoI7wP+JXAW+NGIxpQkSR0UVUj4pb3HXVvAPwM+iSFBkqS+EOeahDHgqzGO\nJ0mSHkBc925IAz8M/EhM40lSXzt8U6nt7W0uXLjgTaUUq3b3JLwMvHXC4/AN1p8AfhG4AVx/gFol\naWgUi0VeeeUVHn/8cTY2Nnj99dfZ2Njg8ccf55VXXjEgKBZn2mz/2N7jONvAN/aePwEsA6vAx4/p\nkwXWn3/+ecbGxg68YVqWNGyazSaFQoFarUaj0fhT7yeTSTKZDOVymUQi0YUK1S379zDddefOHW7d\nugWQA6qdHK/dkNCOJ2kFhDXgY8Dbx7TNAuvr6+tks4d3REjS8Gg2m0xNTbGxsXFi23Q6TaVSMSgM\nuWq1Si6XgwhCQlQLF58EPkdrr8KPAgkgufeQJB2hUCicKiAA1Ot1CoVCxBVpmEW1cPGDtBYrvgf4\n3X2vvw08FNGYktTXNjc3qdVqbfWp1WpsbW2RSqWiKUpDLao9CZ/a2/ZDe1/fse97SVLA4uJicA3C\ncRqNBgsLCxFVpGHnvRskqUesra3F2k86iSFBknrE7u5urP2kkxgSJKlHjIzc3z3w7refdBJDgiT1\niImJifvqNzk52eFKpBZDgiT1iPn5eZLJ9s4UTyaTzM3NRVSRhp0hQZJ6RCqVIpPJtNUnk8l4+qMi\nY0iQpB5SLpdJp9OnaptOp1laWoq4Ig0zQ4Ik9ZBEIkGlUiGfzx956CGZTJLP51lZWWF8fDzmCjVM\nDAmS1GMSiQTLy8usrq4yMzNzb89COp1mZmaG1dVVlpeXDQiKXFSXZZYkPaBUKsX169fv3cDnxo0b\n3gRPsTIkSFIP2n9L4J2dHS5evMiVK1cYHR0FoFgsUiwWu1mihoAhQZJ6kCFAvcA1CZIkKciQIEm6\np1Qq8eKLL/LUU0/x6KOP8sgjj/Doo4/y1FNP8eKLL947BKLh4OEGSRIAzWaTa9euUavVDtyyend3\nlzfffJPd3V2uXbvGBz7wARKJRBcrVVwMCZIkms0mU1NTbGxsHNmm0WjQaDS4dOkSlUrFoDAEPNwg\nSaJQKBwbEPar1+sUCoWIK1IvMCRI0pDb3NykVqu11adWq7G1tRVNQeoZhgRJGnKLi4sH1iCcRqPR\nYGFhIaKK1CsMCZI05NbW1mLtp/5hSJCkIbe7uxtrP/UPQ4IkDbmRkZFY+6l/GBIkachNTEzcV7/J\nyckOV6JeY0iQpCE3Pz9PMplsq08ymWRubi6iitQrDAmSNORSqRSZTKatPplMhlQqFU1B6hmGBEkS\n5XKZdDp9qrbpdJqlpaWIK1IvMCRIkkgkElQqFfL5/JGHHpLJJPl8npWVFcbHx2OuUN1gSJAkAa2g\n8NJLL/HMM89w/vx5zp49y8jICGfPnuX8+fM888wzvPTSSwaEIeINniRJ9xSLRYrFYrfLUI9wT4Ik\nSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkKMiRIkqQgQ4IkSQoyJEiSpCBDgiRJCjIkSJKkIEOCJEkK\niiokvApsA18HbgP/BjgX0ViSJCkCUYWEXwH+BnAR+D4gDfxCRGNJkqQIRHUXyKv7nn8J+DHgM8BD\nwJ9ENKYkSeqgONYkvBv4m8AyBgRJkvpGlCHhx4A/An4P+HbgoxGOJUmSOqydkPAy8NYJj+y+9j8O\nPAt8CPgG8O+BMw9csSRJikU7f7Qf23scZ5tWIDjsSVprE54DVgLvZ4H1559/nrGxsQNvFItFisVi\nG2VKkjSYSqUSpVLpwGt37tzh1q1bADmg2snx4vpkf55WgPgu4Fbg/Sywvr6+TjabDbwtSZJCqtUq\nuVwOIggJUZzdMLn3+M/AHwDvARaALwKrEYwnSZIiEMXCxa8Bfx34T0AN+Hngt2jtRfh/EYwnSZIi\nEMWehN8G/nIE25UkSTHy3g2SJCnIkCBJkoIMCZIkKciQIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ\nkoIMCZIkKciQIEmSggwJkiQpKIp7N0iSdGqlUolSqQTAzs4O29vbXLhwgdHRUQCKxSLFYrGbJQ4t\nQ4Ikqav2h4BqtUoul6NUKpHNZrtcmTzcIEmSggwJkiQpyJAgSZKCDAmSJCnIkCBJ6rqtrS1mZ2eZ\nnp4GYHp6mtnZWba2trpb2JDz7AZJUtc0m00KhQK1Wo1Go3Hv9Xq9Tr1e5+bNm2QyGcrlMolEoouV\nDidDgiSpK5rNJlNTU2xsbBzZptFo0Gg0uHTpEpVKxaAQMw83SJK6olAoHBsQ9qvX6xQKhYgr0mGG\nBElS7DY3N6nVam31qdVqrlGImSFBkhS7xcXFA2sQTqPRaLCwsBBRRQoxJEiSYre2thZrP90fQ4Ik\nKXa7u7ux9tP9MSRIkmI3MjISaz/dH0OCJCl2ExMT99VvcnKyw5XoOIYESVLs5ufnSSaTbfVJJpPM\nzc1FVJFCDAmSpNilUikymUxbfTKZDKlUKpqCFGRIkCR1RblcJp1On6ptOp1maWkp4op0mCFBktQV\niUSCSqVCPp8/8tBDMpkkn8+zsrLC+Ph4zBXKkCBJ6ppEIsHy8jKrq6vMzMzc27OQTqeZmZlhdXWV\n5eVlA0KXeIMnSVLXpVIprl+/TrVaJZfLcePGDbLZbLfLGnruSZAkSUGGBEmSFGRIkCRJQYYESZIU\n5MJFSVJXlUolSqUSADs7O1y8eJErV64wOjoKQLFYpFgsdrPEoWVIkCR1lSGgd3m4QZIkBRkSJElS\nUNQh4Z3AbwBvAe+PeCzpVO4e+5Si5lxTv4s6JPw48OWIx5Da4i9uxcW5pn4XZUj4q8CLwD+IcAxJ\nkhSRqEJCArgG/C3g6xGN0RPi/qTQyfEeZFvt9m2n/WnantRmED/BOdc63965FuZc63z7fp1rUYSE\nM8CngJ8FqhFsv6f4n6nz7fv1P1PUnGudb+9cC3Oudb59v861dq6T8DIwf0KbCeAS8CjwTw+9d+ak\nAV577bU2yukNd+7coVqNLwt1crwH2Va7fdtpf5q2J7U57v24/806xbnW+fbOtTDnWufbRznXovzb\neeIf7n0e23scZxsoA98DvL3v9YeAPwE+DcwE+p0D1oAn26hHkiS1fJnWB/U3OrnRdkLCaZ0HvmXf\n908CvwR8H/BrwO0j+p3be0iSpPa8QYcDQlxSeJ0ESZL6TlxXXHz75CaSJEmSJEmSJEmSJEmx+xbg\nvwJfAH4b+OHulqMBdh74HPDfgd8Evr+r1WjQfQb4feDfdbsQDazvBmrA68Df6XItkXkHMLr3/M8A\nG8C3da8cDbAk3zwT59uAL9Gac1IUvovWL3FDgqLwMPA7tC4v8CitoPDudjYQ19kND+otYGfv+buA\n3X3fS53UAH5r7/n/pvUpr63/VFIbfhX4o24XoYE1SWuv6Bu05tl/BD7Uzgb6JSQA/Flau3//F/BT\nwP/tbjkaAt9J64Jj3u5cUj96goO/v36XNq9s3E8h4f8A3wF8O/BDwF/objkacI8B/xp4qduFSNJ9\neuBrFEUVEl4APksrwbwFfCTQ5geBTVq3kv514Ll97/1dWosUq8DIoX5fobWw7NmOVqx+FcVceyfw\nC8A/Af5LJFWrH0X1e82LzekoDzrnbnNwz8F5emTP6F8BFoDvpfWDffjQ+x8FvgHMAu8FfpLW4YPz\nR2xvHPjWveffSuuY8Xs7W7L6VKfn2hmgBPzjKIpVX+v0XLsrjwsXFfagc+5hWosVn6B1luDrwJ+L\nvOo2hX6wXwN+5tBr/4PWJ7eQLK0E/ht7j9CdJKVOzLXnaN2xtEprzn0BeKaDNWowdGKuQevmd18B\n3qR1Jk2uUwVq4NzvnPseWmc4fBH4gciqewCHf7BHaJ2dcHi3yVVahxGk++VcU1yca4pbV+ZcNxYu\nPg48BDQPvf4VWueoS53iXFNcnGuKWyxzrp/ObpAkSTHqRkj4PVrHfBOHXk/QuuCD1CnONcXFuaa4\nxTLnuhES/hhY509f9emDwEr85WiAOdcUF+ea4tbXc+4sresYPEtrscXlved3T8uYpnXaxgzwNK3T\nNv6Qk08Vkg5zrikuzjXFbWDnXJ7WD/QWrd0hd59f39fmk7QuALEDrHHwAhDSaeVxrikeeZxrilce\n55wkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSVIf+P9cYZ1EAfTlhQAA\nAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f64cbfba0d0>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xscale('log'); ylim(-4,2)\n",
|
|
"errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"black\")\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAg8AAAFkCAYAAACn/timAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X2cVPV99//X7C3sLstiXAF3UWBxCUuw3MQVwWhaUKS2\nBk0wjPEyy89W0oe5Wtu0cLW52otcv143pc1NbfIr0lrR2IxR20YbEyCbRAUBiYtWyhKRDSi7gjsg\nd7sL7N38/vjOmZ2Zndmd2Tkz58zM+/l4zEOZnZ1z5rtnzvmc7/fz/XxBRERERERERERERERERERE\nRERERERERERERERERERERERERERERERERERERERkzI4BgzEe33Zwn0RERMTFPgZcFfZYhgkebnFy\np0RERCR7fAs47PROiIiISHYoAU4B/83pHRERERH7FKXxvVcBE4GtI7xmavAhIiIiyTkRfGScJ43v\nvR24BHwmzs+nXn311R988MEHadwFERGRnNUB3IADAUS6eh6uxSRL3j3Ca6Z+8MEHPP3008yZMydN\nuyHRHnnkEb71rW85vRt5RW2eeWrzzFObZ9ahQ4e4//77azC99zkTPKwFPgReGu2Fc+bMYeHChWna\nDYlWVVWl9s4wtXnmqc0zT22eXwrS9J5rgScx0zRFREQkh6QjeFgO1AL/lIb3FhEREYelY9hiB1CY\nhvcVERERF0hHz4O4mNfrdXoX8o7aPPPU5pmnNs8v6ZyqOZqFQEtLS4uSbERERJKwf/9+Fi1aBLAI\n2J/p7avnQURERJKi4EFERESSouBBREREkqLgQURERJKi4EFERESSouBBREREkqLgQURERJKi4EFE\nRESSouBBREREkqLgQURERJKi4EFERESSouBBREREkqLgQURERJKi4EFERESSouBBREREklLk9A6I\niOQS3wEfvv/00XG+g/fPv8/FvouUFpVyuf8y44vHc03lNdRU1uD9hBfvPK/TuysyJgoeRERs5J3n\nZfmU5azfuJ5Te05x6sQpLnOZ/qJ+rpx8JdffeD2bNm6iurra6V0VGTMFDyIiNurs7GTJyiW0fbwN\nzgB3Qn9tP3jgvcH32NqxlZ137GTPtj0KICRrKedBRMRGG762gbYFbXAMWAZMAzzBHxaYf7ctaGP9\nxvVO7aJIyhQ8iIjYaN9b+6AW8GP+G0tN8HUiWUrBg4iIjfoxQxShRywFwdeJZCkFDyIiNiqiCAIM\nPWIZDL5OJEspeBARsVHj/EZoB6ox/42lI/g6kSyl4EFExEabNm6i7s06mA78FDgODAZ/OGj+Xfdm\nHZs2bnJqF0VSpuBBRMRG1dXV7Nm2h6aqJq6ZdA28BEVbiuAf4dqXrqWptEnTNCXradBNRMRGoQqT\n13fQM72H8r7yUIXJ7uJu3q58mwebH1SFSclqCh5ERGzknaegQHKfhi1EREQkKQoeREREJCkKHkRE\n0sh3wMeKx1YwbeU0KuZWUNJQQsXcCqatnMaKx1bgO+BzehdFkqacBxERm1jJkgCX+i/x3rn3mOqZ\nyi8e/QU9n+qBGwEP9A320d3RTemWUpbfs9zZnRYZA/U8iIjYxDvPy+PLH+djuz7GkW8f4fDfHaZl\nU4sJHLRAluQQ9TyIiNgktBz3gjZYCXig6+mukRfIatYCWZJ9FDyIiNgktBz3tLAnC9ACWZJzNGwh\nImKT0HLc4bRAluQgBQ8iIjYJLccdTgtkSQ5S8CAiYpPQctzhlmIWyHofLZAlOUPBg4iITULLcYcr\nB1YDLVDxZAV8D2Zsm6EFsiSrKXgQEbFJaDnu6GW4P4Kyi2Us+pNF1P/XemZ9eRanbz7Ng80PqkiU\nZKV0ZOrUAH8F3AGMBw4DDwL707AtERHXaD7ZTN1DdVz+wWXO7DlDb6CXEk8Jk66ZRMMfNdC0pEmL\nZklOsDt4mAS8hhnhuwPoBOqAszZvR0TEdUIraq5zek9E0svu4GED8B6mp8Hyvs3bEBEREQfZnfNw\nF9ACPAd8iBmq+B2btyEiIiIOsjt4mAn8HvAOcDvw98CjwAM2b0dEREQcYvewRQGwD/jvwX//B/AJ\n4EvAU7F+4ZFHHqGqqiriOa/Xi9erpCIRERGfz4fPFzkr5+xZZ1MJ41VcH6tjwA7gobDnfg/4KsOL\nti4EWlpaWli4cKHNuyEi4i6xluu+duK1jCsaB4D3E17NxJCE7d+/n0WLFgEswoHZjHb3PLwGfDzq\nuXpMUCEikre887wsn7Kc9RvX88obr3D07FH6qvq49ZO3smnjJhWLkqxid/DwTWA38KeYpMlG4HeD\nDxGRvBVrue6jg0c52nGUnXfsVLVJySp2J0y+AdwNeIEDmOGKPwBUQk1E8lrEct3WgHEBMA3aFrSx\nfuN6B/dOJDnpqDD5UvAhIiJB+97aB7fF+WEN7Gvel9H9EUmF1rYQEcmAmMt1WwqCPxfJEgoeREQy\nIOZy3ZbB4M9FsoSCBxGRDIi5XLelI/hzkSyh4EFEJAPiLtd9HMa/Op4Prv+Au3x3aYluyQoKHkRE\nMqC6upo92/bQVNrENf9+DWyGoi1FsB2uqryKq9++mseXP65CUZIVNMgmIpIBVoXJy/Mu4/+JH+6E\n/lqTRPne4Hts7diqeg+SNdTzICKSAd55Xl70vsjVB67m4i0XVe9Bspp6HkRSoPUKJFmq9yC5QMGD\nSAq0XoEkS/UeJBcoeBBJgdYrkGSF6j3ECiBU70GyhHIeRFKg9QokWar3ILlAwYNICva9tQ9q4/yw\nJvhzkTAj1Xuoe7OOTRs3Obh3IolR8CCSAo1fC5jE2RWPrWDaymlUzK2gpKGEirkVTFs5jRWPrYgo\n/NR8spm6h+qo7ail/Plyir9fTPnz5dR21FL3UB3NJ5sd/CQiidHgmkgKNH4tAMsmL+PPt/w57Qva\n4UbAA32DfXR3dFO6pZTl9ywPvdY7z8zA8S3xsXX3Vlp/0MqZ98/w4XsfcubRM7T+oJWtq7bStKRJ\nM3XEtdTzIJICjV8LjC33ZdnkZbRtaaO9pp3u1d30fb6P7s91017TTtuWNpZPWT7sd0TcQsGDSAo0\nfi0wttwXJdtKNlPwIJICa/z6imNXUPB0AWzGPLbD0fNH+bj348PGvCV3+A74uMt3F++dfy/p3Bcl\n20o204CsSBJ8ByLHqXsDvZR4SqicXElpQSkX77xoLggeGBwc5KOOj0wX9D3qgs5FVpGw6756XdK5\nL0q2lWymngeRJMQbpz7x0Qku3qr1CvJNZ2cnN91xE+cqzyWd+xJKto1FybbicgoeRBLkO+Bj/n3z\nY49T96Au6DwUylu4Hfgpw3Nf3o+f+zJasu35yvMa7hLXUmgrkqBlk5dx6uApuDnGDz2oCzoPhRa5\n8gCrgdeAV4P/HoSJfRPZ84vYJco3bdzEzjt20naxDY4Cp4K/1wsV/RXs2LGDOXPmZO7DiCRBPQ8i\nCdrwtQ30lfXFDhICqAs6D0XkLZRjeiC+ANwH3A/9E/p5sPnBmD0I1dXVvPjdF5mwcwI0BH/nPuAB\n6FrRxW/f/9v4/f4MfRKR5Ch4EEnQvrf2QSGxg4RqVO8hD42Wt3Bt5bW86H0xZrEn3wEfK76yggu3\nX1CujGQdBQ8iCeqnP36QsBTYDryP6j2ESaZsczZKpUiYd56XyvOVypWRrKTgQSRBRRTBEmInxp2G\nostFrGENM7bNgO/BjG0zaCptyutluXO9imKqRcI0XVOylQZiRRLUOL+R1jOtwxPjAkAZFNYVcrjx\nMLM+PYvic8VcO/FaThed5sHmB/F+wpuX6xREVFG0WN3ymG75J77zhFO7N2ZWvY83nnuDs2fPwkuY\noKEECsYVUHVtVWiRK291/L+71kaRbKUjUyRBoez4BW2wHHMRHAQ6zF3mnhfzt4chntBshFhqYF9z\ndnbLWwthfbTgIzP7Jji7gg6Y8eYM9vgSOxYa5zfS2t4aGVxZlCsjLqZhC5EEVVdXs2fbHppKm+IO\nTeT6GH+ycrVb3q51KbQ2imQr9TyIJMh3wIfvP31wM5R/opzyM+VcKL7AD/khz/3Dc8ycNJOpnqns\n+uYuej7VM+rSzPkgV7vl7epRsdZGufyDy5zZM1TufNI1kxIa9hBxSnZ+c0Uc4J0Xmbfg9/tZv3E9\nr7zxCqfOnqKrqotf9f3KBA45NsY/VrnaLW9Xj0romFpn376JZIKCB5Ex6OzsZMnKJabreiXggaOD\nR+EpRp56l6Vj/GMVyhOhDWoYlieyaVt2dsvnao+KSKKU8yAyBnHHvEvIyTH+sUokTyQbpVLfQSQX\nKDwWGYO4Y95WmWrdkQKReSKzFufOFNZc7VERSVR+nclEbBJ3zNuqQJljY/xjFZ0nkiuU6Cj5TsGD\nyBjEHfNeCjwH/AYwCdgDdAKD4OnysH3edlY8toKmJU05eVHNF0p0lHyn4EFkDOLOIigHlsD4n43n\nUtclAp8JhJZsDgwGONFxgrItZTk/ZTM0XAFc6r/Ee+fe49qJ1zKuaBxA1g5XpItVsbL1B62ceT+y\nJ6NhVYOCTXGdeKldmbAQaGlpaWHhwoUO7oZI8vx+PzfdcZNJmowx5n3D/Bt4xvNM7OGL49BU2uSq\nKZvpuNiHT2U9evYoM6pmcOsnb2XTxk1ZmyiZLhGzd2qJqFhZ92ZdVieXSnrs37+fRYsWASwC9md6\n++p5EBmD0ca8d27ZCb8d55ddOGXTO8/L8inLIy72fVV9Y77Yx5vKerTjKDvv2KmLYZRcXQNEcpeC\nB5ExGG3Me/ZTs7NqyqbdF3tdDJOTq2uASO5SnQeRNAglVMbioimb1locM5bOsGWtBsu+t/aNXCzr\nLV0Mw+XqGiCSu+wOHjZiRurCHx/YvA0R18uWIkLLJi+jbUsbPf09kRf7bmAH8M/ATnjyX55ManGv\nYRfD8Pd7Bg61HcrbxcJiyZZgU8SSjiPyPzELFlsG0rANEVfLliJCoeGFnQxd7LuA54FlRMwUae9o\nT3hxr4iprDa8n1ukaxZJrq4BIrkrHcMWA5iZ7dbjdBq2IeJqVkJlbUct5c+XU/z9YsqfL6e2ozZU\nRMgNQsMLVmXMbkydimWkNIQR0fOyO/X3cwvvPC+PL3+cj+36GEe+fYTDf3eYI98+wsd2fYzHlz8+\n5umUWppbsk06eh6uAzqAy8DrwJ8BR9OwHRHXcmsRIauewBvPvcG54+cYuDBgLujVwLuYC72HlBf3\niuh56SRnkgHTNYtEFSsl29gdPOwF/gtwGJgC/HfM6Wgu8JHN2xKRJC2bvIw/3/LnfLTgI1iAyUEI\nYCpjbgXuInIII1qCyXvhF8OO7g4CnjgD+ikkAzpRWClds0jcGmyKxGN38LAt7P8PYorztgFfBL5p\n87ZEXM2NVQNDF79JmDyEqxhai6OSyCGMFBb3Cr8Yzl06l9ZAq3m/buA1wE+oENKvun+VVMluq10P\nfP8AJw+cNFU8bzTv1zfYR3dHd9pyKTSlUsRIdwpvD3AAmBXvBY888ghVVVURz3m9XrxeddFJdrPu\n8tsXtGfs4jaa0MXvJ5g8hCsYynEoZGgIw8bFvULJgFbAEpY4ySD0d/TTtqUt4faw2vXEwAn4DBmt\nJaEpleIEn8+Hzxc5K+ns2bMO7Y2R7vLUpZieh83AX0b9TOWpJaetfXgtWy9vdVWJ6tlLZ3P49sNm\nuOI+InsDjgC/hwn5rYAifKZIO9S9lXyp5FAp74E2+CQpt0eoXV8N+wzRBqGhuYGDrx1MeD8TMXfp\nXFpva83oNkVicbo8td2zLf4GuAWYgbnXeh6oAJ60eTsirufGQkkRUyitC2A5cDumf7A9+O/VwCHA\nB3wPeArKXi0b00wRK/+h6HSRaY/wmg/fC/63FZ776XMJ1XwItWv4Z4iWpl6AbKnfIZJudg9b1GBO\nN1diRjX3AIsxE5BE8orburh9B3ycGX/GXPxi5TWELydeiwkobFicycp/mP3UbA53H445dEEH9P6w\nl+VTRh+6CLWrDbkZycqW+h0i6WZ3z4MX85UqxZx+VgO/tHkbIlnBbVUDl01eRmlnKWwHxjP8Dtrq\ncWiBoseLbK9NUUSRGR6JU/Oh786+hGo+hNrVys2IJU29ANlSv0Mk3VTzNAe5Mcs/H7mtauCGr23g\nWOMxkyT5MvACZmpmLUN30B9BXWEde960f9XLxvmNtP6o1fRoxFKb2GyFULtaPSVxcjPS0QugKZUi\nRroTJkeihMk0iShkY40N29D9LMkJJQouiN3Fnem/w7Bkv6hpk55zHmoW1KQtwPT7/dQsqKHvd/vi\nvqZ+Rz3vvPbOqO8TatcqzOBoJzAIBV0FXDn7SgpLCjl/4jyXBi8R6A2YnopC8BR5GFcwLulAWgG5\nuI3TCZPqechBoxWy+bU1v0ZhSaFOgmnmtqqBw3IwrETJoOt2XMc7Px75wp2K5pPNlFSW0BfoSylP\nwWrXM8+d4dzxcwx6BvEUeCiYUkDFjRWcfeEsvbf2ws2YAMnKsQgG0t2D3UlPl3XjtFsRJ6nnIQeN\nOJ3sAhQ/XUzfb/WZefe7Cd21ebo8TJk3hXmr5ymIyEFumGaY7umrw95/BzAH+6aHumjarUW9IvnJ\n6Z6HdCyMJQ4bMcv/VYYCh+cxJ9YvAA9A4EsBTkw/YQr2JJD1LtnFDdMME10AynfAx4rHVjBt5TQq\n5lZQ0lBCxdyKUZfxHjY91o8t02XdOO3WYi2r3l7TTvdvdtM3qY/u3m7aD7fzk7/4CV/5w69o6XOx\nnYKHHBQ3y78LOIY5CebQSoeSGDes3JjobIWIC+Lqbvo+30f357ppr2kfMbgdFjjbUAvCd8DHsbPH\nXDXtNtywkuO6IZAMUM5DDoqb5b8bmIA5CfpRjf48U11dzZ5te1i/cT2vbHuFo2ePMqNqBrd+8lY2\nbduUkeTNRGcrjHUBqogiWJBULYh43f+Vkyu56L+Y8ZoSiRpWcjyD5bqdoGEad1DPQw6Ke4f5AWb9\ngugKg9FUoz8n+Q74eLD5QU7ffJpZX55F/X+tZ9aXZ3H65tM82Pygq7q1kxkmCB/iOHz0cOTQTBK1\nIOL1dpz46ASBqwPx36fd2cqSod4Wm4Zo3G6svVJiL/U85KB4Wf6XBi8xUD0Qv8KgZRC6L3Wz4rEV\niu5t4JY7pdBdfxZIpjpnxEyIT2C67q0qmdFVM0eoCBm3t6MHswCXNWsjqqZE8UvFbDrgXGXJmCXH\no+XQDUG6lkWX5Ch4yEHxuobnLp1L65JWcxKcyIgrJ958/c28seUNTU2zgab5JS90QewhcgnvAHAl\ndHzUge+AD+887/CLyerg7+wEBqDwUiGlr5YSKApwcfBi3KGauMttezAr9Fjv+2rYvlRD8aTijE+7\nDRcapnSgXLcTtCy6O2jYIo80zm+EM5iTYAmmwuD7xEye8xR4hk7ISqhMScTFLcvacqyzHlLVOL8R\n3sX0GszBrJ55H6YAfgMU9BSEuqdDQxzWgls/AE4B/cAADAwM0FPYw+XByxRdVcS5O87x9vVvDxuq\nidvbYV2UrboYXwjuyxeA5TD9iumO9uiEhinLcHw2TSa4bc2YfJUboaiMyu/3c+niJYp/VEzfnX2w\nErgI7AJ+BlyCsqoyrph+BXUP1bFzy0747Thvpug+Kdl8p5SuXpPRhnLuufcenr//ebpWdMXsnr5w\n+4VQ93Q//ZHFoG5j6N/LCRWHGhwcZLBjkEk/nMS2bduGJYgOS7a0WHkTLikzHs0apux5toeTL5wk\ncFdg1CGabBb37wQ51cPidup5yHF+v5+b7r6JyQ2TeabgGfr+S59Zqux7wL8AR6Dqmipu33g7//js\nP3L8x8fZvm475ePKFd3bJFvvlHwHfMy/b35aek1GS3oDCEwIJJQAGHPBrTFMRY5bB2MpZjGxOL10\ndk5xHUtPj3eel+3rtvP1b32d2/7yNmo/yO1Fu9xQr0TU85DTNr+8ma+s+wo943tMwpd15xS+MNFx\nWFW6ituX3M7W3VtZv349Z94/Q/ep7qElk6Mpuk9Ktt4pLZu8jFMHT5kyz7Gk0GsyWtLb3mf3UjOp\nhsOew7HfICzoirng1himIkcstx21ZgYXoeCnBVAcuT6G3WXGU+npyZdFu7Qsujuo5yGHvf7c6/R8\nqscknY1yBxd9J8gs8i66T9f4frbeKW342gb6ysLWobByCv4Z03P1XWh9p5XC6wopmlOUVFuNOBWz\nCp7+t6d5t+3dhJY037RxE8V9xSkXh7K6/6f+aiqeJz0RxZZ4GAaXDzKjcgYnXj1B18GuUC+dnfkO\n2ZwfkylaFt0d3HnLI2MSPY7cfaobfo+ETqTD7gTjLXecw9H9sCl/u6Gvs4/uw910/EUHB+YdYOvq\nrUlPrXT6TmmsU0X3vbVvqC5IvJyCVTBYOzi04NSRbk5sPMGuql180fPFuNuJO5TTBfwL9P9mP7SS\nUK5BzAW3xjDzwLpzX/v2WrbO3OrIVMBszo/JlHzpYXE79TzkkGG9B1UMTSkb5Q5u2J1gOWZWxiHM\nXeZj5Hx0n64yv07fKaVU6tlKFozOIYiVU9Bjnh+4c4Cez/eMuJ24JdTD3/dm4KeMWk7bO8/L6l9f\nPebiUNGcXMciE/kxTs2gcds+SGrU85BDhvUeWEFDAtniu9/aPfykFbZkc/2Oet55LX3LNbtBusr8\nOn2nlFKp5yWYQAoi74hj5RSEX/hH2U7cEurh72sFsGG1FTznPNQsqBmWazCsdyeJ4lDRnExwzUR+\njBvqjrhhHyQ1Ch5yyLAuTytoiDcE0Q51b5kT6adXfXropNVNZGGeQfhV969Y8diKnK4sGVHmN4e6\njsfaFd44v5HWM63mAu5j9JyCJNot7lDOQNT7hgWwANftuI53fjw8iI2uqnpp8BKBggD8HCg0SY5F\nFEEVtJe2M+2WaQx6BinxlFA6tRTPAg+BNwNcPnF5KFk4ToGqdE6OiRtUgW35MTGDyYvAIWj7qI3J\niyZTNqEsrRVQVSUy+yl4yCHD7pjCg4bPYrLHXwEGwdPlYcq8KaE7uNBJy+qyt8a2g8FDf0e/6XrO\n4TuCXC3zO9Y76dAFfkEbjGP0BaeSaLd4JdQv916mPxBnf0e4806kd6ezs5MlK5eYzxOs/dA32Ef3\nkW6Kniyi/65+M1TyE0yBKqsnJex7QAe0vdTGY688xrpb7e9KsiM/JjrH5dLgJQK9AQKDAQIE4ALw\n5bBf6CLiOx/wBEz+Shp7AZTbkf2U85Aj/H4/H574MHIcOTxv4QXgKJSXlFNbX8tt//M2vv7Nr4ey\nxUNV6sK77PMs2zs0KyKBHJFsEje/AEb8POG5GkXdRUM5BN1AL8NzCpJoN6s2wfEfH6frYBe9rb10\nHezi/rvuT9vMlLgzGY5hAgfr+aWM+D0YuHOAvc/uHfN+jMSO/Jhlk5fx1rffov2KdrondjPQM8Dg\n2UECS4J/nIlhn6mboRuMDH7ns7X2iQzJrrOgxBSq51DZMzy3wer2PQ5NpU1xuwKtk9Z7f/ke/bVx\nvrg5fkcQuusra3N1RcFkjbUrPPxu3u/3c9MdN9F2sc3ckS/FJDOGD4VdScrtNtKd91WvX8WxLx5j\n2sppY1pgLO7dbvRwSzlQychJk2n6HtiRH7PhaxvovL7T/J2WAEeAuzE3Ecsw+SPhM2g8ZPyzZmvt\nExmiv1AOCNVzuIJRcxvisU5as5+anVBhnlyUq2V+7egKt9rmxN+coGdZjwkQaohcKOoieN71EPhM\nIOXtRA9nTLpmEnUP1NH6ZCudN3aOKcku7t1urOGWwhjPWTL0PUhpim0Acx44hAmGajF/p9sYyoWy\ngomdZPyzRgS00TlWvXCs6FjO51hlOwUPOSB0R+Vh+Mp/g1DUXUTd/0isEl4+3xFYAZRvSdhJe2/U\nBczmioKZMOIFOcHPY7XN3Kfm0lrbap6MSmZkEMq+X8akjkkpbyfWnffah9fyyo2vjDnJLu6xHSt/\nw+EVKn0HfDy27TF2fWMXA3cODAuWzn/rPL0XekMVYcPb+qOzH0EfQwFDCUMBkjUs81xwQ7c581lD\nAa3VkxWVW9LT0ZPzOVbZLnevBHkk4o4q+oQOzNwxk+3rtif0XpnI9nY7p6dW2s3OzzPs7j3qrrHn\nXA+TmMTS319q212jdQf+sxd/Bg/GeVEC3etxj+1YU5kdXgxr2eRlPPToQyZwiBEsnV94npZHW7hw\n+4VhgUXxW8Vm2MUKFgJRDysXyppB48BnjdmTFfUZNevC3ZQwmQPGmhAXSyhxcpTCPJKfIo61LoYt\nmR1YFxi1+FS4RIoFWUWu+ktSS7KLOLYvYEptPwkcBv6VyIWvbiJji2HFsuFrG+gq6oqfi3DUrCwa\nK8mxb3KfSWi1ggUrFyW8cFY5MD74cyt/Jfo7/356Pqvf72fH5h20P9VOf3d/UgW5/H4/ax9ey9yl\nc5m9dDZzl85l7cNr8fv9tu6jjE7BQw6wc+2E6GzvwmcKKXi6gIKfFXD0/FGm3jJVleDyWMSxNoaV\nK6MlUv0yNEvCKpUdSwJB8rC1K6YH3+8zmB4Na7XZp8yjZEoJpYdKKX22NONVQfe9tW9ouCGWU8S/\n6C4Hz3nPUMAwAxMcTCcySLCCifBZWT5CbVD2apntn3Xzy5uZfvN0tl7eSuttrfRO6E04IIz+3cO3\nH6Z1eStbL29l+s3TeeyVx2zbTxmdhi1ygJ1rJ0R3cceaG5/uOeDiXhHHWicpz9VPpFhQKKcnxe71\nYWtXWAmDcVabva/0Pse6zPvpHzkXYaSaGhNg3BXj6H2pl4FfHxiadXE0+DsvYYpxBYB3MMFTLebz\nB88bZTvL+MaWb9heyyKU3B1dBTeBfIthvwuhY6XnUz3sfXZvWmpvSGwKHnKAHQlx8agSnIQLP9Y6\nujsIeOJ0BSSYpR8xfTJGZdOnu5+mZFJJZKJfjNlEZbvKWLxlcUKfIbRNa/ZBLA5PSy6iaOSpr9aw\nRJyL7hWVVzD3j+fyxnNvcLbgLIM/GzRtVQIFFQVUXVvFJ1d/kns+fg97n93LvuZ99NNPEUU0zm9k\n065NVFdX2/654lbBTSAgVGEpd1HwkAPSmeCnL6yECz/W5i6dS2ugNaUs/VACZlSVw/DKpp6XPJGJ\nflGziSaxK6RVAAAgAElEQVT2TeTdX7yb8MUutE0XVxJtnN9I69nW4bU0gsFSUVcR/e39cS+6ty2+\njSfWPZHQOSGTd+sjVsEdpddUhaXcRcGDjChfvrBjnVOfz+yYmRNKwBxhUa2+yX1Dd6fRs4mOw92l\ndyd1lxzapsPTMUeyaeMmfvQbP6JzSadZmtwKlnqh8FIhjQ83cuRfjtBJpyPLvI/VsOmy4QHhK0A3\nlE8qj9lrms/TyN1IrS0jypcvrFb5S54duTahAGSkRbWWg+fJ2MWnynYmPlwxbJsOT8ccSfPJZuZ/\neb4JZs+dobcoGMzONMFs/bR6KqZWmJ/bMFSZqeA5ZsCZYBVcTSN3l9w480va5MsXVrkdybMj1yYU\ngAy0jZgAOGPGDG4pvcWWsfnF9y7m2YeepeeTPbGHBcYYlNgpfHgo+sL+87/9Oa95XrP1wp6p4DmV\ngNPOxHBJnYIHGVG+fGGV25E8O3JtItZUGWE1zXHF42wL3tbduo57dt3D+o3r2V29m5PNJ7nUe4lx\nZeOY8rEpLPnkkrQlDI5FJi7smQqeUwk405kYLslT8CAjypcvbL7kdrhNxPTJ9q0Z6+Gqrq7Omp6k\nmBf2i8AhaPuojcmLJlM2oSylnohMBc+pBJy5Vvk126lIlIzIO89L05ImGlY1MOmaSZR4SugN9HLm\n/TO0/qCVrbu35kShKDurdLpFItUb7ZJq5b/F9y6mbGdZzMqmZTvLWHyvc0MITtv31r7IglDhlT2/\nCIEHA8MKayVLwbMkS8GDjCqRKoDZzs4qnW6Rqb+bHZX/1t26jmO7jtFU2kRDcwP1O+ppaG6gqbSJ\nY7uO5XXxn2EXdhsqe0bLxeBZ0kvBg4wqotvUppOV2+Timh6Z+rtFVP6L2o5V+S8R1lDCwdcO8s5r\n73DwtYM88Z0nXJN74JSIC3s3plJkEutBJCJm8NyNWf/jKTh0/JBjZekz2YMmiVM4mcUyNb0qH5IJ\nM5Hbkam/l12rUCYqH44PJ4VmPE3CFNIaj+1DDKEZKJ/qgSpMzYVjmNLVt0HAE0h7WXq/3x8qRx4+\no+ZPHv4T04OmadSuEu8QzISFQEtLSwsLFy50cDeyV6x1J8JnQuzZtseWu7bZS2dz+PbDcX9ev6Oe\nd157J+Xt5LpM/b1C2znbBg/Ef51dfzcdH+nl9/u56Y6bzHTWT2IKRt1H3JkpDc0NHHzt4Ji2c9dD\nd/H6rtcJ1ATMtmIlsI5Sj2EsNr+8ma+s+4oJXqK+G4UvFQ5fmjyN+5It9u/fz6JFiwAWAfszvX0N\nW2SxTHVLazzUHun6e0UnK9Y31tuyCmWidHykl9UrVnS6yFxYw5fWjpZCfk51dTUfv/rjphhXD7YP\njYwkYuirBzNc4gN2wsDAQEb3RRKTzuDhv2Fix2+mcRt5bVgWdjgbv1S5mEzohHT8vWIlK54rPpfW\ni0w0HR/p5Z3nZfu67cy8ZubQAmHhS2sT/O/7qc9MCR2j4et+WLkP/4xZrtsHh48dtjXfILTd8Jkk\n9wUfk9BMEBdK1y3BDcBDwNvEvyeRFGVqelW+FIpKt3T8veIuUzzKKpR1b9n3d9PxkRmhHh6bFgiL\nJXSMWut+dBN3wbK2LW225RuEthtrjRMXr0GSz9LR81ABPA38DnAmDe8vQZnqLra6TWs7ail/vpzi\n7xdT/nw5tR21oWTCbJXJTO50/L1i9mZYJ1vrInMI0wX8PfMo+nGRrX+3XD4+3CSih8daD+ILmLvz\nW+HuO5NbICyW0DFq9VqlYVroiNv1Y47n8N6OC6hny4XSEbJ9B/gh8DPgL9Lw/hKUqXUncrmyWyYX\nxErH3ytmb0b4gk8xVqG8v/R+s1yzTXL5+HCTiBkRaVqLI3SMWr1WkJGZNKHtehje29ET3JffwAQW\n6tlyBbt7HtYA84E/Df5bQxZppKp8qctkDYt01JIY1pvRDfQBLwDv27cdcV4mCmmFjtGPgM8C/WRs\naLTuzTroxQzHhPd2WD1ovwSeAs/jHvVsuYCdPQ/TgL8FlmMOAYhMu4npkUceoaqqKuI5r9eL15v9\n6yWkW/gCP3asNpiPMlmjwK5aEuH1Ik4ePTnUy9DF0B3brZgu51cxgcMFqJpTlVPrkeSjdK/JEX2M\ndvd2ZyTfwNruib85Qc+JnsjeMhjqQRuEOc1zxjQVNZv5fD58vsgh1LNnzzq0N4addR5WAf8KDIQ9\nZ00WGwBKibxHUp0HcVy21SjwHfDx2LbH2PWNXWbuu1U46DcwuQ0NaD682Gbtw2vZenlrxo4pv99P\nzYIa+n63L+5r3PaddEou1XloBj4B/FrwMR94A5M8OR8NYYgLZVONAr/fzwvfeIFX/++rQ0VzKhjq\n0m1D8+HFVhFDoxcwSYxPY4YP/t3DOyffSXjxs0Q0n2ympLIka76T+czO4KELaA17HMSkunwU/LeI\n62RLjQKrnsP33/w+gcpAZJBgdelWofnwYisrz2Lx6cV4nvSY+gtfAB6AwJcC7Jm0J+HFzxLhnedl\n9a+vzorvZL5Ld4VJa9KYiCtly4JYoXoOPUAJsYOEkb5tumOTMYqoPJni4meJyJbvZL5Ld/Dw68Af\npXkbImOWLTUKIir/xQoSujFpyrpjkzTIVDVbyJ7vZL7TrUgWirf63KaNmmGRrGypURBR+e9KhmZY\nwNAsC6tscXRFSc2HlxRlqpotZM93Mt9pYawsE2stg9blrWy9vNXWscd8EL2g1Nylc1n78FpbE8Ds\nElH5bwaRaxtYVQDrGV5R8ikoe6VMd2ySktDxF73OxT8D26HjdMeo1VgzWc1V0k89D1nE7/fz9T/6\neuy1DMLGHu0oFjPSPuRCr0fEEsBhNftbO1p59uZn+caWb6S1HZM1rPLfEkwa8qvAOYZqVURXlByE\n6c3T2b5ue0b3V3JL4/xGWt9tHQpUw74zdEDBjgKWTxm5Gmsmq7lK+qnnIUtYPQ5HzhxxbDpeLvV6\nRCwoleYEMDsMq/x3DLMOgFVVRbMsJI02bdxExasVcde5uHD7hVGrsWaymqukn4KHLBG62MXLtIe0\nXyiy7YI7kkwmgNkhIonsx+UUnymmvKSc2vpayj9WrlkWklbNJ5sJTAik9J1J9junYQ53U/CQJUJf\nPAen42XbBXckmUwAS8RoJ0qA7eu2c/zHx+k62EVvay9dB7s4/uPjmhcvaeed56VmUs3QdyY698EH\n7R3tI+YLJfudWzZ5GW1b2mivaad7dTd9n++j+3PdtNe0m+XARxkmkfRS8JAlQl88a8XEWNJ8oXDb\nBTcVbqssmcqJUvPiJRNC35kuTN7NHMxy4PcBXji//PyIw5fJfuc0zOFuCh6yROiLZ03Hi75QvJ/+\nC4XbLripcFtlyVROlJoXL5kQ+s5YSZNJDl8m+53LpZ7OXKTgIUuEvnjW8rTR0/FeTf90PLddcFPh\ntrv1VE6U3nneuEMa29dtN3PmRVIUWufiA8Z0rEaskxH1nSvbWcbiexdHvD6XejpzUfbcKua5TRs3\nsfOOnbTRZgoABZentQoA7dm2J+1TJYftQxYXIbJreWy76EQpbrfu1nXcs+seZt00i/Oe87FfNMKx\nav3++o3r2dccNdV71/Cp3qGezjQvBy5jo9bPEm642LlhH+zidBW76HoZx44e04lSXK+6upraybW0\nBlrHdKxWV1cnvIR3qLZJrOXAs6ynMxfpjJQlnL7YuWUfckHMAlXbiSw5HU4nSnGRTF3UF9+7mGcf\netZ8T6J6Ost2lrF4y+JR3kHSSTkPknecLksds17GzZhE2PcZGg++APwb8CJ8t/m7muMurpCpfCFr\nOfCm0iYamhuo31FPQ3MDTaVNHNt1zFUVYPNRvFHWTFgItLS0tLBw4UIHd0PyScRdv7VKZdjdTCbK\nUs9dOpfW22J0+3YDu6DkWAm1NbUcP36cvt/qg0mYDPdOs6+eLg9T5k1h3up5NC1pUkKkZJTvgI+t\nu7fS+oNWPvrVR1y8cBEGoaC0gHHl41j0a4t4/tHns6pcfTbav38/ixYtAlgE7M/09tXzkAWcvlPO\nJW6okhkzObIbeA04BYHCAKf9p4cCh+cxc+q/ADwAgS8FODH9hArliCOs2T1f3fBVAAK/GSDwpQAD\n/88A3au7ebX81awrVy/JU/Dgcm5dTyI6oJndOJvrFl7H7BtnuzrAccPc8WH1MqKK7vT9Th/nis+Z\n/RxhTr0K5YiT3BCIi3MUPLicG7+gwwKaJYc57D/MkYVHOLzysGsCnFjcMCVyWL2MeAGCB7P4lQrl\niAu5IRAX5yh4cDk3fkGHBTRjrDjnBDdUyRyWcBYrQLDWMPHgeLAjEosbAnFxjoIHl3PjFzQioOkG\njuK6ACceN1TJjC4nTRfD/8bWGiYOLoQmMpJkAnHlbeUeBQ8u54Y75WihgMYaqx9PSqvtZZIbylKH\nl5M++vJRJo6bOPxvbK1hMh7Hgx2RWBINxN2atyWpUfDgcm64U44WCmis4YpCUlptL5PctIiUdVI9\nV3lu+N/YWsNkAFPrIbz+wwjrAYhkSkQgfgFz0/A08BQU/XsRL+96mdk3zmZD0wbX5W1J6tTn6XJu\nrLIWqjDnx1RItLrYDzGU+2CJOkk4XdjFTVUyQ7kjV2CCrmVE/o1PQ1lfGV/7p69xcMfBhNYDEMkU\nKxA//c+nOXvoLHwGcz7ohv7n+zl2wzEznPk9Rh7WbHbPsKYkTsGDyyW7mEwmhAKagR5zJ7EUc/ED\nc/KIRSeJYfa9tW+oPPVqTJ2HVwkVrprYN5F3f/Gu+Rt/xsk9FRnOCsTXvr2WrfVbh24awhOoQUm/\nOUrBQxZIZjGZTLACmutuvI5zgXNDXew+dJJIQkQybDlmpdQwk3dMVs+CuF4oCIahBOrwm4jwmUPR\nlPSbtZTzIGNSXV3N3SvvHhqrL8ck97ksudPN3JgMK5KsEROoYWhYMxYl/WYtBQ8yZovvXUzZzrKh\nmQs6SSTFjcmwIsmKm0ANpieiD3iBmEm/mZrhJPZT8CBjFr3q3VVdV+F5waOZAQkaFnyB2kuyTigI\ntoqdWTcRVk/E9UAT8EtM8uRTwN9D1btVGZ/hJPZRv6ikJDofw+/3uyq5083cmAwrkqy4CdQTiUyc\nDM/pOQ6rSlfxxDr35HJJcrQkt4iIpMTv95sE6gfOmatKN6bmw0PETZRsaG7g4GsHM7qfuURLcouI\nSFaLmUA9Ac2+ymEKHiRv+A74WPHYCqatnEbF3ApKGkqomFvBtJXTWPHYCnwHfE7vokjWGpbDo3VZ\ncpqCB8kbyyYvo21LG+017XSv7qbv8310f66b9pp22ra0sXzKcqd3USRrRSdQV/ZWajZRDlPwIHlj\nw9c20LagLWaN/bYFbazfuN7BvRPJflYC9cHXDnLkF0ccX4RO0kfBg+SNiKXEo7ls6XCRbOemRejE\nfhp0krwRUQ46mhK4RGzlpkXoxH7qeRBbuTkpUeWgRUTsoeBBbOXmpESVgxYRsYeCB7GVm5MSVQ5a\nRMQe6qcVW0UszxutBvY1O5eUqHLQIiL2UPAgtopISuwGXsMsmOMBAtDe247f73fsQh29FoeIiCRP\nwxZiq1BSorWi3hzgvuDDC+eXn2f6zdN57JXHnNxNERFJgd3Bw+8B/wGcCz52A3fYvA1xsVBS4m6G\nVtSLyn3o+VQPe5/d69QuiohIiuwOHo4DGzArZi4Cfga8CMy1eTviUqGkxA9QQSYRkRxld/DwQ2Ab\n0AYcAf47cAHQHLg8YdW3ryysVEEmEZEclc6EyUJgNVAK7EzjdsRlqqurqZ1cS2ugFXoYljTJlaDY\nQUQke6UjYXIeJl3uErAFuBfTCyF5pHF+I7xLzKRJGqDteJuSJkVEslQ6eh5+CVwPTMT0PDwDfBrY\nH+vFjzzyCFVVVRHPeb1evF5vGnZNMmXxvYv57prvMnDngEmatASTJgfuHGDvs3tZd6sK34uIjMTn\n8+HzRZb2P3v2rEN7Y8QblbbTT4BjwO9GPb8QaGlpaWHhwoUZ2A3JtNk3zubwysOxj7JBaGhu4OBr\nBzO+XyIi2W7//v0sWrQIzOSEmDfn6ZSJOg8FGdqOuE0RSpoUEclBdg9b/B/gR5gpmxOANcCtwP+y\neTuSBUIFo+L0PGgVSxGR7GR3j0A18BQm76EZuAFYgan3IHlGq1iKiOQmu4OH3wFmAOOAycDtwE9t\n3oZkCa1iKSKSm9RvLGmjVSxFRHKTggdJK61iKSKSezQLQvKC3+9n7cNrmbt0LrOXzmbu0rmsfXgt\nfr/f6V0TEck6Ch4k521+eTPTb57O1stbab2tlcO3H6Z1eStbL2/V8uAiImOg4EFy3uvPvU7Pp3q0\nPLiIiE0UPEjO2/fWPi0PLiJiIwUPkvP66VelSxERGyl4kIxyInExVOkyFlW6FBFJmoIHyRinEhdV\n6VJExF4KHiRjnEpcVKVLERF7qb9WMmbfW/vgtjg/rIF9zelJXFSlSxEReyl4kIwZlrjYDbwG+AEP\nHLlwhLUPr2XTRvsv6Kp0KSJiHw1bSMZEJC52Ac8Bc4D7zKP3d3tVuElEJAsoeJCMiUhc3A0sQ4Wb\nRESykIIHyZiIxMVOVLhJRCRLKXiQjFl36zqO7TpGU2kTJZdKVLhJRCRLKXiQjLISF2ddMysjhZu0\nmqaIiP0UPIgjMlG4Satpioikh6ZqiiMW37uYZx961hSNqsGEsYNAR7Bw05bECzf5/X5Tw+EtU8OB\nPhjsH6TzdCc9twWLUlmikjLX3brO3g8mIpIHFDyII+wq3NTZ2cmSlUtoW9BmClB1A88DS4CfM3JS\nZpqKUomI5DoFD+IYOwo3rf6D1SZwmIYJHJ4DlmKmgo5HSZkiImmgnAfJaqfeP2V6F6yiUx7gKKaG\nRCFaTVNEJA0UPIijUpkN4ff7af+w3QQMVtGpEuAUJqCoRqtpioikgW69xDHD8hU8wCC0drSy846d\n7Nm2J27uw+aXN/OVdV+hZ6DH9C74Me8RCL6PBzN88RwmqAhPymyHsl3JJWWKiMgQBQ/imIh8BUtw\nNkQbbXzu9z/HK75XYv5uaHnvQ5jeBStgqAY+wAQR5cBqzOJbrxIKTib2TeTdX7yr1TRFRMZIwYM4\n5tT7p0ZcovtU86m4vxta3vsKTO8CmIBhKbAVE1BMwwQQt4f94nG4u/RuBQ4iIilQzoM4ZtgS3eGi\nZkOE50bUNdbxy1/90vyu1bsQwAQM5cC9wA+B9zHDFAT/ezxYQ+JeDVeIiKRCPQ/imNAS3bECiLDZ\nEBG5EUswdRzGMfS7VsAQnt/wALAL+Bl4LnuYctUUVixdkVQNCRERiU3BgzimcX4jre2tkTkPlrDZ\nEKHciCuAZ4HlDOU6WL8bnt/wUxjPeGZcPYPG32xk00YFDCIidlLwII5JtET1qfdPmR4Hq45DLUO5\nDuEzKcYDH4e6S3UjztQQEZHUKOdBHBO+RHf9j+upfKKSkn8oofLlSmqratn77F78fr/JfQiv4xCe\n63AI8AHfM/+t/GmlAgcRkTRTz4M4qrq6mr/6H3/FkpVLOL/8PNRCr6eX84PnOdxxmJ137KSwqBDO\nMFTHITzXIXwmxSDUNtcqcBARSTMFD+K4YetTvIYp+uSBtt42xl0eN7ROhVU1cpQ8CRERSR8FD+K4\nUL2HLsxMimVEVJy8dOQSbGOojoOqRoqIOErBgzguVO/BymuIrjhZD/wHQz0O0VUje2Fy2WQO7Dqg\nIQsRkQxQwqQ4LlTvwY+ZSRHLHVD8w2I4jhnCuB3wAp+CuivqOPCyAgcRkUxRz4M4LlTvwVqfIpYJ\nMO2aadxSegv7mvfRTz9FFNE4v5FN21THQUQkkxQ8iONC9R56e0asODmueBxPfOeJTO+eiIhE0bCF\nOM6q9zBr0iyT1xCLZlKIiLiGggdxherqav74m39M2c4yk9egBa1ERFzL7uDhT4FfAOeBD4F/w+TK\ni4wqvOJkQ3MD9TvqaWhuoKm0iWO7jrHu1nVO76KIiGB/zsMtwN9hAohi4H8BO4AGoMfmbUkOqq6u\nVl6DiIjL2R08rIz691qgE1iIWSBZREREsly6cx6qgv/9KM3bERERkQxJZ/DgAb4J7ARa07gdERER\nyaB01nn4NjAXuDmN2xAREZEMS1fw8HfAb2ESKD8Y6YWPPPIIVVVVEc95vV68Xm+adk1ERCR7+Hw+\nfD5fxHNnz551aG+MeMWAU3m/vwM+A3waaBvhtQuBlpaWFhYuXGjzboiIiOSu/fv3s2jRIoBFwP5M\nb9/unofvYJYr+gzQDUwJPn8WuGTztkRERMQBdidMfgmoBF7GDFdYj3tt3o6IiIg4xO6eB5W7FhER\nyXG62IuIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiIhI\nUhQ8iIiISFIUPIiIiEhSFDyIiIhIUhQ8iIiISFIUPIiIiEhSFDyIiKSB3+9n7dq1zJ07l9mzZzN3\n7lzWrl3LoUOHWLt2LbNnz2bixImUlJRQXFxMQUEBhYWFlJSUUFVVhdfrxe/3O/0xRGKye0lukbzk\n9/tZv349+/bto7+/n6KiIhobG9m0aRPV1dVO755kWGdnJ0uWLKGtrS3i+dbWVp5++mn6+/tj/l4g\nEGBwcJBz587xzDPPsHfvXvbt26djSFxHwYNIika6UOzcuZM9e/bo5J8nDh06xJ133snRo0fjviZe\n4BDLsWPHqKur4/XXX2fOnDl27KKILRQ8iKTA7/ezdOnSYYGDpa2tjVmzZlFbW8v1118PwNtvv50V\nvRPqTRmd1Ua7d++mvb2dnp4e27dx4cIFGhoaKC8vp6amhiVLluhvIHltIRBoaWkJiGSLzs7OQFNT\nU6ChoSEwc+bMQHFxcQBI6VFXVxfo7Ox09LPU19cHGhoaAk1NTYHOzs7AwYMHAxMmTIi5vxUVFYHW\n1taUt5HNOjs7A5///Odt+fvbdczkaltLbC0tLdbxsNDWK3MWUPAgWSPdF4tZs2Zl9CT/4YcfBurq\n6lLeb4/HEygpKQnMmjUrIqAYrb2Ki4sDa9asSfkz23nBtN6rvr4+UFlZGSguLg4UFxcHSkpKApWV\nlYH6+vpAU1NT4ODBg7a0nR0Pj8cT8Hg8I76moqIiUF9fH3rMmjUr7r8VcGQPp4MHjxMbDVoItLS0\ntLBwYd4FTq4T3UUNMDg4yODgIKdOneLSpUuMGzeOKVOm5F23abycBrsVFxfz2c9+lkcffTStbev3\n+2lsbOTYsWNp20aiiouLufPOOxk3btyw4Zz169ezadMmdu/ezcmTJ0PH4JVXXkkgEMDv99PV1RX3\nvYuKivB4Ik9xHo+HkpISCgoKCAQCBAIBLl++TCAQSDgXoaioKKm8hWxUXFzMNddcQ2FhIYODgxQU\nmIl5Grpyj/3797No0SKARcB+h3cno9TzkEGx7qqKiorGfMdTXFwcuhPLtbuU6LYa7c7O7ofH4wkU\nFRUFPB5PoKCgIDBhwoSItg7fv4qKitDriouLAxMnThzxjv7gwYOB8vJyx++YE3mkcny6+ZELn8up\nobZAQMMzFqd7Hpyk4CENWltbAzNmzMibE4nd7OrOT9fj2muvDUyfPj3hi1RdXV3oxPrhhx8GKioq\nHP8M+fywhnfsDOSdekycODHli3Z0DtHEiRMDEyZMCFRUVAwbLrKO4Xjfz1w6DyVCwYOCh5RZX8Br\nr73WsROJ9eXO9juCpqYmx0/K6XjU1dUF1qxZ4/h+5PNj2rRpI34XWltbszKIGOtFO9lAvaioaNRe\ns6amplS+/llFwYOChzFzOuM7mUciXepuUFNT43hbpesxceJEx/chXx+rVq1K6Lh3oufQjsdYLtrp\nCNQbGhrG8rXPSgoeFDyMyUhT6dz+mD59uqMBxEg9JPX19WP6TMXFxYHp06e7OpArKChwfB/y8TGW\nC2t4XoubjynrUVJSknQvY0NDg+37UVVVlXRbZysFDwoekpYLY9dOdS+ONmY6derUpD5H9JTDeIFJ\n+Di3UxeDwsJCx//u+fawYxy+s7PT1Xk44Y+ysrLA5s2bE/pcVVVVtm9fPQ+ZowqTWWjDhg0jTlHL\nBtu2bXNkuxs2bBi1GmQiCgoKeOCBB4ZNWauuruaJJ56I+TvW836/n9///d/nmWeeSXLvU1NaWppU\nBUSPx8PMmTO54YYbADM17OTJk3R3dzMwMJD09qdNm8bJkyfp6+tL6PVumBJZVFREQUFBaIqo3+/n\nwoULw143ffp0Fi9enJbqodXV1ezZsydUyfLkyZNcvHiRQCAQ8XfweDyMHz+e3t7emG1cXFzMtGnT\nKCgoCE29BEJTMfv7+zl+/HjCf59Yenp62Lt3L+vWrRv1tVdffTVnz54d87ZiaWxstPX9xJ3U8zBG\n6ejuc+IRPQUxE0Yblqivr0/oLm/NmjVp3xe7H2vWrBnxs3k8noRzUzo7OwOrVq1KqBelvLw8VEAq\nVs/MmjVrAmvWrBmxt2a0nraKiorA9OnTAzNnzowo8BT9KCkpCVRUVAQqKytDWf3xikHF+vzZkBSc\nyj5G/65VRKqystL2u3+7cx402yJ/KHgYo3R091mP8vLywPTp0yMqzs2aNSvtF7ZMfPE3bdo06n5U\nVlYGOjs7A2vWrImb+W5XzkYmZ3ZMmDAhokZEOi5+6b6wZsOFO1clM3RSX19v+3uO9igsLMy740DB\ng4KHpKWj52Gk9QoyNeaarsJT1qyURIo9FRcXj5q/YOfFMF67ejyewKpVqwKrVq1KqO0KCgrifr5k\n1qIQicf6PpSUlIx4LCaTdxCvzkOyhczs6AnMNgoeFDwkLZk71ugLx1gviJnO/rZr7YOxFH3KZDLn\naH+PzZs3B8aPHx83wJg6deqwypO6M5d0Gu38Y9f3x+oBHO184/TsLacoeFDwkLTR7linT5+e1gtH\nZ2dnRoYyIHJRn/DPlOgiRmMpjFRTU2N7m6VCQYG4yebNmwNlZWUxvzvJzLZIVPR3PZHclHzgdPCg\nhQjGSv4AAAgHSURBVLGyVPRCVplesMbv93PTTTfFnLlQVFTEuHHj6O7uJhAI2L5ta8GjRLLCPR5P\n0vtQX1/PO++8M9bdE8l5Tp9/xPmFsTRVM0uNNCUwU9u3po/FO4GMFGCkIpnpe2MJXoqK9LUQGYnT\n5x9xns6SMmajnUCsAMOJmgapuPLKK53eBRERVysY/SUiY1ddXY3P52PNmjVO70pC6urqeP75553e\nDRERV1PwIBnx6KOPUldX5/RuDFNZWUldXR0NDQ00NTWxZ88ejdmKiIxCwxaSEdE5EpcuXeL06dMM\nDg4yODhId3d3xvdp5syZtudjiIjkAwUPkjEj5Uh4vd6M50WMGzcuo9sTEckVGrYQV3BiWEOJkSIi\nY6PgIc/4fD6ndyEma1ijqamJ+vp6KisrKSkpoaKiguLi4lF/v6ysjL/+67+mqamJhoYG6uvrqa+v\nZ8KECTFfn8nESLe2eS5Tm2ee2jy/pGPY4hbgTzBFoKYCdwMvpGE7MgY+nw+v1+v0bsQUb1gjvCCN\nlSsBpuegtLR0xOI0bihm4+Y2z1Vq88xTm+eXdAQPZcCbwOPAv2LKZ4qMWSoFaVTMRkTEfukIHrYF\nHyIiIpKDlPMgIiIiSXF8quahQ4ec3oW8cvbsWfbvz/gaKnlNbZ55avPMU5tnltPXznSvqjkIrAJe\njPGzqcAvgJo074OIiEgu6gBuAE5kesNO9jycwHzoqQ7ug4iISLY6gQOBAzg/bOHYBxcREZGxSUfw\nUA5cF/bvmcB84DRwPA3bExERkSz3aUyuwyAwEPb//+TgPomIiIiIiIiIiIiIiIiIiEj+2shQ/oL1\n+CDqNXMwNR3OAueBPcC0qNfcBPwM6ALOAD8HxoX9/FiM7fzvqPe4Bvj34Hv4gb8FRl96MftsJLU2\nnx7j963HZ8PeYxLw3eB7nAWeAiZGbUdtPsSONj8W4+c6zsd+brka+B5wEtNe+4lsb9BxHm4jmWnz\nYzG2o+N87G1eB/wb0AmcA74PXBX1Hq47zjcCbwd31Hp8LOzndZgZFf8X+DXMSXQlEL504U2YD7Me\n00h1wD1ASdhrjgJfjdpOedjPC4EDQHNwO8uAduDRVD+gC20ktTYviPrdq4A/xxx0ZWHv82PgP4Ab\ngcXBbYYX9lKbD7GrzXWcD9lI6ueWnwN7gU8Gf/5VoB8z08ui43zIRjLT5jrOh2wktTYvB9qA54G5\nwCcwgcTrRBZ8dN1xvhGzWmY8zwBPjvIee4GvjfKao8AfjPDzlZgDdErYc58HLgIVo7x3ttlI6m0e\n7U3gH8L+PQcTAd8Q9tyNweesKbdq8yF2tDnoOA+3kdTb/ALwhajnTgFrg/+v4zzSRtLf5qDjPNxG\nUmvz2zFtFd4uVZhjeFnw3xk7zpNdGOs6TDnMXwE+YEbY+/wm8C6wHfgQEyh8Jux3rwIaMV0kuzFd\nXS8DS2NsZwPmIHwT+DMiu1NuwkRNJ8Oe2wGUAouS/DzZIJU2j7YIE2k+HvbcTZi74l+EPfd68Lkl\nYa9Rm9vX5hYd50NSbfMfAmswXbYFwf8vwZxjQMd5LOluc4uO8yGptHkpEAB6w567jAkMrOuoK4/z\nO4C7Md0lyzBdVieAKzARzCBm/OQPgOsxB8wAcEvw9xcHX3MK+CLmhPoN4BIwK2w7jwCfwnTJPIgZ\n2wm/a9tC7CW/L2Gip1ySaptH+/+A/4x67s+Ad2K89p3g+4Ha3O42Bx3n4exo8/GYbthBzMn1LEN3\nY6DjPFom2hx0nIdLtc2vxLTxNzFtXw58O/h7fx98TVYc52WYD/6HmPUpBoGno17zAiahBkzUMwj8\nZdRr/oPhCTTh7gn+3qTgv7dgIrNouXiwRUu2zcONxxx4fxj1fKIHm9rcvjaPRcf5kLG0+b9ikst+\nHZgH/AUmIfsTwZ/rOB9ZOto8Fh3nQ8bS5rcBRzBBRR9mmOMN4DvBn2fsOE922CJcD6brYxamN6Ef\naI16zS8xWZ0wtIZF9GsOhb0mlteD/7V6J04Ck6NeMwnTXXaS3JZsm4f7HOZi9lTU8ycZnq1L8LmT\nYa9Rm9vX5rHoOB+SbJvPwaze+yDmbu4A8D8xJ9WHg6/RcT6ydLR5LDrOh4zl3PKT4OurMcmWXwRq\nMcMgkMHjPJXgoRRowAQFfZgxlo9HvaYeM1WH4H8/iPGa2WGviWVB8L9W8LEbE9mGf/jbMWM/LQnu\ne7ZKts3DPYiJYk9HPb8HM40nOsFmIqatQW1ud5vHouN8SLJtbp3HBqJeM8hQFrqO85Glo81j0XE+\nJJVzy0eYqZzLMIGENZvClcf532DGXmYEd+bfMV2y1hzUVcGN/w4mMvoypkGWhL3HHwR/57PB1/y/\nQDdDSSOLMV0484PP3YuZQvJvYe9RgJl68pPg65YB72PmqeYaO9qc4M8GMAdILD8C3iJyas8LYT9X\nm9vb5jrOI6Xa5oWYO7ZXMCfNOuArmPa/I2w7Os6HZKLNb0LHeTg7zi1rMcduHXA/psfir6O247rj\n3IfJEr2MOQCeY3iUtBY4jOmO2Q/8doz32RDc0S5gF5ENswATOZ0JvschzDjauKj3mIZp+G5M432L\n3CwqYleb/29G7t2pwhQVORd8PAVURr1GbT4k1TbXcR7JjjafGfy9E5hzy5sMn0ao43xIJtpcx3kk\nO9r8/2Da+zJmSOORGNvRcS4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiKO+v8Bl+sGsAOf55gAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f64bbe07d10>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"t2, l2, l2e = np.loadtxt(echo_file).T\n",
|
|
"errorbar(t1, l1, yerr=l1e, fmt='o', color=\"green\")\n",
|
|
"errorbar(t2, l2, yerr=l2e, fmt='o', color=\"black\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 4.348e-01 6.523e+01 inf -- -3.028e+02 -- 1 1 1 1 1 1 1 1\n",
|
|
" 2 7.699e-01 6.427e+01 8.100e+01 -- -2.218e+02 -- 0.580653 0.565804 0.565201 0.565214 0.565618 0.565947 0.565564 0.568603\n",
|
|
" 3 3.354e+00 6.351e+01 8.006e+01 -- -1.417e+02 -- 0.182695 0.132486 0.130058 0.130216 0.131744 0.132399 0.131339 0.138486\n",
|
|
" 4 1.556e+00 6.272e+01 7.903e+01 -- -6.268e+01 -- -0.16907 -0.296462 -0.306097 -0.304877 -0.301753 -0.300835 -0.302915 -0.292641\n",
|
|
" 5 5.969e-01 6.132e+01 7.726e+01 -- 1.458e+01 -- -0.432204 -0.709149 -0.744405 -0.7396 -0.734995 -0.733546 -0.736839 -0.725614\n",
|
|
" 6 3.744e-01 5.885e+01 7.418e+01 -- 8.877e+01 -- -0.574318 -1.06985 -1.18591 -1.17296 -1.16819 -1.16502 -1.16974 -1.15872\n",
|
|
" 7 2.704e-01 5.526e+01 6.977e+01 -- 1.585e+02 -- -0.632315 -1.30174 -1.62986 -1.60311 -1.60167 -1.59376 -1.60104 -1.58978\n",
|
|
" 8 2.118e-01 5.083e+01 6.476e+01 -- 2.233e+02 -- -0.652594 -1.36692 -2.06821 -2.02717 -2.03482 -2.01697 -2.03052 -2.01815\n",
|
|
" 9 1.754e-01 4.545e+01 5.869e+01 -- 2.820e+02 -- -0.636309 -1.38302 -2.45398 -2.43781 -2.46343 -2.42984 -2.45896 -2.44563\n",
|
|
" 10 1.490e-01 3.871e+01 4.984e+01 -- 3.318e+02 -- -0.605808 -1.40775 -2.67391 -2.81453 -2.87421 -2.81781 -2.88685 -2.87465\n",
|
|
" 11 1.236e-01 3.039e+01 3.772e+01 -- 3.696e+02 -- -0.57763 -1.42753 -2.69296 -3.11171 -3.23381 -3.14653 -3.31141 -3.30288\n",
|
|
" 12 9.229e-02 2.069e+01 2.286e+01 -- 3.924e+02 -- -0.556681 -1.44088 -2.69001 -3.27817 -3.48572 -3.34948 -3.71554 -3.7112\n",
|
|
" 13 5.640e-02 1.099e+01 9.621e+00 -- 4.020e+02 -- -0.542063 -1.44901 -2.6978 -3.33497 -3.57555 -3.3977 -4.04347 -4.0537\n",
|
|
" 14 2.620e-02 4.040e+00 2.310e+00 -- 4.043e+02 -- -0.533703 -1.45096 -2.69258 -3.36521 -3.54261 -3.39935 -4.19655 -4.28234\n",
|
|
" 15 9.422e-03 1.233e+00 3.575e-01 -- 4.047e+02 -- -0.531223 -1.44814 -2.69847 -3.37914 -3.48828 -3.41313 -4.19651 -4.39454\n",
|
|
" 16 5.169e-03 4.540e-01 5.788e-02 -- 4.048e+02 -- -0.532521 -1.44581 -2.70748 -3.37398 -3.45542 -3.42428 -4.19558 -4.43406\n",
|
|
" 17 2.718e-03 2.442e-01 1.172e-02 -- 4.048e+02 -- -0.533779 -1.44399 -2.71046 -3.36898 -3.43756 -3.43204 -4.19666 -4.4455\n",
|
|
" 18 1.439e-03 1.307e-01 3.039e-03 -- 4.048e+02 -- -0.534412 -1.44278 -2.71234 -3.36531 -3.42821 -3.43643 -4.19795 -4.44912\n",
|
|
" 19 7.592e-04 6.935e-02 8.433e-04 -- 4.048e+02 -- -0.534752 -1.44211 -2.71311 -3.36323 -3.42328 -3.43886 -4.19871 -4.45056\n",
|
|
" 20 4.030e-04 3.692e-02 2.371e-04 -- 4.048e+02 -- -0.534926 -1.44173 -2.71356 -3.36205 -3.42068 -3.44015 -4.19914 -4.45124\n",
|
|
" 21 2.137e-04 1.961e-02 6.686e-05 -- 4.048e+02 -- -0.53502 -1.44153 -2.71378 -3.36142 -3.4193 -3.44084 -4.19936 -4.45158\n",
|
|
"********************\n",
|
|
"-0.53502 -1.44153 -2.71378 -3.36142 -3.4193 -3.44084 -4.19936 -4.45158\n",
|
|
"0.23132 0.206392 0.257293 0.247733 0.190033 0.14318 0.192361 0.189515\n",
|
|
"-0.000780421 0.00249097 -0.00128998 0.00612834 0.0196141 -0.0166488 -0.00464909 -0.00601261\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"P2 = clag.clag('psd10r', [t2], [l2], [l2e], dt, fqL)\n",
|
|
"p2 = np.ones(nfq)\n",
|
|
"p2, p2e = clag.optimize(P2, p2)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\t### errors for param 0 ###\n",
|
|
"+++ 4.048e+02 4.043e+02 -5.351e-01 -3.037e-01 0.864 +++\n",
|
|
"+++ 4.048e+02 4.039e+02 -5.351e-01 -1.881e-01 1.82 +++\n",
|
|
"+++ 4.048e+02 4.041e+02 -5.351e-01 -2.459e-01 1.3 +++\n",
|
|
"+++ 4.048e+02 4.042e+02 -5.351e-01 -2.748e-01 1.07 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -5.351e-01 -2.893e-01 0.967 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -5.351e-01 -2.821e-01 1.02 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -5.351e-01 -2.857e-01 0.993 +++\n",
|
|
"\t### errors for param 1 ###\n",
|
|
"+++ 4.048e+02 4.043e+02 -1.441e+00 -1.235e+00 0.928 +++\n",
|
|
"+++ 4.048e+02 4.038e+02 -1.441e+00 -1.132e+00 1.97 +++\n",
|
|
"+++ 4.048e+02 4.041e+02 -1.441e+00 -1.183e+00 1.41 +++\n",
|
|
"+++ 4.048e+02 4.042e+02 -1.441e+00 -1.209e+00 1.16 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -1.441e+00 -1.222e+00 1.04 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -1.441e+00 -1.229e+00 0.983 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -1.441e+00 -1.225e+00 1.01 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -1.441e+00 -1.227e+00 0.997 +++\n",
|
|
"\t### errors for param 2 ###\n",
|
|
"+++ 4.048e+02 4.046e+02 -2.714e+00 -2.585e+00 0.296 +++\n",
|
|
"+++ 4.048e+02 4.045e+02 -2.714e+00 -2.521e+00 0.647 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -2.714e+00 -2.489e+00 0.868 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -2.714e+00 -2.473e+00 0.989 +++\n",
|
|
"+++ 4.048e+02 4.042e+02 -2.714e+00 -2.465e+00 1.05 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -2.714e+00 -2.469e+00 1.02 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -2.714e+00 -2.471e+00 1.01 +++\n",
|
|
"\t### errors for param 3 ###\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.361e+00 -3.113e+00 0.873 +++\n",
|
|
"+++ 4.048e+02 4.038e+02 -3.361e+00 -2.990e+00 1.95 +++\n",
|
|
"+++ 4.048e+02 4.041e+02 -3.361e+00 -3.051e+00 1.36 +++\n",
|
|
"+++ 4.048e+02 4.042e+02 -3.361e+00 -3.082e+00 1.1 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.361e+00 -3.098e+00 0.985 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.361e+00 -3.090e+00 1.04 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.361e+00 -3.094e+00 1.01 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.361e+00 -3.096e+00 1 +++\n",
|
|
"\t### errors for param 4 ###\n",
|
|
"+++ 4.048e+02 4.045e+02 -3.419e+00 -3.229e+00 0.635 +++\n",
|
|
"+++ 4.048e+02 4.040e+02 -3.419e+00 -3.134e+00 1.47 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.419e+00 -3.181e+00 1.01 +++\n",
|
|
"\t### errors for param 5 ###\n",
|
|
"+++ 4.048e+02 4.044e+02 -3.441e+00 -3.298e+00 0.824 +++\n",
|
|
"+++ 4.048e+02 4.039e+02 -3.441e+00 -3.226e+00 1.85 +++\n",
|
|
"+++ 4.048e+02 4.041e+02 -3.441e+00 -3.262e+00 1.29 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.441e+00 -3.280e+00 1.04 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.441e+00 -3.289e+00 0.93 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.441e+00 -3.285e+00 0.985 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.441e+00 -3.282e+00 1.01 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -3.441e+00 -3.283e+00 0.999 +++\n",
|
|
"\t### errors for param 6 ###\n",
|
|
"+++ 4.048e+02 4.046e+02 -4.199e+00 -4.103e+00 0.303 +++\n",
|
|
"+++ 4.048e+02 4.044e+02 -4.199e+00 -4.055e+00 0.684 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -4.199e+00 -4.031e+00 0.933 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -4.199e+00 -4.019e+00 0.966 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -4.199e+00 -4.013e+00 1.03 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -4.199e+00 -4.016e+00 0.999 +++\n",
|
|
"\t### errors for param 7 ###\n",
|
|
"+++ 4.048e+02 4.043e+02 -4.452e+00 -4.262e+00 0.879 +++\n",
|
|
"+++ 4.048e+02 4.038e+02 -4.452e+00 -4.167e+00 2.03 +++\n",
|
|
"+++ 4.048e+02 4.041e+02 -4.452e+00 -4.215e+00 1.39 +++\n",
|
|
"+++ 4.048e+02 4.042e+02 -4.452e+00 -4.239e+00 1.12 +++\n",
|
|
"+++ 4.048e+02 4.043e+02 -4.452e+00 -4.250e+00 0.996 +++\n",
|
|
"********************\n",
|
|
"-0.535069 -1.44142 -2.7139 -3.36108 -3.41857 -3.44121 -4.19949 -4.45176\n",
|
|
"0.249396 0.214451 0.243242 0.265109 0.23744 0.157753 0.183354 0.201379\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"p2, p2e = clag.errors(P2, p2, p2e)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Container object of 3 artists>"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAFrCAYAAABbtho0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9w2+dh3/G3LNPm4rRWZE2AbNlCjVaBYsvOyFCVxFil\nsrSXePnRJa0KLLldyGjOWnc+bYtvWnvifNSuWxtf47rpj1Ntuutig9KuzRrtrNptCtUuRacMmdjW\nLNQZSNBWLEB1FLmtEyqMrf0B0qKUL0WCxBcggPfrDkcSeB48j6zH0IfP9/k+D0iSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJEmSJGmJ/jMwDPw9UAS+BGysaY8kSdKycAT418Am4DbgMJAH3lbD\nPkmSpGVoDfAm8N5ad0SSJM3viiq2tWr665kqtilJkpa5FZQuN/xVrTsiSZIW5soqtfMF4BYuf6lh\n3fRDkiSV59T0o6KqERJ+G/gQsAN4ZY4y666//vpXXnllrpclSdJlfAvooMJBIcyQsIJSQPgo0AVM\nXKbsuldeeYUvfvGLbNq0KcQuVd6ePXt44IEH6rK9pbxXuXXLKb+QsvOVudzr1f47qxTHWuXLO9aC\nOdYqXz7MsXbixAk++clP3kBpNr5uQsLvAClKIeF1IDr9/FlgMqjCpk2baGtrC7FLlbdq1aqq9rmS\n7S3lvcqtW075hZSdr8zlXq/231mlONYqX96xFsyxVvnyYY+1sKwM8b0PA1cD3cB/nPX4JvDsJWXX\nAZ/5zGc+w7p19bcsYfPmzXXb3lLeq9y65ZRfSNn5ysz1ejqdJpVKLbgvy4ljrfLlHWvBHGuVLx/W\nWDt16hQHDhwAOECFZxJWVPLNlqANGBkZGanL1K368pGPfIQvf/nLte6GmoBjTdUwOjpKe3s7QDsw\nWsn3ruY+CZIkqY4YEtR06nX6V/XHsaZ6Z0hQ0/GDW9XiWFO9MyRIkqRAhgRJkhTIkCBJkgIZEiRJ\nUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJ\ngQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgQwJkiQpkCFBkiQF\nMiRIkqRAYYaEHcBh4FvAm8BHQ2xLkiRVWJgh4W3A14G7p38+H2JbkiSpwq4M8b3/bPohSZLqkGsS\nJElSIEOCJEkKZEiQJEmBwlyTULY9e/awatWqi55LpVKkUqka9UiSpOUjnU6TTqcveu7s2bOhtbci\ntHe+2JvAzwJfnuP1NmBkZGSEtra2KnVJkqT6Nzo6Snt7O0A7MFrJ9w5zJuEa4Cdm/Xwz8G7g28DL\nIbYrSZIqIMyQ0AH85fT354HfnP7+D4GeENuVJEkVEGZIOIoLIyVJqlv+Iy5JkgIZEiRJUiBDgiRJ\nCmRIkCRJgQwJkiQpkCFBkiQFMiRIkqRAhgRJkhTIkCBJkgIZEiRJUiBDgiRJCmRIkCRJgcI84Emq\nmfTzadLH0wBM/mCSidcm2HDtBlqvbAUgdWuK1OZULbsoScueIUENKbX5QggYPTVK+4F20h9P07au\nrcY9k6T64eUGSZIUyJCghpXP5+m5u4ddH9sFj8Guj+2i5+4e8vl8rbsmSXXByw1qOMVikeTuJNkz\nWQrvKsAHSs/nyJE7mePIJ46QWJ1g4KEBIpFIbTsrScuYIUENpVgssv3O7YxtHYP3BBRYD4X1BQqn\nC3Te2cng44MGBUmag5cb1FCSu5OlgLB2noJrIbc1R3J3sir9kqR6ZEhQwxgfHyd7Jjt/QJixFrJn\nsq5RkKQ5GBLUMPbfv7+0BqEMhU0F+u7vC6lHklTfDAlqGMPPDcP6Miuth+Fnh0PpjyTVO0OCGsbU\nG1PlV1oBU28uop4kNQFDghpGy8qW8iudh5YrFlFPkpqAIUENo+O2DjhZZqWTsOX2LaH0R5LqnSFB\nDaP33l6iL0TLqhM9EWXfZ/eF1CNJqm+GBDWMWCxGYnUCTi+wwmlIrE4Qi8XC7JYk1a2wQ8IvAePA\n94CvAe8NuT01uYGHBog/E58/KJyG+DNxDj58sCr9kqR6FGZI+AXg88B+4N3A08AR4MYQ21STi0Qi\nDD4+SNdLXUSfjMLLwPnpF88DL0P0yShdL3Vx7Mgx1q5d6M5LktR8wgwJ/wF4COgH/hb495Q+sn8x\nxDYlIpEImcMZhh4doru1m/gTcXgM4k/E6W7tZujRITKHMwYESZpHWAc8XQW0Ab92yfNPAttDalO6\nSCwWo/8L/YyeGqX9QDuH7jpE27q2WndLkupGWDMJa4CVQPGS508D5S0/lyRJNeFR0WpI6efTpI+n\nAZj8wSQbr9vI3r/YS+uVrQCkbk2R2pyqZReXhUv/O028NsGGazf430kSACtCet+rgNeBnwP+dNbz\nvwXcBuy8pHwbMHLHHXewatWqi15IpVKkUn5ISWHJ5/P0fa6Pp0afIncmR3x1nB1tO+i9t9fbQ6Vl\nJp1Ok06nL3ru7NmzPP300wDtwGgl2wsrJAA8A4wAd8967gXgS8CvXlK2DRgZGRmhrc1rxlI1FItF\nkruTZM9kS6dnzj4c6yREX4iSWJ1g4KEBIpFIzfop6fJGR0dpb2+HEEJCmJcbfhP4n5T2R3gGuIvS\nx9Dvh9impAUoFotsv3M7Y1vH4D0BBdZDYX2BwukCnXd2Mvj4oEFBakJh3gJ5CNgD9AJfp7SR0p2U\nboOUVEPJ3clSQJjvLtC1kNuaI7k7WZV+SVpewt5x8feAHwNagQ7gr0NuT9I8xsfHyZ7Jzh8QZqyF\n7Jks+Xw+zG5JWoY8u0FqMvvv319ag1CGwqYCfff3hdQjScuVIUFqMsPPDV+8SHEh1sPws8Oh9EfS\n8mVIkJrM1BtT5VdaAVNvLqKepLpmSJCaTMvKlvIrnYeWKxZRT1JdMyRITabjtg44WWalk7Dl9i2h\n9EfS8mVIkJpM7729RF8o7wiV6Iko+z67L6QeSVquPLtBDWn21qWTk5NMTEywYcMGWlunzyRo4u2+\nY7EYidUJCqcLC7sN8jQkVifcollqQmFuy1wOt2VWaGa2LHV8XVAsFum8s5Pc1tzlg8JpiD8T59iR\nY6xdu9CNFSRVU5jbMnu5QWpCkUiEwccH6Xqpi+iT0dI+qOenXzwPvAzRJ6N0vdRlQJCamCFBDSuf\nz9PT08OuXbsA2LVrFz09Pe4cOC0SiZA5nGHo0SG6W7uJPxGHxyD+RJzu1m6GHh0iczhjQJCamGsS\n1HCKxSLJZJJsNkuhcGFnwVwuRy6X48iRIyQSCQYGPN0w/Xya9PE0dMLNP3kzK19byYZrN/Dqla9y\nz9A9pP4hRWpzc67dkGRIUIMpFots376dsbGxOcsUCgUKhQKdnZ0MDjb36YapzYYASXPzcoMaSjKZ\nvGxAmC2Xy5FMerqhJM3FkKCGMT4+TjabLatONuvphpI0F0OCGsb+/fsvWoOwEIVCgb4+TzeUpCCG\nBDWM4eHFnVK42HqS1OgMCWoYU1OLO6VwsfUkqdEZEtQwWloWd0rhYutJUqMzJKhhdHR0LKreli2e\nbihJQQwJahi9vb1Eo2WebhiNsm+fpxtKUhBDghpGLBYjkUiUVSeR8HRDSZqLIUENZWBggHg8vqCy\n8XicgwcPhtwjSapfhgQ1lEgkwuDgIF1dXXNeeohGo3R1dXHsmKcbStLlGBLUcCKRCJlMhqGhIbq7\nu9+aWYjH43R3dzM0NEQm4+mGkjQfD3hSw4rFYvT39zM6Okp7ezuHDh2ira2t1t2SpLrhTIIkSQrk\nTIIaUjqdJp1OAzA5OcnGjRvZu3cvra2tAKRSKVIpj0iWpMsxJKghGQIkaenCutzwq8Ax4LvAd0Jq\nQ5IkhSiskNACHAR+N6T3lyRJIQvrcsN9018/FdL7S5KkkHl3gyRJCmRIkCRJgcq53HAf0DtPmfcA\no4vujSRdRvr5NOnj07e2/mCSidcm2HDtBlqvnL619dYUqc3e1SJVSjkh4beBx+YpM7GEvrBnzx5W\nrVp10XPeyiZpRmpzim0/so2+z/Xx1OhT5M7keGP1G+xo20Hvvb2e6KmGN3sPmBlnz54Nrb0Vob1z\nyaeAzwPvmKdcGzAyMjLitrmSAhWLRZK7k2TPZCm8qwDrZ714EqIvREmsTjDw0ACRSKRm/ZSqbWbr\neaCdCs/mh3V3w03A6umvK4HbKQWSbwKvh9SmpAZVLBbZfud2xraOlS5qXmo9FNYXKJwu0HlnJ4OP\nDxoUpAoIa+FiH6U0cx9wDfB1YIRSypGksiR3J0sBYb6DO9dCbmuO5O5kVfolNbqwQsKnpt/7Ckoz\nCTNfnwqpPUkNanx8nOyZ7PwBYcZayJ7Jks/nw+yW1BS8BVLSsrb//v2lNQhlKGwq0Hd/X0g9kpqH\nIUHSsjb83PDFixQXYj0MPzscSn+kZmJIkLSsTb0xVX6lFTD15iLqSbqIIUHSstaysqX8Sueh5YpF\n1JN0kbBugZRUB2ZvzDI5OcnExAQbNmygtXV6B8NlsJlZx20dHD95vLxLDidhy+1bQuuT1CycSZCa\nWCqV4sEHH2TNmjWMjY3x4osvMjY2xpo1a3jwwQdrHhAAeu/tJfpCtKw60RNR9n12X0g9kpqHMwlS\nkyoWiySTSbLZLIXChbsHcrkcuVyOI0eOkEgkGBio7Q6GsViMxOoEhdOFhd0GeRoSqxNu0SxVgDMJ\nUhMqFots376do0ePXhQQZisUChw9epTOzk6KxWKVe3ixgYcGiD8Th9PzFDwN8WfiHHz4YFX6JTU6\nQ4LUhJLJJGNjYwsqm8vlSCZru4NhJBJh8PFBul7qIvpkFF4Gzk+/eB54GaJPRul6qYtjR46xdu1C\nd15amPTzad7/4Pu56YM38fbNb+eqd13F2ze/nZs+eBPvf/D9pJ9Pz/8mUh3ycoPUZMbHx8lms2XV\nyWZLOxjWcgo/EomQOZwhn8/Td38fTz1ROgUyvjrOjvYd9D4azimQxWKRA79y4MLBUltLz08xxesn\nX2fq4BQH/vwA73vofZ4XoYZjSJCazP79++e8xDCXQqFAX18f/f39IfVq4WKxGP1f6Gf01CjtB9o5\ndNch2taFc3qsB0up2RkSpCYzPLy4nQgXW6+S0s+nSR+fvmXzB5NsvG4je/9iL61XTt+yeWuK1ObK\n3ZGxmIOlMoczFWtfqjVDgtRkpqYWtxPhYutVUmpzZUPA5bx1sFTQDEKQtZD9Ru0vy0iV5MJFqcm0\ntCxuJ8LF1qtXHiwlGRKkptPR0bGoelu2NNcOhh4sJRkSpKbT29tLNFrmDobRKPv2NdcOhh4sJRkS\npKYTi8VIJBJl1Ukkmm8HQw+WkgwJUlMaGBggHo8vqGw8HufgwebbwbDjtg44WWYlD5ZSgzEkSE0o\nEokwODhIV1fXnJceotEoXV1dHDtW+R0M64EHS0mGBKlpRSIRMpkMQ0NDdHd3vzWzEI/H6e7uZmho\niEwm05QBAS4cLDXveREzPFhKDch9EqQmF4vF6O/vZ3R0lPb2dg4dOkRbWzg7GNabgYcG6Lyzk9zW\n3OU3VJo5WOpI812WUWMzJEhNLJ1Ok05P72A4OcnGjRvZu3cvra3TOximUqRS1dm8aDmaOVgquTtJ\n9htZCpsKpdsiV1A6WOpk6RJDYnWCg0cONu2sixqXIUFqYs0eAhaiVgdLScuBIUGS5vHWmRGdcPNP\n3szK11ay4doNvHrlq9wzdA+pf6jedtFSNRkSJGke1TwzQlpOvLtBkiQFMiRIkqRAhgRJkhQorJAQ\nAx4GxoDvAv8PuA9wU3NJkupEWAsX30npTuK7KAWEzcAfANcA94bUpiRJqqCwQsIT048ZeeB+4Bcx\nJEiSVBequSZhFfDtKrYnSZKWoFohIQ78MvD7VWpPkupePp+n5+4eNt+xmcT2BJvv2EzP3T3k8/la\nd01NotzLDfcBvfOUeQ8wOuvn64E/Aw4B/WW2J0lNp1gssjO5k7G/H+Nc2zl4/4XXjp88zmMff4yb\nf/RmMgMZIpFI7TqqhreizPLXTT8uZwI4N/399UAGGAI+dZk6bcDIHXfcwapVqy56wb3lJTWTYrHI\n9ju3M7Z1bEEnTw4+PmhQaCKzD2WbcfbsWZ5++mmAdi7+JX3Jyg0J5biBUkAYBj5J6cy0ubQBIyMj\nIx5RK6mp7fzwTo7edPTyAWHGaeh6qYvM4UzIvdJyNnPMOyGEhLDWJNwAHKU0q3AvEAGi0w9JUoDx\n8XGyZ7ILCwgAayF7JusaBYUmrJDw05QWK74POAm8Mv34VkjtSVLd23//fgrvKpRVp7CpQN/9fSH1\nSM0urJDwh9PvvXL66xWzfpYkBRh+bhjWl1lpPQw/OxxKfyTPbpCkZWLqjanyK62AqTcXUU9aAEOC\nJC0TLSsXcbzNeWi5wmNxFA5DgiQtEx23dZRWcZXjJGy5fUso/ZEMCZK0TPTe20v0hfJuAoueiLLv\ns/tC6pGanSFBkpaJWCxGYnUCTi+wwmlIrE4Qi8XC7JaamCFBkpaRgYcGiD8Tnz8oTO+4ePDhg1Xp\nl5qTIUGSlpFIJMLg44NsemETV3/5aniZC/vVngdehqu/fDWbXtjEsSPHWLt2oTsvSeUr94AnSVLI\nIpEIL2ReIJ/P03d/H8NfGWbqzSlarmih4/YOev+4N9RLDPl8nr7P9TH83DBTb0zRsrKFjts66L03\n3Ha1/BgSJGmZisVi9H+heofnFotFkruTZM9kSzs/XnL65JFPHCGxOsHAQwMeKtUkDAmSpItPn3xP\nQIH1UFhfoHC6QOednZ4+2SRckyBJIrk7Of/x1ABrIbc1R3J3sir9Um0ZEiSpyXn6pOZiSJCkJufp\nk5qLaxIk1Y10Ok06nQZgcnKSiYkJNmzYQGtrKwCpVIpUKlXLLtal4eeGL1qkuCDrYfgrnj7Z6AwJ\nkurG7BAwOjpKe3s76XSatra2Gvesvnn6pObi5QZJanKePqm5GBIk1ZV8Pk9PTw+7du0CYNeuXfT0\n9LiIbgk8fVJz8XKDpLpQLBZJJpNks1kKhQuL7HK5HLlcjiNHjpBIJBgYcKOfcvXe28uRTxyhsH7h\nixejJ6Lse9TTJxudIUHSslcsFtm+fTtjY2NzlikUChQKBTo7OxkcdKOfcsycPlk4XVjYbZCePtk0\nvNwgadlLJpOXDQiz5XI5kkk3+imXp08qiCFB0rI2Pj5ONpstq04260Y/5Zo5fbLrpS6iT0YDT5+M\nPhml66UuT59sIoYEScva/v37L1qDsBCFQoG+Pjf6KVckEiFzOMPQo0N0t3Zz61du5Z1PvpNbv3Ir\n3a3dDD06ROZwxoDQRFyTIGlZGx5e3IY9i62n6p8+qeXLmQRJy9rU1OI27FlsPUkXGBIkLWstLYvb\nsGex9SRdYEiQtKx1dHQsqt6WLW70Iy2VIUHSstbb20s0Gi2rTjQaZd8+N/qRlsqQIGlZi8ViJBKJ\nsuokEm70I1VCWCHhy8AE8D3gFeCPgHUhtSWpwQ0MDBCPxxdUNh6Pc/CgG/1IlRBWSPhL4OeBjcDH\ngTjwJyG1JanBRSIRBgcH6erqmvPSQzQapauri2PH3OhHqpSwQsIDwN9Q2rNrCPh1YAuwMqT2JDW4\nSCRCJpNhaGiI7u7ut2YW4vE43d3dDA0Nkcm40Y9USdXYTGk18AkgA7xRhfYkNbBYLEZ/fz+jo6O0\nt7dz6NAh2traat0tqSGFGRJ+HbgbeBvwNeCDIbYlqQmk02nS6TQAk5OTbNy4kb1799La2gpAKpUi\nlUrVsotSQyknJNwH9M5T5j3A6PT3vwH8ARAD/gvwv4EdXDgyRJLKYgiQqmtFGWWvm35czgRwLuD5\nGyitT3gvcCzg9TZg5I477mDVqlUXveCHgiRJJbNn02acPXuWp59+GqCdC7+oV0Q5IWEpbqQUIH4K\neDrg9TZgZGRkxGuLkiSVYWZ9DiGEhDDWJGyZfvw18B3gZqAP+CalOx0kSVIdCCMkfBf4l5TWMFwD\nnAKOAPuBH4TQniSF6tIFkxMTE2zYsMEFk2p4YYSE48A/D+F9JakmZoeAmanddDrt5VE1PM9ukCRJ\ngQwJkiQpUDV2XJSkupfP5+nr6+Opp54CYNeuXezYsYPe3t5QTpx0HYSWg2rdAjkfb4GUtCwVi0WS\nySTZbJZCofBDr0ejURKJBAMDA0QikVD6MLMOws9IBQnzFkgvN0jSHIrFItu3b+fo0aOBAQGgUChw\n9OhROjs7KRaLFW0/n8/T09PDrl27gNLsRU9PD/l8vqLtSHMxJEjSHJLJJGNjYwsqm8vlSCaTFWm3\nWCyyc+dOtm3bxiOPPEIul3urjUceeYRt27axc+fOioeSGTPhZPPmzSQSCTZv3mw4aVKuSZCkAOPj\n42Sz2bLqZLNZ8vn8ktYozMxeXC6cFAoFCoUCnZ2dDA4OVuwyx0w4GRsb49y5i3fYP378OI899hg3\n33wzmUwmtEsrWl4MCZIUYP/+/XNeYphLoVCgr6+P/v7+Rbe7mNmLTCaz6PZmLCScnDt3jhMnTlQ8\nnKSfT5M+Pr1I8weTTLw2wYZrN9B65fQizVtTpDa7SLMWDAmSFGB4eLiq9aB2sxdQu3ACkNp8IQSM\nnhql/UA76Y+naVvnIs1ac02CJAWYmpqqaj1Y2uzFUiwlnFRKPp+n5+4edn1sFzwGuz62i567XQdR\na4YESQrQ0tJS1XpQm9kLqF04gel1EB/eybZPbOOR7z9C7gM5+FeQ+0COR77/CNs+sY2dHw5vkaYu\nz5AgSQE6OjoWVW/Lli2LbrMWsxdQu3BSLBbZfud2jt50lMLPFGD9JQXWQ+FnChy96Sidd1b+FlPN\nz5AgSQF6e3uJRqNl1YlGo+zbt2/RbdZi9gJqF06Su5OMbR2DtfMUXAu5rTmSuytzi6kWzpAgSQFi\nsRiJRKKsOolEYkkLCGsxewG1CSfj4+Nkz2TnDwgz1kL2TGXXQWh+hgRJmsPAwADxeHxBZePxOAcP\nHlxSe7WYvYDahJP99++n8K4y10FsKtB3/9LXQWjhDAmSNIdIJMLg4CBdXV1z/uMdjUbp6uri2LFj\nrF270F+Lg9Vi9gJqE06Gnxv+4TUI81kPw88ubR2EymNIkKTLiEQiZDIZhoaG6O7ufmtmIR6P093d\nzdDQEJlMZskBYUa1Zy+gNuFk6o1FrGdYAVNvLm0dhMpjSJCkBYjFYvT393Po0CEADh06RH9/f8WP\nia727MWMaoeTlpWLWM9wHlquWNoiTZXHkCBJy0y1Zy9m2hwcHGTTpk1cffXVgWWuvvpqNm3aVJFw\n0nFbB5wss9JJ2HL70hZpqjwrat2BaW3AiGelS1qO0uk06fT02QKTk0xMTLBhwwZaW6fPFkilSKXC\nO1tgdHSU9vZ2qvUZmc/n6evrY3h4mKmpKVpaWujo6KC3t7diMyf5fJ5tn9hW2h9hgaJPRhl6dKji\nszf1bmZ8AO3AaCXf25AgSctQrYNJNez88E6O3nR0YbdBnoaul7rIHK7MeRGNJMyQ4AFPkrQMNUII\nmM/AQwN03tlJbmvu8kHhNMSfiXPwyNIXaao8rkmQJNVEJBJh8PFBul7qIvpkFF4Gzk+/eB54uXSJ\noeulLo4dqdwiTS2cMwmSpJqJRCJkDmdK6yDu7+OpJ54idyZHfHWcHe076H20cusgVD5DgiSp5mKx\nGP1f6Gf01CjtB9o5dNch2ta5Rq3WvNwgSZICOZMgSaqp9PNp0sen7+T4wSQbr9vI3r/YS+uV03dy\n3JoitbmxF3EuV4YESVJNpTYbAparsC83XA18A3gTuC3ktiRJUgWFHRJ+A/hWyG1IkqQQhBkSPgi8\nH/hsiG1IkqSQhLUmIQIcAD4KfC+kNiRJUojCmElYAfwh8HtUeA9pSZJUPeXMJNwH9M5TpgPoBN4O\n/PdLXpv3MKk9e/awatWqi55rhv3LJUlaiNkHf804e/ZsaO2VcwrkddOPy5kABoAPc2EHboCVwBvA\nF4HugHqeAilJTSqdTvPwww/z4osvcubMGb7//e9z1VVXsXr1ajZu3MinP/1pf1m8jOVyCuS3px/z\nuQf41Vk/3wA8AewCvlpGe5KkBlcsFjlw4ADZbJZCofDW81NTU7z++utMTU1x4MAB3ve+9xGJRGrY\n0+YUxsLFly/5+bvTX3PAKyG0J0mqQ8Vike3btzM2NjZnmUKhQKFQoLOzk8HBQYNClVXr7Ibz8xeR\nJDWTZDJ52YAwWy6XI5lMhtwjXaoaISFPaU3Cc1VoS5JUB8bHx8lms2XVyWaz5PP5cDqkQJ4CKUmq\nuv3791+0BmEhCoUCfX19IfVIQQwJkqSqGx4ermo9LY4hQZJUdVNTU1Wtp8UxJEiSqq6lpaWq9bQ4\nYZ3dIEnSnDo6Ojh+/HjZ9bZs2VKxPszevXBycpKJiQk2bNhAa2sr4I6/4EyCJKkGent7iUajZdWJ\nRqPs27evYn1IpVI8+OCDrFmzhrGxMV588UXGxsZYs2YNDz74YNMHBHAmQZJUA7FYjEQiUdYdDolE\nglgsVpH2i8UiOz+0k7FvjnHutXNvPZ/L5cjlcjz2J49x80/cTOb/ZJp6AydnEiRJNTEwMEA8Hl9Q\n2Xg8zsGDByvS7sxOjye+duKigDDbudfOceJrJ+js7KRYLFak3XpkSJAk1UQkEmFwcJCurq45Lz1E\no1G6uro4duwYa9eurUi77vS4cIYESVLNRCIR7rrrLm655RZuvPFGrrnmGlpaWrjmmmu48cYbueWW\nW7jrrrsqFhDc6bE8rkmQJNVUNe8iWMpOj/39/SH1avlyJkGS1DTc6bE8hgRJUtNwp8fyGBIkSU3D\nnR7LY0iQJDWNjo6ORdWr5E6P9cSQIElqGsthp8d6YkiQJDWNmZ0ey1HJnR7rjSFBktRUarXTYz0y\nJEiSmkqtdnqsR4YESVLTiUQiZDIZhoaG6O7uZn1sPQDrY+vp7u5maGiITCbT1AEBDAmSpCaVTqe5\n5557ePXVV7nhphvgOrjhpht49dVXueeee0in07XuYs25LbMkqSnN3g569NQo7Qfa+d27fpe2dW01\n7tny4UweXDieAAAGTUlEQVSCJEkKZEiQJEmBDAmSJCmQIUGSJAUyJEiSpEBhhYQ88OYlj18LqS1J\nkhSCsG6BPA/sA/5g1nOvh9SWJEkKQZj7JPwjcDrE95ckSSEKc03CfwJeBb4O/ArQEmJbkiSpwsKa\nSfgtYAT4DvCTwH8Dfgz4NyG1J0mSKqycmYT7+OHFiJc+ZvayfAB4GjgOPAz8W+DTwDsq0WlJkhS+\ncmYSfht4bJ4yE3M8/9Xprz8ODM9Vec+ePaxateqi52bvrS1JUjNLp9M/dPDU2bNnQ2uvnJDw7enH\nYvyz6a+nLlfogQceoK3NgzUkSQoS9Ivz6Ogo7e3tobQXxpqErcA2IAO8BnQAvwn8KXAyhPYkSVII\nwggJ54BdQC9wNaVLEAeA3wihLUmSFJIwQsLXKc0kSJKkOubZDZIkKZAhQZIkBTIkSJKkQIYESZIU\nyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIkSVIg\nQ4IkSQpkSJAkSYEMCZIkKZAhQZIkBTIkSJKkQIYESZIUyJAgSZICGRIkSVIgQ4IkSQpkSJAkSYEM\nCZIkKZAhQZIkBTIkSJKkQIYESZIUKMyQ8C+ArwLfBf4O+OMQ25IWLJ1O17oLahKONdW7sELCx4E/\nAh4GbgO2A4+G1JZUFj+4VS2ONdW7K0N6z98CPgs8Muv5b4bQliRJCkkYMwltwPXAeeDrwCvA48At\nIbRVc9X+TaGS7S3lvcqtW075hZSdr0wj/gbnWKt8ecdasGYdazwfXlv1OtbCCAk3T3+9D+gDPgR8\nBzgKvCOE9mqqWf9n8oO7+hxrlS/vWAvWrGPNkPDDyrnccB/QO0+ZDi4Ej/8KfGn6+27gJPDzwIG5\nKp84caKM7iwPZ8+eZXR0tC7bW8p7lVu3nPILKTtfmcu9Xu2/s0pxrFW+vGMtWDOOtRN/dwIm4cRz\nJ+BU5dsKc6yF+W/nijLKXjf9uJwJSosUvwK8Fzg267VngD8H9gXUWwcMAzeU0R9JklTyLUq/qC8w\n4ixMOTMJ355+zGcEOAckuBASWoAYpRAR5BSlP9y6MvojSZJKTlHhgBCmzwMvAz8NvBN4iFLnr61l\npyRJUu1dCXwOKACvAU8Am2raI0mSJEmSJEmSJEmSpB/2I8DfUNrB8Tjwy7XtjhrYjZQ2/vq/wLPA\nz9W0N2p0XwLOAP+r1h1Rw/oQkAVeBD5d476E5gqgdfr7fwKMAf+0dt1RA4tSOpQMSmPsZUpjTgrD\nT1H6EDckKAxXAn9LaXuBt1MKCqvLeYMwj4qupDeByenv3wZMzfpZqqQC8Nz0939H6be8sv6nksrw\nV8A/1roTalhbKM2KnqI0zh4HfqacN6iXkAClPRaeBV6idMrkP9S2O2oC76G0K+m3at0RSVqE67n4\n8+skZe5sXE8h4TXgduDHgLuBH69td9TgrgP+B3BXrTsiSYt0fqlvEFZI2AEcppRg3gQ+GlDml4Bx\n4HvA1yid9TDj31FapDhKaUvn2U5TWlj27or2WPUqjLF2NfAnwK9ROnNEgvA+15b8Qa6GtdQx9woX\nzxzcyDKZGf0ApWOif5bSH+wjl7z+C5TOd+ihtG3z5yldPrhxjvdbC/zo9Pc/Suma8Tsr22XVqUqP\ntRVAGvgvYXRWda3SY21GFy5cVLCljrkrKS1WvJ7SXYIvAu8IvddlCvqDfRX4nUuee4HSb25B2igl\n8G9MP7or2UE1jEqMtfcCb1D6be/r049bKthHNYZKjDUobVl/Gnid0p007ZXqoBrOYsfchynd4fBN\nYHdovVuCS/9gV1G6O+HSaZMHKF1GkBbLsaZqcayp2moy5mqxcHENsBIoXvL8aUr3qEuV4lhTtTjW\nVG1VGXP1dHeDJEmqolqEhFcpXfONXPJ8hNKGD1KlONZULY41VVtVxlwtQsL3gRF+eNennwaOVb87\namCONVWLY03VVtdj7hpK+xi8m9Jiiz3T38/clrGL0m0b3cAmSrdt/D3z3yokXcqxpmpxrKnaGnbM\ndVH6A71JaTpk5vv+WWV+kdIGEJPAMBdvACEtVBeONVVHF441VVcXjjlJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkqQ68P8Brti/qOiDgqsAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f64bb850750>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"xscale('log'); ylim(-6,2)\n",
|
|
"errorbar(fqd, p1, yerr=p1e, fmt='o', ms=10, color=\"green\")\n",
|
|
"errorbar(fqd, p2, yerr=p2e, fmt='o', ms=10, color=\"black\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" 1 1.165e+02 1.119e+01 inf -- 4.615e+02 -- -0.417232 -1.10978 -2.25224 -2.74174 -3.07438 -3.26634 -4.18046 -6.52588 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1\n",
|
|
" 3 7.488e+01 1.326e+01 2.469e+00 -- 4.640e+02 -- -0.379546 -1.07024 -2.2349 -2.70308 -3.05386 -3.26052 -4.19422 -6.22588 0.0594438 0.143922 0.211494 0.183563 0.124903 0.187977 0.0382351 -1.06488\n",
|
|
" 5 3.958e+01 1.546e+01 2.253e+00 -- 4.663e+02 -- -0.347917 -1.03742 -2.21505 -2.66882 -3.03593 -3.25222 -4.20507 -5.92588 0.0292929 0.176748 0.302165 0.24639 0.145443 0.263839 -0.0201518 0.625425\n",
|
|
" 7 2.952e+01 1.780e+01 1.997e+00 -- 4.683e+02 -- -0.321166 -1.00987 -2.19485 -2.63901 -3.02019 -3.2426 -4.21334 -5.62588 0.00616037 0.202118 0.375333 0.294616 0.162597 0.328567 -0.0750795 -1.84997\n",
|
|
" 9 3.498e+01 2.030e+01 1.927e+00 -- 4.702e+02 -- -0.298358 -0.986546 -2.1755 -2.61326 -3.00636 -3.23255 -4.21943 -5.92588 -0.0120242 0.222305 0.43445 0.33256 0.177047 0.383459 -0.125124 0.240961\n",
|
|
" 11 2.323e+01 2.295e+01 1.750e+00 -- 4.719e+02 -- -0.278794 -0.966621 -2.15757 -2.59104 -2.99413 -3.22256 -4.22358 -5.62588 -0.0266225 0.238634 0.482619 0.362829 0.189318 0.429938 -0.171714 -0.602008\n",
|
|
" 13 9.908e+00 2.576e+01 1.642e+00 -- 4.736e+02 -- -0.261904 -0.949487 -2.14126 -2.57185 -2.98327 -3.21301 -4.22619 -5.32588 -0.0385241 0.252101 0.522228 0.387431 0.199792 0.469237 -0.213944 0.796178\n",
|
|
" 15 5.329e+01 2.871e+01 1.637e+00 -- 4.752e+02 -- -0.247262 -0.934659 -2.12658 -2.55525 -2.97361 -3.20401 -4.22742 -5.02588 -0.0483821 0.263296 0.555178 0.407636 0.208732 0.502656 -0.25301 0.00733246\n",
|
|
" 17 2.560e+00 3.181e+01 1.529e+00 -- 4.767e+02 -- -0.234505 -0.921766 -2.11346 -2.54086 -2.96485 -3.19577 -4.22761 -4.804 -0.056605 0.27274 0.582856 0.424353 0.216437 0.5308 -0.288552 0.0464091\n",
|
|
" 19 1.172e+00 3.504e+01 1.400e+00 -- 4.781e+02 -- -0.223355 -0.910503 -2.10178 -2.52834 -2.9569 -3.18826 -4.2269 -4.68017 -0.0635434 0.28074 0.606367 0.438267 0.223049 0.554643 -0.321322 0.0582901\n",
|
|
" 21 7.724e-01 3.838e+01 1.293e+00 -- 4.794e+02 -- -0.21358 -0.900628 -2.09139 -2.51744 -2.94968 -3.18148 -4.22551 -4.59311 -0.0694486 0.287569 0.626536 0.449937 0.228692 0.574921 -0.351228 0.0651221\n",
|
|
" 23 6.475e-01 4.182e+01 1.196e+00 -- 4.806e+02 -- -0.204987 -0.891941 -2.08217 -2.5079 -2.94312 -3.17538 -4.22361 -4.5264 -0.0745103 0.293433 0.644002 0.459774 0.233469 0.59222 -0.378357 0.0697841\n",
|
|
" 24 6.033e-01 4.904e+02 9.259e+00 -- 4.899e+02 -- -0.129265 -0.815314 -2.00033 -2.42441 -2.88331 -3.12077 -4.20108 -3.99042 -0.118156 0.344039 0.796617 0.542976 0.273449 0.74018 -0.62334 0.104006\n",
|
|
" 25 1.633e+00 2.416e+01 2.127e+00 -- 4.920e+02 -- -0.136332 -0.820492 -2.00326 -2.42953 -2.86836 -3.13063 -4.19803 -4.0221 -0.107855 0.34592 0.942222 0.436475 0.11856 0.656515 -0.24726 0.0760793\n",
|
|
" 26 2.297e-01 1.685e+01 3.223e-01 -- 4.923e+02 -- -0.136021 -0.81967 -2.01733 -2.4291 -2.86411 -3.12575 -4.28732 -4.0298 -0.106863 0.340823 0.802305 0.502205 0.115029 0.705918 -0.651119 0.0904933\n",
|
|
" 27 2.114e-01 1.002e+01 6.323e-02 -- 4.924e+02 -- -0.136189 -0.820198 -2.00806 -2.43011 -2.86374 -3.13176 -4.15965 -4.03428 -0.10583 0.344597 0.86383 0.461694 0.102618 0.695825 -0.501555 0.0943452\n",
|
|
" 28 7.282e-02 6.910e+00 4.695e-02 -- 4.925e+02 -- -0.136116 -0.819859 -2.01221 -2.42953 -2.86299 -3.12599 -4.24062 -4.03499 -0.106121 0.343076 0.828348 0.490418 0.10121 0.697346 -0.60756 0.0921811\n",
|
|
" 29 6.355e-02 4.447e+00 1.251e-02 -- 4.925e+02 -- -0.136164 -0.820085 -2.00914 -2.42964 -2.86356 -3.12997 -4.19174 -4.03653 -0.106059 0.34408 0.850084 0.472121 0.0987163 0.695127 -0.563315 0.0960744\n",
|
|
" 30 3.208e-02 2.630e+00 6.361e-03 -- 4.925e+02 -- -0.136149 -0.819937 -2.01076 -2.4294 -2.86326 -3.12717 -4.2269 -4.03604 -0.106248 0.343798 0.836239 0.482367 0.0971931 0.696096 -0.599112 0.0951975\n",
|
|
" 31 2.383e-02 1.888e+00 2.157e-03 -- 4.925e+02 -- -0.136169 -0.820025 -2.00964 -2.42939 -2.86343 -3.12896 -4.20665 -4.03645 -0.106249 0.344186 0.84463 0.475064 0.0961482 0.695566 -0.579893 0.0964022\n",
|
|
" 32 1.323e-02 1.058e+00 9.738e-04 -- 4.925e+02 -- -0.136163 -0.819962 -2.01029 -2.42931 -2.86326 -3.12779 -4.22134 -4.03608 -0.106327 0.344123 0.839179 0.479109 0.0951898 0.696016 -0.593714 0.0963018\n",
|
|
" 33 9.243e-03 7.911e-01 3.707e-04 -- 4.925e+02 -- -0.136171 -0.819998 -2.00986 -2.4293 -2.86331 -3.12857 -4.21272 -4.03621 -0.106324 0.344261 0.842547 0.476174 0.0946849 0.695851 -0.58586 0.0965931\n",
|
|
" 34 5.341e-03 4.358e-01 1.598e-04 -- 4.925e+02 -- -0.136168 -0.819972 -2.01013 -2.42927 -2.86323 -3.12808 -4.21887 -4.03601 -0.106356 0.344247 0.840355 0.477825 0.0941922 0.69603 -0.591275 0.0966528\n",
|
|
" 35 3.654e-03 3.303e-01 6.407e-05 -- 4.925e+02 -- -0.136172 -0.819986 -2.00996 -2.42926 -2.86324 -3.12842 -4.2152 -4.03606 -0.106352 0.344296 0.84173 0.476631 0.0939684 0.695975 -0.588117 0.0967043\n",
|
|
"********************\n",
|
|
"-0.136172 -0.819986 -2.00996 -2.42926 -2.86324 -3.12842 -4.2152 -4.03606 -0.106352 0.344296 0.84173 0.476631 0.0939684 0.695975 -0.588117 0.0967043\n",
|
|
"0.0115263 0.0058258 0.0387362 0.00846868 0.0539018 0.0780724 0.334539 0.108003 0.121876 0.0805411 0.223567 0.102776 0.222423 0.256036 0.800481 0.273811\n",
|
|
"0.0127444 0.33028 -0.0607609 0.127486 0.0143628 0.0331918 -0.0227012 0.00709893 -0.000657376 -0.00220005 -0.0168474 0.0629554 -0.0038883 0.00145515 -0.00332533 0.000655605\n",
|
|
"********************\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"Cx = clag.clag('cxd10r', [[t1,t2]], [[l1,l2]], [[l1e,l2e]], dt, fqL, p1, p2)\n",
|
|
"p = np.concatenate( ((p1+p2)*0.5-0.3,p1*0+0.1) ) # a good starting point generally\n",
|
|
"p, pe = clag.optimize(Cx, p)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"phi, phie = p[nfq:], pe[nfq:]\n",
|
|
"lag, lage = phi/(2*np.pi*fqd), phie/(2*np.pi*fqd) \n",
|
|
"cx, cxe = p[:nfq], pe[:nfq]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([-1.75428512, 1.89869772, 2.40546134, 0.87877231, 0.11177487,\n",
|
|
" 0.53410247, -0.29118093, 0.03088965])"
|
|
]
|
|
},
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAFshJREFUeJzt3XFsnOd9H/CvEzNRq6xVmtSknammzdamJ2nzyFBtpCCl\nscYrhs0ZsEElgQwrtVZG223QNnQ1Mkj1pKEDhq1R/9hWeIPQAoFP8ooVSbFpa/9gg01SN430uioT\n144SPdcW6SSL0iaZFCHW/jgqpihS4j28u5d39/kABx7fe967H8VH5Jfv+/zeSwAAAAAAAAAAAAAA\nAAAAAAAAAAAAAACga3wsyW8keSPJ20k+scaYF5cf/0aS6SR/ql3FAQCb964WPvd3Jnk1yc8sf35r\n1eM/l+Tw8uNjSRaT/FaS97WwJgCgA72d5LkVnz+Q5GqSn12x7T1JvpLkUBvrAgA2oZVHJO7lsST9\nSX5zxbZvJvl8kn2VVAQANKyqIDGw/HFp1fa3VjwGAGxxD1ZdwBpWr6W47eHlGwDQmKvLt6arKkgs\nLn/sX3F/rc9ve/iRRx55880332x5YQDQhd5IvbGh6WGiqiBxJfXA8GyS313e9p4kP5w7F2De9vCb\nb76Zz3zmM3nqqafaVGLzHD58OCdOnOjI19rM8zW670bHb2Tc/cbc6/F2fr+azVxr7nhzbX3mWnPH\nt3KuXbp0KZ/85Cc/lPpR/Y4KEtuT/MCKzx9P8nSSLyd5PcmJJJ9K8gdJ/vfy/a8leXm9J3zqqacy\nMjLSqnpbZseOHW2ru9mvtZnna3TfjY7fyLj7jbnX4+38fjWbudbc8eba+sy15o5v9VxrpXe38Ln3\nJzmX5PnU1z386PL99yf5bJKzSbYl+fkkfzvJV5NMJlnr/MXDSZ5//vnn8/DDnblMYs+ePR37Wpt5\nvkb33ej4jYy735j1Hq/VapmcnNxQHVuRudbc8eba+sy15o5v1Vy7evVqXnrppSR5KS04IvFAs5+w\nRUaSzMzMzHRseqdzPPfcc/nc5z5XdRn0AHONdpidnc3o6GiSjCaZbfbzV9X+CQB0AUECVunkQ810\nFnONbiBIwCp+uNMu5hrdQJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJgg\nAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIA\nQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAU\nEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYlUGiReTvL3q9maF9QAADXqw4te/mORHVnz+raoKAQAaV3WQ\n+FaStyquAQAoVPUaiR9I8kaSy0lqSR6rthwAoBFVBonfSfLXkjyb5CeTDCQ5l+R7KqwJAGhAlac2\n/sOK+19Icj7JfJK/nuTTlVQEADSk6jUSK30jye8l+f71Bhw+fDg7duy4Y9vk5GQmJydbXBoAbH21\nWi21Wu2ObdeuXWvpaz7Q0mdvzHtTPyLxy0n+0arHRpLMzMzMZGRkpO2FAUCnmp2dzejoaJKMJplt\n9vNXuUbinyb5WOoLLH8wya8leV+SX62wJgCgAVWe2vhQ6p0aH0zyxdTXSPxQktcrrAkAaECVQcLC\nBgDocFVfRwIA6GCCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACK\nCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJgg\nAQAUEyQAgGKCBABQ7MGqCwBoplqtllqtliS5fv16XnvttTz66KPZtm1bkmRycjKTk5NVlghdRZAA\nusrKoDA7O5vR0dHUarWMjIxUXBl0J6c2AIBiggTQdRYWFnLw4MEcOHAgSXLgwIEcPHgwCwsL1RYG\nXcipDaBrLC0tZWJiInNzc1lcXPz29vn5+czPz+fMmTMZHh7OqVOn0t/fX2Gl0D0ECaArLC0tZd++\nfbl8+fK6YxYXF7O4uJj9+/fn7NmzwgQ0gVMbQFeYmJi4Z4hYaX5+PhMTEy2uCHqDIAF0vCtXrmRu\nbq6hfebm5qyZgCYQJICOd/z48TvWRGzE4uJijh071qKKoHcIEkDHu3DhQlv3A94hSAD3dbudcs+e\nPRkeHs6ePXu2VDvlzZs327of8A5dG8C6lpaW8swzz+Ty5cu5cePGHY9dvHgxL7/8ch5//PFMT09X\n2gHR19fX1v2AdzgiAazpdjvlpUuX7goRt924cSOXLl3K/v37s7S01OYK3zE2Nla03969e5tcCfQe\nQQJYUye1Ux49ejQDAwMN7TMwMJAjR460qCLoHYIEcJdOa6ccHBzM8PBwQ/sMDw9ncHCwNQVBDxEk\ngLt0YjvlqVOnMjQ0tKGxQ0NDOX36dIsrgt4gSAB36cR2yv7+/pw9ezbj4+PrnuYYGBjI+Ph4zp07\nl4ceeqjNFUJ3EiSAu3RqO2V/f3+mp6dz/vz5TE1NffsIxdDQUKampnL+/PlMT08LEdBE2j+Bu3R6\nO+Xg4GBOnjyZ2dnZjI6O5pVXXsnIyEjVZUFXEiSAu4yNjeXixYsN77cV2ilrtVpqtVqS5Pr163ni\niSfywgsvZNu2bUmSycnJTE5OVlkidJUHqi5gg0aSzMzMzPirAtpgYWEhH/nIRxpacDkwMJDz58/r\nhIAt5vaRuSSjSWab/fzWSAB30U4JbJQgAaxJOyWwEYIEsCbtlMBGCBLAuvr7+3Po0KHs2rUrO3fu\nzPbt29PX15ft27dn586d2bVrVw4dOiREQA/TtQHcky4H4F4ckQBokoWFhRw8eDB79uzJ8PBw9uzZ\nk4MHD1b2HiTQDo5IAGzS0tJSJiYmMjc3d1fL7MWLF3PmzJkMDw/n1KlT6e/vr6hKaA1BAmATlpaW\nsm/fvnu+5fri4mIWFxezf//+nD17Vpigqzi1AbAJExMT9wwRK83Pz2diYqLFFUF7CRIAha5cuZK5\nubmG9pmbm7Nmgq4iSAAUOn78eEOXEU/qpzmOHTvWooqg/QQJgEIXLlxo635biQ4VbrPYEqDQzZs3\n27rfVqBDhdUECYBCfX19bd2vajpUWItTGwCFxsbGivbbu3dvkytpDx0qrEWQACh09OjRdd/QbD0D\nAwM5cuRIiypqHR0qrEeQACg0ODiY4eHhhvYZHh7O4OBgawpqIR0qrEeQANiEU6dOZWhoaENjh4aG\ncvr06aa+fru6J3q5Q4V7s9gSYBP6+/tz9uzZdTsZkvrpjOHh4Zw+fbppb7ne7u6JXuxQuW1hYSHH\njh3LhQsXcvPmzfT19WVsbCxHjx7tyKNLzSZIAGxSf39/pqen2/YLp4ruiV7rUEm0um7UVggSP53k\nZ5MMJPlCksNJ/nOlFQEUGBwczMmTJ1v+OiXdE9PT05t6zbGxsVy8eLHh/Tq1Q0Wr68ZVvUbix5J8\nOsnxJE8n+U9JziTZWWVRAFtVVd0TvdShkmh1bUTVRyT+bpJ/neR2hP87Sf58kp9K8qmqiqI31Gq1\n1Gq1JMn169fz2muv5dFHH822bduSJJOTk5mcnKyyRLjLZronNnO05HaHSiOv3akdKpsJa5349Xay\n9yS5meQTq7afSPLbq7aNJLk1MzNzC1phZmbmljlGJ9i9e/etJA3fdu/evenXXlxcvDU0NLSh1xsa\nGrq1tLTUhK/4HVeuXLk1NTV1a/fu3beefPLJW7t37741NTV168qVK019nampqaJ/46mpqabW0Sy3\nf74t/y5tuiqPSHwwybuTLK3a/lbq6yUAWKXK7okqO1SeeeaZXL58OTdu3LjjsYsXL+bll1/O448/\nnunp6aasU9Dq2piqT20A0ICquye2YofKjRs3cunSpaYteuzlVtcSVQaJLyX5VpLV3/H+JFfX2uHw\n4cPZsWPHHducxwZ6yVbpnujmDpWqw9pmrFz7ddu1a9da+ppVBolvJplJ8mySz67Y/vEkv77WDidO\nnMjISEtO8QB0hKNHj+bMmTMNLXrs1O6JqhY9bpWwVmKtP65nZ2czOjrastesuv3zF5P8RJKpJE+l\n3gr6J5P8cpVFAWxV3t/j3prx/h691uq6WVUHiVdSvwDV0SSvJvlokr+Q5PUqiwLYyqp+f492qWrR\nYy+FtWaoOkgkyb9M8liSbUnG4qqWAPd0u3tifHx83b+cBwYGMj4+nnPnzjWte6Ldqlz02CthrRl0\nbQB0oHZ3T1ShykWPVbW6diJBAqCDtat7ogpVL3rshbDWDIIEAFvSVulQ6eaw1gxbYY0EANzFosfO\nIEgAsGVZ9Lj1CRIAbFm90qHSyQQJALa0/v7+HDp0KLt27crOnTuzffv29PX1Zfv27dm5c2d27dqV\nQ4cOCREVsdgSgC3P+yptXY5IAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUGCnrawsJCD\nBw/mwIEDSZIDBw7k4MGDWVhYqLYwgA7hglT0pKWlpUxMTGRubu6Odxacn5/P/Px8zpw5k+Hh4Zw6\ndSr9/f0VVgqwtQkS9JylpaXs27cvly9fXnfM4uJiFhcXs3///pw9e1aYAFiHUxv0nImJiXuGiJXm\n5+czMTHR4ooAOpcgQU+5cuVK5ubmGtpnbm7OmgmAdQgS9JTjx4/fsSZiIxYXF3Ps2LEWVQTQ2QQJ\nesqFCxfauh9AtxMk6Ck3b95s634A3U6QoKf09fW1dT+AbidI0FPGxsaK9tu7d2+TKwHoDoIEPeXo\n0aMZGBhoaJ+BgYEcOXKkRRUBdDZBgp4yODiY4eHhhvYZHh7O4OBgawoC6HCCBD3n1KlTGRoa2tDY\noaGhnD59usUVAXQuQYKe09/fn7Nnz2Z8fHzd0xwDAwMZHx/PuXPn8tBDD7W5QoDOIUjQk/r7+zM9\nPZ3z589namrq20cohoaGMjU1lfPnz2d6elqIALgPb9pFTxscHMzJkyczOzub0dHRvPLKKxkZGam6\nLICO4YgEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUEC\nACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCg2INVFwBVqdVq\nqdVqSZLr16/niSeeyAsvvJBt27YlSSYnJzM5OVlliQBbniBBzxIUADbPqQ0AoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUKzKILGQ5O1Vt1+osB4AoEFV\nvvvnrSRHkvyrFdu+XlEtAECBqt9G/GtJ3qq4BgCgUNVrJH4uyZeSvJrkU0n6qi0HAGhElUckfinJ\nTJKvJPnBJP84yWNJfrLCmgCABjQ7SLyY5Oh9xnw4yWySEyu2XUw9UPxakr+/fP8uhw8fzo4dO+7Y\nNjk5mcnJycJyAaB71Gq11Gq1O7Zdu3atpa/5QJOf7wPLt3t5LcmNNbZ/KMnrqR+duLDqsZEkMzMz\nMxkZGdl0kQDQK2ZnZzM6Opoko6n/Id9UzT4i8eXlW4k/u/zxapNqAQBarKo1Ej+U5CNJppN8NclY\nkl9M8tkkf1hRTQBAg6oKEjeSHEh9PcV7Uz/d8VKSf1JRPQBAgaqCxKupH5EAADpY1deRAAA6mCAB\nABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBA\nMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQT\nJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUEC\nACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACA\nYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgm\nSAAAxQQJAKCYIAEAFGtVkPgHSc4l+UaSr6wz5vuS/EaSryX5YpJfStLXonpgw2q1WtUl0CPMNbpB\nq4JEX5LTSf7FOo+/O8m/S/IdSfYnmUjyV5L8sxbVAxvmhzvtYq7RDR5s0fO+uPzxx9d5/NkkTyX5\neJLF5W1/L8mvJPlU6kcpAIAtrqo1Eh9J8nt5J0QkyW8meW+S0UoqaqF2/tXR7NfazPM1uu9Gx29k\n3P3GdOtfguZac8eba+sz15o7vpPnWlVBYiDJ0qptX0nyzeXHuor/cM0d38n/4VrNXGvueHNtfeZa\nc8d38lxr5NTGi0mO3mfMh5PMbvD5HmjgtZMkly5danSXLeHatWuZnd3oP8vWeq3NPF+j+250/EbG\n3W/MvR5v5/er2cy15o4319ZnrjV3fCvnWqt/dzbyy/wDy7d7eS3JjRWf/3iSTyd5/6px/zDJJ5I8\nvWLb+5N8OckzST6/avzDSS4k+VAD9QIAdW8kGUtytdlP3MgRiS8v35rhfOotov155xTHs6mHkJk1\nxl9N/R/g4Sa9PgD0kqtpQYhope9L/WjD0SR/lOTPLH++ffnxdyX5H0l+a3n7n0vyf1K/lgQA0ON+\nJcnby7dvrfj4sRVjdqZ+QaqvJ/lSkhNxQSoAAAAAAAAAgPv5E0n+a5JXk1xM8jerLYcutjPJbyf5\nQpLfTfJXK62GbvfrSf5vkn9TdSF0rb+YZC7J7yf5GxXXUql3Jdm2fP87klxO8r3VlUMXG0jyp5fv\nf2+S11Ofc9AKP5z6D3pBglZ4MMn/Sv3yCu9LPUx8TyNPUNUlslvh7STXl+9/Z5KbKz6HZlpMvX05\nSb6Y+l+LDf3HgwZ8Pt7IkNbZm/rR1aupz7N/n/p1nTasm4JEknx36oeab1+T4o+rLYce8OHUrxD7\nRtWFABR4JHf+/PrDNHgV6W4LEl9N/eJXjyX5mSTfX205dLkPJPnVJIeqLgSg0K3NPkGVQeJjqV+Q\n6o3UT0t8Yo0xP53kSpL/l+S/Jfnoisf+VuoLK2dz94Ws3kp9MdzTgdbMtfcm+bdJfiHJ77SkajpR\nq36ubfqHPV1rs3Puzdx5BGJnOugI648mOZbkL6f+xT+36vEfS/29Nw4meTL1N//649S/yLU8lOS7\nlu9/V+rnsJ9sbsl0qGbPtQeS1JL8fCuKpaM1e67dNh6LLVnbZufcg6kvsHwk9e7H38/db7TZEdb6\n4v9Lkn++atv/TP0vwLWMpJ7k//vybaqZBdI1mjHXPpr6Jd9nU59zrybZ1cQa6Q7NmGtJ8h9TP8r6\n9dQ7hEabVSBdp3TO/aXUOzf+IMlPtKy6Flv9xb8n9a6L1YdoTqR+ygJKmWu0i7lGu1Uy57bqYssP\nJnl33nmL8dveSr2HH5rFXKNdzDXarS1zbqsGCQCgA2zVIPGl1M9B96/a3p/6RTOgWcw12sVco93a\nMue2apD4ZpKZ3H11rY8nOdf+cuhi5hrtYq7Rbl0/57anfp2Hp1NfIHJ4+f7tlpQDqbesTCV5KvWW\nlT/K/dukYDVzjXYx12i3np5z46l/0W+nfujl9v2TK8b8VOoX0bie5ELuvIgGbNR4zDXaYzzmGu01\nHnMOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALao/w/frxEsobmc6QAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f64bb3b7550>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"\n",
|
|
"xscale('log'); ylim(-10,10)\n",
|
|
"errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n",
|
|
"\n",
|
|
"lag"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x7f64bbde9d50>]"
|
|
]
|
|
},
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X98XXWd5/FXgdIKOrYVSLBA04YfqdKVSabFtgykrvhA\nxqXjrgOJOg9IHcUZZ5nqOqsPZ4hQxJ2Hrlp10LXjtOiDB7dl2dVRd+swqy26pUhtmBlrSdG0RWmb\nlBaKK9hSTfaPc2OTNElzT86P77n39Xw87iPJueec+833cXvz7vd8vt8DkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJUtW4GvgmsA/oB5aPeP7e8vahj0cybJ8kSZqk01I891nA48D7yj8P\njHh+ANgI1A95XJ9ieyRJUsLOSPHc3y4/xjIFeAk4mGIbJElSitIckTiVAaAV6AN2AWuAc3NsjyRJ\nClQ/cMOIbTcCbwZeA7yF6DLIj4Azs22aJEmKK81LG6fywJDvdwI/BPYCfwB8bZT9zy8/JElSZQ6U\nH4nLM0iM1Av8DLh4lOfOf/WrX71///79GTdJkqSqsA9YSAphIqQgcQ5wIaP/kufv37+f++67j/nz\n52fSmJUrV7J69erMzjGRfU+1z1jPj7Z9ItuS6INK2Of2+UT2qaU+37cPbrgBvvhFWLRoYuc4dgyW\nLIG77oLrr7fPk3q9Ir/Pn3jiCd75znfOJhrVL1SQOBu4ZMjP84ArgMPAs8CdwINEIxENwMeBZxj9\nsgYA8+fPp7m5OaXmDjdjxoxJv1Yl55jIvqfaZ6znR9s+kW1J9EEl7HP7fCL71FKfv/KV0dfLLoOh\nh4x3jpdeir7OmRMdY5/7Pk/b6SmeeynRAlO3Es3QuK78/UzgW8BtwPuBvwTeCGwD3kEUNEY6H7j1\n1ltv5fzzsyuTWLBgQabnmMi+p9pnrOdH236qbaVSifb29lO2KUn2uX0+kX1qpc8PH4bPfx46OqCh\nYWLnGBiIRiOWL4crrpj469nnyZ4jpD4/cOAAa9asgWh2ZOIjElOSPmFKmoHt27dvzzTF1robbriB\nb3zjG3k3o6bY59kLuc937YKmJnj4Ybj66okd098Pp58Oa9dGASREIfd5Nerq6qKlpQWgBehK+vx5\nriMhSRrHQHk94NMq+KSeUv7vYX9/8u2RRmOQ0JiyHnqUfZ6HkPt8MAxUGiSmTAk7SITc56qcQUJj\n8h979uzz7IXc53GCxOD+BgllxSAhSYEaDANTKqxmCz1IqLoYJCQpUHFqJAb3N0goKwYJSQpUtV7a\nUHUxSEhSoAwSKgKDhCQFyiChIjBISFKgBmskLLZUyAwSkhQoRyRUBAYJSQqUQUJFYJCQpEAZJFQE\nBglJCpQLUqkIDBKSFCgXpFIRGCQkKVBe2lARGCQkKVBxg0Tod/9UdTFISFKgrJFQERgkJClQk6mR\nGDxWSptBQpICZY2EisAgIUmBMkioCAwSkhQog4SKwCAhSYHypl0qAoOEJAXKEQkVgUFCkgJlkFAR\nGCQkKVAGCRWBQUKSAmWNhIrAICFJgXJEQkVgkJCkQBkkVAQGCUkKlEFCRWCQkKRAedMuFYFBQpIC\nNZmbdhkklBWDhCQFyksbKgKDhCQFyiChIjBISFKgDBIqAoOEJAXKBalUBAYJSQpUf3/lIQIMEsqW\nQUKSAtXfX/llDYjCh0FCWTFISFKg4gYJRySUJYOEJAVqYCD+pY3B+gopbQYJSQqUIxIqAoOEJAXK\nIKEiMEhIUqAMEioCg4QkBcrpnyoCg4QkBWpgwBEJhc8gIUmB8tKGisAgIUmBMkioCAwSkhQog4SK\nwCAhSYGazIJUBgllxSAhSYFyREJFYJCQpEAZJFQEBglJCpRBQkWQZpC4GvgmsA/oB5aPss8d5edf\nBDYBr0mxPZJUKNZIqAjSDBJnAY8D7yv/PPJedB8CVpafXwj0Av8EvDzFNklSYTgioSI4I8Vzf7v8\nGM0UohBxN/D18rabgT7g7cCaFNslSYVgkFAR5FUjMReoAx4asu0l4GFgSS4tkqTAGCRUBHkFifry\n174R2w8OeU6Sapo1EiqCEGdtjKylkKSa5IiEiiDNGonx9Ja/1g35frSfh1m5ciUzZswYtq29vZ32\n9vbEGyhJeYsbJKZMMUjUqlKpRKlUGrbtyJEjqb5mXkFiD1FgeBPwL+VtZwLXAH851kGrV6+mubk5\n/dZJUgAckVClRvvPdVdXFy0tLam9ZppB4mzgkiE/zwOuAA4DPwdWAx8BfgL8tPz9L4H7U2yTJBWG\nQUJFkGaQWAh8t/z9APDp8vf3AiuATwAvA74AzAQeJRqheCHFNklSYUym2HLAajNlJM0gsZlTF3Pe\nWX5IkkZwREJFEOKsDUkSBgkVg0FCkgJlkFARGCQkKVAuSKUiMEhIUqAckVARGCQkKVAGCRWBQUKS\nAmWQUBEYJCQpUNZIqAgMEpIUKEckVAQGCUkKlEFCRWCQkKRAGSRUBAYJSQrUwIBBQuEzSEhSoPr7\nLbZU+AwSkhQoL22oCAwSkhSouEHizDPh2DHDhLJhkJCkQMUNEhddBL/+Nezbl3ybpJEMEpIUqLgL\nUjU2Rl97epJtjzQag4QkBSruiMTcuVEAMUgoCwYJSQpU3CAxbRpccIFBQtkwSEhSoOIGCYgubxgk\nlAWDhCQFKu6CVBAFid27k22PNBqDhCQFKu6CVADz5jkioWwYJCQpUJO9tPHcc9FDSpNBQpICNdkg\nAY5KKH0GCUkK1GRrJMAgofQZJCQpUJOpkZg5M3oYJJQ2g4QkBWoylzbAKaDKhkFCkgJlkFARGCQk\nKVBJBAnXklDaDBKSFKi4N+0a1NgITz8d3VJcSotBQpICNdkRiXnzojCyZ09ybZJGMkhIUqCSuLQB\n1kkoXQYJSQrUZIPE7NnRnUANEkqTQUKSAjWZBakgOnbuXIOE0mWQkKRATWZBqkFOAVXaDBKSFKjJ\nXtoAp4AqfQYJSQpUkkGivz+ZNkkjGSQkKVCTrZGAKEgcOwb79yfTJmkkg4QkBSqpGgmwTkLpMUhI\nUqCSuLTR0BCFEYOE0mKQkKRAJREkpk+P1pMwSCgtBglJClQSNRLgFFClyyAhSYFKokYCDBJKl0FC\nkgKVxKUNcC0JpcsgIUmBSjJIPPssHDky+XNJIxkkJClQSQYJ8PKG0mGQkKRAJVlsCQYJpcMgIUmB\nSqrYcubM6GGQUBoMEpIUqKQubQDMm2eQUDoMEpIUqCSDhFNAlRaDhCQFKqkaCTBIKD0GCUkKVFI1\nEhAFiaefju4EKiUpzyBxB9A/4uGNbiWpLOlLGwMDsHdvMueTBuU9IrEDqB/yWJBvcyQpHEkHCfDy\nhpJ3Rs6v/xvgYM5tkKQgJVkjMXs2TJtmkFDy8h6RuATYB+wGSsDcfJsjSeFIskbitNNg7lyDhJKX\nZ5B4FPhj4E3Au4kubTwCzMqxTZIUjCQvbYBrSSgdeQaJbwNfA34MfAf4g/L2m3NrkSQFJOkg4RRQ\npSHvGomhXgR+BFw81g4rV65kxowZw7a1t7fT3t6ectMkKXtpBIk1a5I/r8JRKpUolUrDth1J+bav\nIQWJacBrgO+NtcPq1atpbm7OrkWSlKMkiy0hChLHjsGBA1HxparPaP+57urqoqWlJbXXzDOT/lfg\naqICyyuBB4GXA1/JsU2SFIwkiy3BKaBKR55BYjbRTI1u4H8AR4HXAz/PsU2SFISBgeRHJObOjYKJ\nQUJJyvPShoUNkjSGgYHoa5JBYvr06JKGQUJJstxGkgKURpAAZ24oeQYJSQpQf3/0NckaCTBIKHkG\nCUkK0GCQSHpEwkWplDSDhCQFKK0g0dgIzz4LKS8toBpikJCkAKVZIwGwe3ey51XtMkhIUoDSrJEA\nL28oOQYJSQpQWpc2Zs2Cujr4wQ+SPa9ql0FCkgKUVpAAuOkmuO8+OH48+XOr9hgkJClAadVIAKxY\nAX19sHFj8udW7TFISFKA0hyReN3roLkZ1q1L/tyqPQYJSQpQWsWWgzo64FvfikYmpMkwSEhSgNIc\nkQB4+9ujc993XzrnV+0wSEhSgNIOErNmwVvfCmvXnqjHkOIwSEhSgNIsthzU0QE7d8K2bem9hqqf\nQUKSApR2jQTAG98IF1wQjUpIcRkkJClAaV/aADj9dLj5ZiiV4MUX03sdVTeDhCQFKIsgAXDLLfCL\nX8DXvpbu66h6GSQkKUBZ1EgAXHwxXHONlzcUn0FCkgKURY3EoI4O+O53Yc+e9F9L1eeMvBsgSTpZ\nVpc2AN72Nnjve49z3XUPctllJY4ePcpTTz3FnDlzmD59OgDt7e20t7en3xgVjiMSkhSgLIPE2WfD\nO985lV/+8o941avOZffu3Tz55JPs3r2bc845h8997nOGCI3JICFJAcqqRgKgr6+P7dv/nP37z+De\ne5+ip6cHgJ6eHtatW8fixYtZtmwZfa6nrVEYJCQpQFmNSPT19bFkyRIef/weoBtYcdI+vb29bN68\nmaVLlxomdBKDhCQFKKtiy7a2Nnbv3l3+aR3w74EZo+7b09NDW1tbug1S4RgkJClAWYxI7Nmzh+7u\n7iFbvkpUgz92WOju7mbv3r3pNUqFY5CQpABlUSNx11130dvbO2RLL7AReA8w+lBIb28vq1atSq9R\nKhyDhCQFaHBEord3PytWrGDBggU0NTWxYMECVqxYkciowLZR79b1SeB1wEcqPE61ynUkJClAzzxz\nGHgVt9xyM4cP/59hz+3YsYONGzfS1NTE+vXrqauri/Uax48fH2Xr94G7gDuBLcDmCR6nWuWIhCQF\npq+vj46OdwFw+PDBUfdJYibF1KlTx3hmFVGAuB84r4LjVIsMEpIUmLa2NvbvP1D+qX/cfSczk2Lh\nwoVjPNMPvIOoTuJ+Rv6pWLRoUazXU3UySEhSQE7MpBgsdhw/SED8mRSdnZ3U19eP8Wwf8HagFfjr\n326tr6/n9ttvr/i1VL0MEpIUkBMzKQY/nk8dJOLOpGhoaKCpqWmcPTYR1Up8FHgDAE1NTTQ0NFT8\nWqpeBglJCsiJGRGDH88DFR5XmfXr19PY2DjOHncD3wHuZ86c17Nhw4ZYr6PqZZCQpICcmBEx8RGJ\n4cdVpq6uji1bttDa2jrGZY5+zj33/Zx55unMnv0ws2adXHyp2maQkKSAnJgRMfEaieHHVa6uro5N\nmzaxdetWOjo6fjtC0djYSEdHB4899i0eeugcHn30TO68M/bLqEoZJCQpICdmUlQ2IjHZmRSlUonb\nbruNQ4cOMW/ePC699FLmzZvHoUOHuO2229i/v8SqVXD33XD//ZN6KVUZF6SSpIB0dnayceNGensn\nXiORxEyK9vZ22tvbx92nvx927YJ3vAO6uuBv/gbO8K9IzXNEQpICcmImxcRHJLKaSXHaafCVr8Dq\n1dHj2mvh4OjrZamGGCQkKTDr16/n/PNnl38aP0g0NjZmOpNiyhT4i7+A73wHdu6ElhZ47LHMXl4B\nMkhIUmDq6ur41Kc+A8CZZ45eRDlt2jTmz5/PI488wnnnZT+T4pprossbF1wAv//78OUvR9v37t2b\n2k3GFCavbklSgF75ypkAfO97D/OlL32Ubdu2cfz4caZOncrChQvp7OzMfWGo2bNh82ZYuRLe/W7o\n7PwW/f3vo6/vZ8P2S+omYwqTQUKSAjR4G/E5cy5k7dq1+TZmHNOmwR139PHgg5/mwIE7gX8APgQ8\nNGy/3t5eent7Wbp0KVu2bDFMVBEvbUhSgAaDxGkF+JRua2vj0KFPAEuBXwH/CHwPuPqkfSdzkzGF\nqQBvUUmqPQPlWZ+hB4kTNxkD6AKWANcDZwMPE41MXDnsmLg3GYvDmo30Bf4WlaTaVJQRiRM3GRtq\nI9ACvBWoBx4FvglcAcS/yVgl+vr6WLZsGYsXL2bdunXs2LGDXbt2sWPHDtatW8fixYtZtmwZfX19\nqbajFgT+FpWk2jQYJKZMGX+/vI1/s7CvA68D2oBLgMeJRinew9atu1JrU19fH0uWLGHz5s2jhJxI\nb28vmzdvZunSpYaJSTJISFKAijIiceqbhQ0AG4DXAu3Ai8AX6O7exPLl8MAD8KtfJdumtrY2du/e\nPaF9rdmYvMDfopJUm4pSIzHxm4X9BlgPvBmYTX39pzlwAG66Cerq4JZbYONGeOGFybVneM3GxGRZ\ns1GNAn+LSlJtKsqIxImbjFWij+uv/wmPPQZPPgkf+ABs2QLXXw8zZsBVV8Fttx3hzW/+BK99bUtF\nRZKj12yML4uajWoW+FtUkmpTUWokOjs7qa+vr+iYoTcZu+QSuOOOKFA88QR87GO/4MknN/O3f9vP\nt7/9n9m5cwu7dt3Djh3LWbfuaa688i3jFkmOX7MxtrjHVaJaZ5C4IJUkBagoIxKDNxmrZBRgtJuM\nTZkCM2f2sWbNEp55ZjcwBVgALAPeAHwQmMHBg3Dw4D7mzfsxt956NkuXvpzf/V2YOzc6x6lrNkYX\n97iJ6Ovro62tje7u7pP6qRpW/QzhLfpnwB6iVUx+CFyVb3MkKX9FqZGA6CZjjY2NE9p3vJuMDS+S\nHAD+FfgssByYRTTz44+Ar/Dii8e4555jvO1t0NgIr3gFXHEFHDjwOeBu4BaiBbImdh+Sidd6VKYW\nZpDk/Ra9CfgMcBfRBOPvE01AvjDPRklS3ooyIgHRTca2bNlCa2vrmJc56uvraW1tHfMmY6cukhwA\nfgo8CPwVcD2zZl3OY4/9nI0bo8sjV14JZ511IfDHwDrg/wJ9wPPAH477OyxatOiUv2cctTCDJO+3\n6AeALwNrgV3A+4GfA3+aZ6MkKW9FqZEYVFdXx6ZNm9i6dSsdHR1cfvnlXHbZZVx++eV0dHSwdetW\nNm3aNOadSuMWSX7xix/luuvggx+EL30Jtm59GfX1i4CXAZcTLYr1MWDnmOcZWrMxljj1DbUygyTP\nGokzgWbg4yO2P0S0xqokJapUKlEqlQA4evQoTz31FHPmzGH69OkAtLe3097enmcTf6tIIxJDNTQ0\nxLrJWFJFkidqNjYDPy4/xjdazcagydQ3TGYGScg3ahspzyBxDnA60bjTUAeJ1lSVpEQNDQpdXV20\ntLRQKpVobm7OuWUnG6yRKMqIxGQlWSS5fv16li5dSk9PzymPH69mY7C+YbxLE+Pd1TTkGSRJctZG\nBd7wBnj66bxbISkJx469BtjFW996EdOm5d2akz3/fPFGIyYjbrHjaMcN1myMNZIA0eWMpqYmNmzY\nMOblljj1DZs2bfrtthBnkKQhzyBxiGips5FzXeqAA6MdsHLlSmbMmDFsW5ZDkddeC889l8lLSUpZ\nX9/zfPWrX6e19Wbq6qbn3ZxRXXxx3i3IzsKFC9mxY0fFx41VJDlYs7F3715WrVrFtm3bOH78OFOn\nTmXhwoV0dnaOeTkDJlffMHjeJMPRRA29fDfoyJEjsc9XBI8C94zYtpNo7s5QzcDA9u3bByQpCdu3\nbx/wcyUce/bsGaivrx8gmp4xoUd9ff3Anj17UmlPR0dHRW0ZfHR0dEz6HCtWrEj0dxl8r5f/liYu\n74GzTwN/AnQA84mmgl4A/Lc8GyVJytZgkWQlxiuSnKwk6hsmu+pnUeQdJB4AVgKdRPeXvQq4nmgK\nqCSphiS1sFUSkqhvCC0cpSXvIAHwRWAuMB1YSLSCiCSpxiSxsFVSkqpvCCkcpSWEICFJEjD5ha2S\nEu+upicXf4YUjtLi9E9JUnDiLmyVlM7OTjZu3FjRglJj1TdMdgZJ6AwSkiSNkNRdTUees0grVk6U\nlzYkSRpFLdQ3JMEgIUnSKGqhviEJXtqQJGkM1V7fkASDhCRJp1Ct9Q1J8NKGJEmKzSAhSZJiM0hI\nkqTYDBKSasrevXtZsWIFN954IwA33ngjK1asYO/evfk2TCooiy0l1YS+vj7a2tro7u4etshQT08P\nPT09bNy4kaamJtavX09dXV2OLZWKxSAhqer19fWxZMkSdu/ePeY+vb299Pb2snTpUrZs2WKYkCbI\nSxuSql5bW9u4IWKonp4e2traUm6RVD0MEpKq2p49e+ju7q7omO7ubmsmpAkySEiqanfddVdFN16C\n6DLHqlWrUmqRVF0MEpKq2rZt2zI9Tqo1BglJVe348eOZHifVGoOEpKo2derUTI+Tao1BQlJVW7hw\nYazjFi1alHBLpOpkkJBU1To7O6mvr6/omPr6em6//faUWiRVF4OEpKrW0NBAU1NTRcc0NTXR0NCQ\nToOkKmOQkFT11q9fT2Nj44T2bWxsZMOGDSm3SKoeBglJVa+uro4tW7bQ2to65mWO+vp6WltbeeSR\nRzjvvPMybqFUXAYJSTWhrq6OTZs2sXXrVjo6On47QtHY2EhHRwdbt25l06ZNhgipQt60S1JNaWho\nYO3atXR1ddHS0sIDDzxAc3Nz3s2SCssRCUmSFJtBQpIkxWaQkCRJsRkkJElSbAYJSZIUm0FCkiTF\nZpCQJEmxGSQkSVJsBglJkhSbQUKSJMVmkJAkSbEZJCRJUmwGCUmSFJtBQpIkxWaQkCRJsRkkJElS\nbGfk3QBJykqpVKJUKgFw9OhRLr30Uj784Q8zffp0ANrb22lvb8+ziVLhGCQk1QyDgpQ8L21IkqTY\nDBKSJCk2g4QkSYrNICFJkmIzSEiSpNgMEpIkKTaDhCRJii3PILEX6B/x+HiO7ZEkSRXKc0GqAeB2\n4O+GbHshp7ZIkqQY8l7Z8pfAwZzbIEmSYsq7RuJDwCHgceAjwNR8myNJkiqR54jEZ4HtwHPAlcB/\nAeYC786xTZIkqQJJj0jcwckFlCMfzeV9VwPfB3YAfw+8F3gXMDPhNkmSpJQkPSLxeeD+U+zz1Bjb\nf1D+ejGwbbQdVq5cyYwZM4Zt825+kiRFSqUSpVJp2LYjR46k+ppTUj17Zd4CfAO4CHh6xHPNwPbt\n27fT3Nx80oGSJGl0XV1dtLS0ALQAXUmfP68aidcDi4FNwPPAQuDTwD9wcoiQJEmByitIHANuBDqB\naUSXO9YAn8ipPZIkKYa8gsTjRCMSkiSpwPJeR0KSJBWYQUKSJMVmkJAkSbEZJCRJUmwGCUmSFJtB\nQpIkxWaQkCRJsRkkJElSbAYJSZIUm0FCkiTFZpCQJEmxGSQkSVJsBglJkhSbQUKSJMVmkJAkSbEZ\nJCRJUmwGCUmSFJtBQpIkxWaQkCRJsRkkJElSbAYJSZIUm0FCkiTFZpCQJEmxGSQkSVJsBglJkhSb\nQUKSJMVmkJAkSbEZJCRJUmwGCUmSFJtBQpIkxWaQkCRJsRkkJElSbAYJSZIUm0FCkiTFZpCQJEmx\nGSQkSVJsBglJkhSbQUKSJMVmkJAkSbEZJCRJUmwGCUmSFJtBQpIkxWaQkCRJsRkkJElSbAYJSZIU\nm0FCkiTFZpCQJEmxGSQkSVJsBglJkhSbQUKSJMVmkJAkSbGlFST+CngEeBF4box9LgK+CfwSeAb4\nLDA1pfYohlKplHcTao59nj37PHv2eXVJK0hMBTYAXxjj+dOB/wW8DFgKtAH/AfhUSu1RDP5jz559\nnj37PHv2eXU5I6Xz3lH+essYz78JmA9cC/SWt/0n4F7gI0SjFJIkKXB51UgsBn7EiRAB8BAwDWjJ\npUUjJJGYKznHRPY91T5jPT/a9oluy5J9nj37PHv2efbs83TlFSTqgb4R254DXio/lzvfeNmzz7Nn\nn2fPPs+efZ6uSi5t3AF0nmKf3wO6Jni+KRW8NgBPPPFEpYfEduTIEbq6JvqrTP4cE9n3VPuM9fxo\n2yeyLYk+qIR9bp9PZB/73D6vVK33edp/Oyv5Y/6q8mM8TwHHhvx8C/AZYOaI/e4ElgNXDNk2EzgM\nLAMeHrH/+cA2YHYF7ZUkSZF9wELgQNInrmRE4nD5kYStRFNE6zhxieNNRCFk+yj7HyDqgPMTen1J\nkmrJAVIIEWm6iGi0oRP4BfC68s9nl58/DfhX4J/K2/8t8DOitSQkSVKNuxfoLz9+M+Tr1UP2uZBo\nQaoXgEPAalyQSpIkSZIkSZIkSZIkaSJ+DTxefqzJuS215Cyiqb+fzLshNeAVwGNE7/EdwJ/n25ya\ncCGwGfgx8C/A23JtTe34GvAs8N/zbkgNeAvQDTwJvCvntuTumbwbUKPuBtYDn8i7ITXgNGB6+fuX\nAbuBc/NrTk2oB/5N+ftzgZ8T9b3SdQ3RHziDRLrOAHYRLa/wcqIwMauSE+S1RLaqxyXAZcBGYqxW\nqor1A0fL358FHB/ys9LRSzRdHaL/rDxLhR+0iuVhvIFjFhYRjbYdIOrv/020rtOEVVuQ+B2iJbq/\nT5Rmlb5PAh/OuxE15pVEQ+yDa6/8v3ybU1N+jygw78u7IVJCXs3w9/PTVLiKdLUFiTlAM/Be4CtE\nwULpWU40DPZTHI3I0vNEi7zNBd4HXJxvc2rGq4g+V96Td0OkBA1M9gR5BomriRak2kc0XLt8lH3+\nDNgD/Ar4IXDVkOf+I1HBWRcnFrIavC35j4Gd+AE7UtJ9fiXQVt7/k8C7gb9Oqe1Flcb7fNBBoiLA\nK9BQafT5NOB/Ah8HHk2l1cWW1vt80n/kasBk+34/w0cgLqRAI27XAauAPyT65W8Y8fxNRPfeWEF0\nDf4zREO4F45xvhlE/9gBLgD2lrfphKT7fKibcdbGaJLu8/M4MdL2O0TX7i9LtsmFl3SfTwFKwEfT\naGyVSOuzpRWLLU9lsn1/BtHI8quJZoU9yck32iyE0X75HwD3jNi2k+h/BKNZTPSh+s9EyXbk+TRc\nEn0+1M04a+NUkujzZqL39z+XHx1JNrAKJdHnVxEt8d/Fienlr02wjdUmqc+WfyQadXuBaKZMS1IN\nrGJx+/7fEc3c+AnwJ6m1LmUjf/kziarRRw7RrCYaytXk2efZs8+zZ59nzz7PTy59H2qx5TnA6Zy4\nxfigg0RzupU8+zx79nn27PPs2ef5yaTvQw0SkiSpAEINEoeIrknWjdheR7RohpJnn2fPPs+efZ49\n+zw/mfR9qEHiJWA7J6+udS3wSPbNqQn2efbs8+zZ59mzz/NT9X1/NtH89yuICkRWlr8fnJJyI9GU\nlQ5gPtFN7Q1jAAAAeklEQVSUlV8wsamIGp19nj37PHv2efbs8/zUdN+3Ev3S/URDL4Pfrx2yz58S\nLaJxFNjG8EU0VLlW7POstWKfZ60V+zxrrdjneWnFvpckSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIC9f8BHaAKSNiHdccAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f64bb1a8b90>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"s, loc, scale = lognorm.fit(lag,loc=.008)\n",
|
|
"\n",
|
|
"xscale('log'); ylim(-10,15)\n",
|
|
"errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n",
|
|
"plot(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),lognorm.pdf(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),s,loc,scale))\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"(0.47677903915219444, 1.214804919002201)"
|
|
]
|
|
},
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAFrCAYAAACE+GArAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAF7xJREFUeJzt3XFsnOd9H/CvHCtRq7RTmsSk46lmzNahI2nLyNBJrCCl\nsSUrhjUZsEElgQwrtVZZm23QNmQ1MljN5KEFhq11/9hWZIPWAoFP8ooVTrFpa4HSAUapm0Z6XZWK\na0eJXmqLdJJGbuNEihppfxwZUxQp8R7e3cu7+3yAA+/e93nf+5F6RH7vfZ/nfRMAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAA6BofSvLrSV5KciPJx9Zp85nl9d9IMpXk3e0qDgDYuntauO/vTvJCkk8uv765\nZv1PJzm6vH40yWKS30zy5hbWBAB0oBtJPrrq9Y4kl5N8atWyNyb5WpIjbawLANiCVh6RuJN3JulL\n8hurln0ryReSPFZJRQBAw6oKEv3LX5fWLH9l1ToAYJu7t+oC1rF2LMWK+5cfAEBjLi8/mq6qILG4\n/LVv1fP1Xq+4/x3veMfLL7/8cssLA4Au9FLqExuaHiaqChKXUg8MH0nyO8vL3pjkh3LrAMwV97/8\n8sv53Oc+l0ceeaRNJTbP0aNH8/TTT3fke21lf41uu9n2m2l3tzZ3Wt/Of69m09ea215f25i+1tz2\nrexrFy5cyMc//vEHUj+q31FBYneSH1z1+qEk70ny1SRfSvJ0kk8n+YMk/3f5+deTPLPRDh955JEM\nDw+3qt6W2bNnT9vqbvZ7bWV/jW672fabaXe3Nnda385/r2bT15rbXl/bmL7W3Pat7mut9IYW7vtg\nkjNJPpH6uIcfXn7+liTPJZlOsivJzyT5+0leTTKRZL3zF/cn+cQnPvGJ3H9/Zw6TOHDgQMe+11b2\n1+i2m22/mXZ3a7PR+lqtlomJiU3VsR3pa81tr69tTF9rbvtW9bXLly/ns5/9bJJ8Ni04IrGj2Tts\nkeEkMzMzMx2b3ukcH/3oR/P5z3++6jLoAfoa7TA7O5uRkZEkGUky2+z9VzX9EwDoAoIErNHJh5rp\nLPoa3UCQgDX8cqdd9DW6gSABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAU\nEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFB\nAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQA\ngGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAo\nJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxaoMEp9JcmPN4+UK6wEAGnRvxe9/PslfWvX621UVAgA0ruog\n8e0kr1RcAwBQqOoxEj+Y5KUkF5PUkryz2nIAgEZUGSR+O8nfTPKRJD+RpD/JmSTfV2FNAEADqjy1\n8V9WPf9ikrNJ5pP8rSS/UElFAEBDqh4jsdo3kvxukh/YqMHRo0ezZ8+eW5ZNTExkYmKixaUBwPZX\nq9VSq9VuWXblypWWvueOlu69MW9K/YjELyX5Z2vWDSeZmZmZyfDwcNsLA4BONTs7m5GRkSQZSTLb\n7P1XOUbiXyT5UOoDLN+X5FeTvDnJr1RYEwDQgCpPbTyQ+kyNtyX5cupjJN6f5EsV1gQANKDKIGFg\nAwB0uKqvIwEAdDBBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAAigkSAEAxQQIAKCZIAADF\nBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQ\nAACKCRIAQDFBAgAodm/VBQA0U61WS61WS5JcvXo1L774Yh588MHs2rUrSTIxMZGJiYkqS4SuIkgA\nXWV1UJidnc3IyEhqtVqGh4crrgy6k1MbAEAxQQLoOgsLCzl8+HAOHTqUJDl06FAOHz6chYWFaguD\nLuTUBtA1lpaWMj4+nrm5uSwuLn5n+fz8fObn53P69OkMDQ3l5MmT6evrq7BS6B6CBNAVlpaW8thj\nj+XixYsbtllcXMzi4mIOHjyY6elpYQKawKkNoCuMj4/fMUSsNj8/n/Hx8RZXBL1BkAA63qVLlzI3\nN9fQNnNzc8ZMQBMIEkDHe+qpp24ZE7EZi4uLOX78eIsqgt4hSAAd79y5c23dDnidIAHc1cp0ygMH\nDmRoaCgHDhzYVtMpr1+/3tbtgNeZtQFsaGlpKY8//nguXryYa9eu3bLu/PnzeeaZZ/LQQw9lamqq\n0hkQO3fubOt2wOsckQDWtTKd8sKFC7eFiBXXrl3LhQsXcvDgwSwtLbW5wteNjo4Wbffoo482uRLo\nPYIEsK5Omk557Nix9Pf3N7RNf39/nnzyyRZVBL1DkABu02nTKQcGBjI0NNTQNkNDQxkYGGhNQdBD\nBAngNp04nfLkyZMZHBzcVNvBwcGcOnWqxRVBbxAkgNt04nTKvr6+TE9PZ2xsbMPTHP39/RkbG8uZ\nM2dy3333tblC6E6CBHCbTp1O2dfXl6mpqZw9ezaTk5PfOUIxODiYycnJnD17NlNTU0IENJHpn8Bt\nOn065cDAQE6cOJHZ2dmMjIzk2WefzfDwcNVlQVcSJIDbjI6O5vz58w1vtx2mU9ZqtdRqtSTJ1atX\n8/DDD+eJJ57Irl27kiQTExOZmJioskToKjuqLmCThpPMzMzM+FQBbbCwsJAPfOADDQ247O/vz9mz\nZ82EgG1m5chckpEks83evzESwG1MpwQ2S5AA1mU6JbAZggSwLtMpgc0QJIAN9fX15ciRI9m3b1/2\n7t2b3bt3Z+fOndm9e3f27t2bffv25ciRI0IE9DCzNoA7MssBuBNHJACaZGFhIYcPH86BAwcyNDSU\nAwcO5PDhw5XdgwTawREJgC1aWlrK+Ph45ubmbpsye/78+Zw+fTpDQ0M5efJk+vr6KqoSWkOQANiC\npaWlPPbYY3e85fri4mIWFxdz8ODBTE9PCxN0Fac2ALZgfHz8jiFitfn5+YyPj7e4ImgvQQKg0KVL\nlzI3N9fQNnNzc8ZM0FUECYBCTz31VEOXEU/qpzmOHz/eooqg/QQJgELnzp1r63bbiRkqrDDYEqDQ\n9evX27rddmCGCmsJEgCFdu7c2dbtqmaGCutxagOg0OjoaNF2jz76aJMraQ8zVFiPIAFQ6NixYxve\n0Gwj/f39efLJJ1tUUeuYocJGBAmAQgMDAxkaGmpom6GhoQwMDLSmoBYyQ4WNCBIAW3Dy5MkMDg5u\nqu3g4GBOnTrV1Pdv1+yJXp6hwp0ZbAmwBX19fZment5wJkNSP50xNDSUU6dONe2W6+2ePdGLM1RW\nLCws5Pjx4zl37lyuX7+enTt3ZnR0NMeOHevIo0vNJkgAbFFfX1+mpqba9genitkTvTZDJTHVdbO2\nQ5D4qSSfStKf5ItJjib5b5VW1CM+9amkCz4s9KSbN6uuYGPNqK2RfazXdqPtm9l2/ecDueeeE3nf\n+25dv3qYwMry9b7ebd3K69/6rd/Ll7/8c0l2bPDId57Pz+/Iu999Me9/f19u3kxu3Lh1f+stW3m9\n+uvi4nNJ/mh5v/csP34kyZfW/wEu69QZKqa6bl7VQeJHk/xCkp9MMp3k7yQ5neTduVvvZMuefz65\nerXqKugUO3bcvU2r97tR263uYzP7XXm+3rK77WPttnf6erd1V69+M6++ek+SPUluLj+y6vnax428\n9tqr+dM/fS1vfvPu7+xn5XHPPXd+vbLsoYfenueem843v/n1JDeW933nXyCdOkMlKZvqOjU11eKq\ntqeqg8Q/TPLvkpxYfv0Pkvzl1IPFp6sqqlf0+hioWq2WWq2WJLl69WpefPHFPPjgg9m1a1eSZGJi\nIhMTE1WWCLc5fPiTmZ7+9w1tc+1a8sADkzlx4sTdG2/oe/L44yfy/PPPb3qLTp2hspWprp34/Xay\nNya5nuRja5Y/neT5NcuGk9ycmZm5Ca0wMzNzUx+jE+zfv3+jQw93fOzfv3/L7724uHhzcHBwU+83\nODh4c2lpqQnf8esuXbp0c3Jy8ub+/ftvvutd77q5f//+m5OTkzcvXbrU1PeZnJws+hlPTk42tY5m\nWfn9tvy3tOmqPCLxtiRvSLK0ZvkrqY+XAGCNKmdPVDlD5fHHH8/Fixdz7dq1W9adP38+zzzzTB56\n6KFMTU01ZZyCqa6NqfrUBgANqHr2xHacoXLt2rVcuHChaYMee3mqa4kqg8RXknw7ydp/8b4kl9fb\n4OjRo9mzZ88ty5zHBnrJ6Ohozp8/3/B2zZ49MTAwsMUxF5tTxaDHqsPaVqwe+7XiypUrLX3PKoPE\nt5LMJPlIkudWLf9wkl9bb4Onn346w8MtOcUD0BGOHTuW06dPN3S56k6dPVHVoMftEtZKrPfhenZ2\nNiMjIy17z6ovkf3zSX48yWSSR1KfCvpnk/xSlUUBbFfu73Fnzbi/Ry/djK0Zqg4Sz6Z+AapjSV5I\n8sEkfyWuIQGwoarv79EuVQ167KWw1gxVB4kk+TdJ3plkV5LRuKolwB2tzJ4YGxvb8JNzf39/xsbG\ncubMmabNnmi3Kgc99kpYawazNgA6ULtnT1ShykGPVU117USCBEAHa9fsiSpUPeixF8JaMwgSAGxL\n22WGSjeHtWbYDmMkAOA2Bj12BkECgG3LoMftT5AAYNvqlRkqnUyQAGBb6+vry5EjR7Jv377s3bs3\nu3fvzs6dO7N79+7s3bs3+/bty5EjR4SIihhsCcC2575K25cjEgBAMUECACgmSAAAxQQJAKCYIAEA\nFBMkAIBiggQAUEyQoKctLCzk8OHDOXToUJLk0KFDOXz4cBYWFqotDKBDuCAVPWlpaSnj4+OZm5u7\n5c6C8/PzmZ+fz+nTpzM0NJSTJ0+mr6+vwkoBtjdBgp6ztLSUxx57LBcvXtywzeLiYhYXF3Pw4MFM\nT08LEwAbcGqDnjM+Pn7HELHa/Px8xsfHW1wRQOcSJOgply5dytzcXEPbzM3NGTMBsAFBgp7y1FNP\n3TImYjMWFxdz/PjxFlUE0NkECXrKuXPn2rodQLcTJOgp169fb+t2AN1OkKCn7Ny5s63bAXQ7QYKe\nMjo6WrTdo48+2uRKALqDIEFPOXbsWPr7+xvapr+/P08++WSLKgLobIIEPWVgYCBDQ0MNbTM0NJSB\ngYHWFATQ4QQJes7JkyczODi4qbaDg4M5depUiysC6FyCBD2nr68v09PTGRsb2/A0R39/f8bGxnLm\nzJncd999ba4QoHMIEvSkvr6+TE1N5ezZs5mcnPzOEYrBwcFMTk7m7NmzmZqaEiIA7sJNu+hpAwMD\nOXHiRGZnZzMyMpJnn302w8PDVZcF0DEckQAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKC\nBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgA\nAMUECQCgmCABABS7t+oCoCq1Wi21Wi1JcvXq1Tz88MN54oknsmvXriTJxMREJiYmqiwRYNsTJOhZ\nggLA1jm1AQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCYIAEAFBMkAIBiggQAUEyQ\nAACKVRkkFpLcWPP42QrrAQAaVOXdP28meTLJv1217LWKagEAClR9G/GvJ3ml4hoAgEJVj5H46SRf\nSfJCkk8n2VltOQBAI6o8IvGLSWaSfC3J+5L8XJJ3JvmJCmsCABrQ7CDxmSTH7tLmvUlmkzy9atn5\n1APFryb5x8vPb3P06NHs2bPnlmUTExOZmJgoLBcAuketVkutVrtl2ZUrV1r6njuavL+3Lj/u5MUk\n19ZZ/kCSL6V+dOLcmnXDSWZmZmYyPDy85SIBoFfMzs5mZGQkSUZS/yDfVM0+IvHV5UeJv7D89XKT\nagEAWqyqMRLvT/KBJFNJXk0ymuTnkzyX5A8rqgkAaFBVQeJakkOpj6d4U+qnOz6b5J9XVA8AUKCq\nIPFC6kckAIAOVvV1JACADiZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAA\nxQQJAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBM\nkAAAigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJ\nAKCYIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMUECQCgmCABABQTJACAYoIEAFBMkAAA\nigkSAEAxQQIAKCZIAADFBAkAoJggAQAUEyQAgGKCBABQTJAAAIoJEgBAMUECACgmSAAAxQQJAKCY\nIAEAFBMkAIBiggQAUEyQAACKCRIAQDFBAgAoJkgAAMVaFST+SZIzSb6R5GsbtPn+JL+e5OtJvpzk\nF5PsbFE9sGm1Wq3qEugR+hrdoFVBYmeSU0n+9Qbr35DkPyX5riQHk4wn+etJ/mWL6oFN88uddtHX\n6Ab3tmi/n1n++mMbrP9IkkeSfDjJ4vKyf5Tkl5N8OvWjFADANlfVGIkPJPndvB4ikuQ3krwpyUgl\nFbVQOz91NPu9trK/RrfdbPvNtLtbm279JKivNbe9vrYxfa257Tu5r1UVJPqTLK1Z9rUk31pe11X8\nh2tu+07+D9dq+lpz2+trG9PXmtu+k/taI6c2PpPk2F3avDfJ7Cb3t6OB906SXLhwodFNtoUrV65k\ndnazP5bt9V5b2V+j2262/Wba3a3Nnda389+r2fS15rbX1zamrzW3fSv7Wqv/djbyx/yty487eTHJ\ntVWvfyzJLyR5y5p2/zTJx5K8Z9WytyT5apLHk3xhTfv7k5xL8kAD9QIAdS8lGU1yudk7buSIxFeX\nH81wNvUpon15/RTHR1IPITPrtL+c+g/g/ia9PwD0kstpQYhope9P/WjDsSR/nOTPL7/evbz+niT/\nO8lvLi//i0n+X+rXkgAAetwvJ7mx/Pj2qq8fWtVmb+oXpHotyVeSPB0XpAIAAAAAAAAAuJvvSfI/\nkryQ5HySv1ttOXSxvUmeT/LFJL+T5G9UWg3d7teS/FGS/1B1IXStv5pkLsnvJ/nbFddSqXuS7Fp+\n/l1JLiZ5e3Xl0MX6k/y55edvT/Kl1PsctMIPpf6LXpCgFe5N8n9Sv7zCm1MPE9/XyA6qukR2K9xI\ncnX5+Xcnub7qNTTTYurTl5Pky6l/WmzoPx404AtxI0Na59HUj65eTr2f/efUr+u0ad0UJJLkz6R+\nqHnlmhR/Um059ID3pn6F2JeqLgSgwDty6++vP0yDV5HutiDxauoXv3pnkk8m+YFqy6HLvTXJryQ5\nUnUhAIVubnUHVQaJD6V+QaqXUj8t8bF12vxUkktJvpnkfyb54Kp1fy/1gZWzuf1CVq+kPhjuPYHW\n9LU3JfmPSX42yW+3pGo6Uat+r235lz1da6t97uXcegRibzroCOsPJzme5K+l/s1/dM36H0393huH\nk7wr9Zt//Unq3+R67kvyvcvPvzf1c9jvam7JdKhm97UdSWpJfqYVxdLRmt3XVozFYEvWt9U+d2/q\nAyzfkfrsx9/P7Tfa7AjrffP/Pcm/WrPs91L/BLie4dST/P9afkw2s0C6RjP62gdTv+T7bOp97oUk\n+5pYI92hGX0tSf5r6kdZX0t9htBIswqk65T2uR9JfebGHyT58ZZV12Jrv/k3pj7rYu0hmqdTP2UB\npfQ12kVfo90q6XPbdbDl25K8Ia/fYnzFK6nP4Ydm0ddoF32NdmtLn9uuQQIA6ADbNUh8JfVz0H1r\nlvelftEMaBZ9jXbR12i3tvS57RokvpVkJrdfXevDSc60vxy6mL5Gu+hrtFvX97ndqV/n4T2pDxA5\nuvx8ZUrKodSnrEwmeST1KSt/nLtPk4K19DXaRV+j3Xq6z42l/k3fSP3Qy8rzE6va/GTqF9G4muRc\nbr2IBmzWWPQ12mMs+hrtNRZ9DgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2qf8PO7Bz0KhO\nUkwAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f64b94d0850>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"loc, scale = norm.fit(lag,loc=.01)\n",
|
|
"\n",
|
|
"xscale('log'); ylim(-10,10)\n",
|
|
"errorbar(fqd, lag, yerr=lage, fmt='o', ms=10,color=\"black\")\n",
|
|
"plot(np.logspace(np.log(fqd[3]),np.log(fqd[-1])),norm.pdf(np.logspace(np.log(fqd[0]),np.log(fqd[-1])),loc,scale))\n",
|
|
"\n",
|
|
"norm.fit(lag,loc=.01,scale=.1)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[<matplotlib.lines.Line2D at 0x7f64bb3ec6d0>]"
|
|
]
|
|
},
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAFkCAYAAACemWn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xd4VGX6//H3hF7UoAioYAFFEQsGEEFEQJnYVsV1wSji\n4oJdDDZ07X0VCzbAsrhiyYoFUb9qBqUIioAJggUUFRSXZgsKgoFkfn/ckx9hTJ3MmWdmzud1Xeci\nOTln5vaYnLnPU+4HRERERERERERERERERERERERERERERERERERERERERERERERERERERERERERE\nkt5FwHJgE/AR0Lua44cCi4GNwCpgIrCzlwGKiIhI8hkM/AGcC+wPPAD8BrSr5Pi+wFbgEmAv4Ejg\nE+AVrwMVERGR5DIPeDRq3+fAnZUcfyXwVdS+S4Hv4hyXiIiIJLGGwBbglKj9Y4GZlZxzCNZScTwQ\nAFoD7wHjvAlRRERE6qK+R6/bEqgHrI3avw5oU8k5i7ExES9iSUh9YCowsor32S2yiYiISO2sjmwx\n8yqJiMURwH+Am4B8YHdgDDABGF7B8bvtvvvuq1atWpWwAEVERNLI/4Du1CGR8CqJ+BEowbokymtN\n5cGOwpKH+yLff4rN0pgNXMefWzV2W7VqFc8++yydOnWKS9CpKjc3l7Fjx7oOIynoWhhdh210LYyu\nwza6FrBkyRKGDBmyB9aan3RJRDFQAASxLokyA4AplZwTwBKP8krL/axCnTp1IisrK8Yw00NmZqbv\nr0EZXQuj67CNroXRddhG1yJ+vOzOuB94BqsP8SFwHtAW654AuAvrsjgn8v2rWHfGBUAIy47GYrM8\n1ngYp4iIiMTAyyRiMrALcCOWEHwCnACsjPy8DdvXjHge2AmrE3EfUAS8C4z2MEYRERGJkdcDK8dH\ntooMq+XxIiIikkQyXAcgdZeTk+M6hKSha2F0HbbRtTC6DtvoWsRPpQMWU0AWUFBQUKABMiIiIrVQ\nWFhI165dAboChbG+jloiREREJCZKIkRERCQmSiJEREQkJkoiREREJCZKIkRERCQmSiJEREQkJkoi\nREREJCZKIkRERCQmSiJEREQkJkoiREREJCZKIkRERCQmSiJEREQkJkoiREREJCZKIkRERCQmSiJE\nREQkJkoiREREJCZKIkRERCQmSiJEREQkJkoiREREJCZKIkRERCQmSiJEREQkJkoiREREJCYpn0Ss\nXu06AhEREX9K+STi+eddRyAiIuJPKZ9EvPIK/Pyz6yhERET8J+WTiHAYHn3UdRQiIiL+k/JJxCmn\nwEMPwe+/u45ERETEX1I+iRgyBH75BZ56ynUkIiIi/pLyScQee8CgQXDvvbB1q+toRERE/CPlkwiA\nq6+GFSvgxRddRyIiIuIfaZFEdOkC2dlw99020FJERES853UScRGwHNgEfAT0rub4RsAdwApgM/AV\nMKwmbzR6NCxaBKFQzLGKiIhILXiZRAwGHgBuA7oAs4G3gHZVnDMZ6AecC3QEzgCW1uTN+vaF7t2t\nNUJERES852UScTnwJDAR+AIYBawELqzk+OOAPsAJwHTgO6z1Ym5N3iwQsNaIGTNgwYI6Ri4iIiLV\n8iqJaAhkAdGdCyGgVyXnnIwlDdcA32OJxxigcU3f9NRTYb/91BohIiKSCF4lES2BesDaqP3rgDaV\nnNMeGzNxIHAqkAucDoyr6ZvWqwdXXWWlsL/8stYxi4iISC0k0+yMDKAUOAtrkXgL6xI5BxtwWSNn\nnw2tW1vdCBEREfFOfY9e90egBGgdtb81UNni3auBVcBv5fYtBQJAW+Drik7Kzc0lMzNzu319++bw\n9NM53HIL7LZb7YMXERFJF3l5eeTl5W23r6ioKC6vHYjLq1TsQ6AAuLjcvs+BKcB1FRw/AhgLtAI2\nRvadArwMNAP+iDo+CygoKCggKytrux+sXw977gkXXKDxESIiItEKCwvp2rUrQFegMNbX8bI7435g\nOFbnoRM23bMtMCHy87uAp8sd/zzwE/BU5Pg+2MDKf/PnBKJKO+1kCcSECZZQiIiISPx5mURMxgZH\n3ggsxAZNnoBN8wQbYFm+ZsRGYACQiY2JeBaYCoyM5c1zc2HzZkskREREJP68GhNRZnxkq0hFlSi/\nAILxeOPddoOhQ2HsWLjsMmhc44miIiIiUhPJNDsj7q66CtauhWeecR2JiIhI+knrJKJjRxg4EMaM\ngZIS19GIiIikl7ROIsBKYS9bBq++6joSERGR9JL2ScThh9viXFomXEREJL7SPokAuOYaW5Rr5kzX\nkYiIiKQPXyQRwSB06aLCUyIiIvHkiyQiEICrr4b8fPj4Y9fRiIiIpAdfJBEAf/sb7LMP3HOP60hE\nRETSg2+SiPr14Yor4IUXYPly19GIiIikPt8kEQDDhsHOO8N997mOREREJPX5Kolo2hRGjoSJE+GH\nH1xHIyIiktp8lUQAXHwxZGTAww+7jkRERCS1+S6J2HlnGDECHnkENmxwHY2IiEjq8l0SAXD55fDb\nb/Dkk64jERERSV2+TCLatYMzz4T774ctW1xHIyIikpp8mUSAFZ9auRLy8lxHIiIikpp8m0R07gwn\nnWTFp0pLXUcjIiKSenybRIAtE/7ZZ/Dmm64jERERST2+TiJ694ZevbQwl4iISCx8nUSAtUbMmQPv\nv+86EhERkdTi+yTipJPgwAPVGiEiIlJbvk8iMjLgqqvg9ddtfISIiIjUjO+TCLCaEW3bwpgxriMR\nERFJHUoigIYNYdQoeO45qx0hIiIi1VMSETFiBDRvDg884DoSERGR1KAkImKHHWyFz8cfh59/dh2N\niIhI8lMSUc7IkVBSAuPGuY5EREQk+SmJKKdVKzj3XHjoIdi0yXU0IiIiyU1JRJQrroCffoKnnnId\niYiISHJTEhGlfXsYNAjuvRe2bnUdjYiISPJSElGBq6+G5cvhpZdcRyIiIpK8lERU4LDDIBi0Utjh\nsOtoREREkpOSiEqMHg0ffwzTprmOREREJDkpiahEv37QrZsW5hIREamM10nERcByYBPwEdC7hucd\nCWwFFnoUV7UCAWuNmD4dPvrIVRQiIiLJy8skYjDwAHAb0AWYDbwFtKvmvExgEvAO4HREwsCBsN9+\nao0QERGpiJdJxOXAk8BE4AtgFLASuLCa8yYAzwJzgYCH8VWrXj248kp4+WVYtsxlJCIiIsnHqySi\nIZAFhKL2h4BeVZw3DNgbuAXHCUSZoUOtkuW997qOREREJLl4lUS0BOoBa6P2rwPaVHLOfsBdwBCg\n1KO4aq1xY8jNhaefhjVrXEcjIiKSPOq7DiCiHvA8cBPwVW1OzM3NJTMzc7t9OTk55OTkxC24Cy6A\nO++EBx+Eu+6K28uKiIh4Li8vj7y8vO32FRUVxeW1veoyaAhsBE4Hppbb/yBwCNAv6vhM4GegpNy+\njEh8JcAAYGbUOVlAQUFBAVlZWXELvDJXX23LhH/3Hey4o+dvJyIi4pnCwkK6du0K0BUojPV1vOrO\nKAYKgGDU/gHABxUcvx44CDi03DYBG5B5KDDfozhrLDfXVvZ87DHXkYiIiCQHL2dn3A8MxwZLdsKm\ne7bFkgOw8Q9PR74OA59HbT8AmyNf/+5hnDWy++5w9tnwwAPwxx+uoxEREXHPyyRiMpAL3IgVjeoN\nnIBN8wQbYFlVzYgwjutERLvqKhtc+eyzriMRERFxz+uKleOBfYDGQHdgTrmfDQP6V3HuLdi4h6Sx\n//5w6qlwzz1QUlL98SIiIulMa2fU0ujR8OWXMHVq9ceKiIikMyURtdSjBxx9tJYJFxERURIRg9Gj\nYf58mDXLdSQiIiLuKImIwXHHwSGHaGEuERHxNyURMShbJvztt2HRItfRiIiIuKEkIkaDBsHee9tM\nDRERkZoaORJmzHAdRXwoiYhR/fpw4YUwZQps3uw6GhERSQX/+x88/DCsjV6eMkUpiaiD44+3Uthz\n5lR/rIiIyLRp1iV+7LGuI4kPJRF1cNBB0KYNhEKuIxERkVQQCkHXrtCypetI4kNJRB0EAhAMKokQ\nEZHqlZZaS0QwemnKFKYkoo6ys22Gxpo1riMREZFktnAh/PijfW6kCyURdVTWrzVtmts4REQkuYVC\n0Lw5HHGE60jiR0lEHbVqBYcdpi4NERGpWigE/fpBw4auI4kfJRFxUDYuorTUdSQiIpKMNmyA999P\nr/EQoCQiLrKzYd06WLzYdSQiIpKMZs6ELVvSazwEKImIi169oGlTdWmIiEjFQiGrcrzvvq4jiS8l\nEXHQqBH07askQkREKpafb10ZgYDrSOJLSUScZGfD7NmwcaPrSEREJJmsWAFffpl+XRmgJCJugkEo\nLob33nMdiYiIJJNp0yAjA/r3dx1J/CmJiJP994d27dSlISIi2wuFoEcPyMx0HUn8KYmIk7IS2Pn5\nriMREZFksXUrvPNOenZlgJKIuMrOhiVLYOVK15GIiEgy+OgjKCpKv/oQZZRExNExx1iLhEpgi4gI\nWFfGTjtB9+6uI/GGkog42nln+0XRuAgREQHr4j7mGKhf33Uk3lASEWfZ2dYSUVLiOhIREXGpqAjm\nzUvf8RCgJCLugkH4+WcoLHQdiYiIuDRjhj1QDhjgOhLvKImIsx49YIcd1KUhIuJ3oRDstx/ss4/r\nSLyjJCLOGjSw/i9N9RQR8a9w2D4H0rkrA5REeCIYhLlz4ddfXUciIiIufP01LF+evlM7yyiJ8EAw\naAVGZs50HYmIiLgQCtmMjL59XUfiLSURHujQAdq317gIERG/ys+HI4+0MXLpTEmER7KzNS5CRMSP\ntmyB6dPTvysDlER4JhiEr76Cb75xHYmIiCTShx/Chg1KIuLlImA5sAn4COhdxbGnAdOAdcB64AMg\nJf839OsH9eqpBLaIiN/k58Muu8Bhh7mOxHteJxGDgQeA24AuwGzgLaBdJccfBeQDxwNZwHTg9ci5\nKWWnnaBnT3VpiIj4TShkBabq1XMdife8TiIuB54EJgJfAKOAlcCFlRw/CrgXKAC+Bq4HlgF/8ThO\nTwSD8O67NlNDRETS308/2cqdfujKAG+TiIZYa0L0HIUQ0KuGr5EB7AD8FMe4EiYYtFoR8+e7jkRE\nRBLh3Xet0FQ6l7ouz8skoiVQD1gbtX8d0KaGr3EF0BSYHMe4EqZbN2jRQl0aIiJ+kZ8PnTtD27au\nI0mMZF6cNAe4CTgZ+LGyg3Jzc8nMzNz+xJwccnJyvI2uBurVg2OPtf6xW25xHY2IiHgpHLb7/d/+\n5jqS7eXl5ZGXl7fdvqKiori8tpdJxI9ACdA6an9rYHU15w7GxlKcjg2urNTYsWPJysqKNUbPBYNw\n/vnwyy/WKiEiIulp6VL4/vvkGw9R0YN1YWEhXbt2rfNre9mdUYwNkIy+nAOwqZuVyQGeAs7AZnKk\ntGAQSkut8IiIiKSv/Hxo1Aj69HEdSeJ4PTvjfmA4MAzohE33bAtMiPz8LuDpcsefCUzCxkIswMZO\ntAF29DhOz+y5JxxwgMZFiIiku1AIjjoKmjZ1HUnieJ1ETAZygRuBhVihqROwaZ5gCUL5mhEjIjE9\nCqwqt431OE5PBYP2yxUOu45ERES88McftuhisnVleC0RFSvHA/sAjYHuwJxyPxsG9C/3fT9sRkdG\n1HZuAuL0TDAI334Ly5a5jkRERLwwZw5s2qQkQjzQty80aKAuDRGRdBUKQevWcMghriNJLCURCdCs\nGfTuraXBRUTSVShkrRCBgOtIEktJRIIEgzBjBhQXu45ERETiae1a+Phj/3VlgJKIhAkGYeNGmDvX\ndSQiIhJPZas1+6XUdXlKIhKkSxfYdVeNixARSTehkN3jW0eXVvQBJREJkpFhWarGRYiIpI+yUtd+\n7MoAJREJFQxCYSH88IPrSEREJB4WL7YxEUoixHPBoGWt77zjOhIREYmHUAiaNLEZeH6kJCKBdtsN\nDj5YXRoiIukiFLJaQI0auY7EDSURCaYS2CIi6eH332H2bP92ZYCSiITLzoZVq+Dzz11HIiIidfHe\ne7ZmRna260jcURKRYL17Q+PGmuopIpLqQiFo29ZWavYrJREJ1qSJrTWvcREiIqnNr6Wuy1MS4UAw\nCLNmwebNriMREZFYfP89fPaZv8dDgJIIJ7KzLYGYPdt1JCIiEotp06wF4thjXUfilpIIBzp3tume\n6tIQEUlNoRB06wa77OI6EreURDgQCGyb6ikiIqmlpMRaIvzelQFKIpzJzrZyqatXu45ERERqY+FC\n+Oknf0/tLKMkwpGyfrSyJWRFRCQ1hELQvDkccYTrSNxTEuHIrrtCVpa6NEREUk1+PvTvDw0auI7E\nPSURDmVnW0tEaanrSEREpCZ++w0++EBdGWWURDgUDMK6dbBoketIRESkJmbOhK1bNaiyjJIIh3r2\nhGbN1KUhIpIqQiHYZx/o0MF1JMlBSYRDjRrZErJKIkREUkN+vkpdl6ckwrHsbJgzBzZudB2JiIhU\nZflyWLZM4yHKUxLhWDAIxcW2loaIiCSvadOgXj3o1891JMlDSYRjHTvCnnuqS0NEJNnl50OPHpCZ\n6TqS5KEkwrFAwJrGlESIiCSvrVvh3XfVlRFNSUQSCAZhyRJYudJ1JCIiUpEFC2D9ek3tjKYkIgn0\n7w8ZGWqNEBFJVqGQdWN06+Y6kuSiJCIJ7LwzdO+uJEJEJFnl59uaR/Xru44kuSiJSBJlJbBLSlxH\nIiIi5RUVwbx56sqoiJKIJBEMwi+/QEGB60hERKS86dNtjaMBA1xHkny8TiIuApYDm4CPgN7VHH80\nUBA5/mvgfE+jSyKHHw477qguDRGRZJOfb9Px997bdSTJx8skYjDwAHAb0AWYDbwFtKvk+H2AN4FZ\nkePvBB4CTvMwxqTRoAEcc4ySCBGRZBIOWxKhqZ0V8zKJuBx4EpgIfAGMAlYCF1Zy/AXAish5XwD/\njpx7pYcxJpVgEObOhV9/dR2JiIgAfPUVfPutxkNUxqskoiGQBUQ/V4eAXpWc07OS47sB9eIaXZIK\nBq2gyYwZriMRERGwVogGDWyxRPkzr5KIltgH/9qo/euANpWc07qC49cC9SOvl/bat4d991WXhohI\nsgiF4MgjoXlz15EkJ83OSDLBoGW+IiLiVnGxtQyrK6NyXpXN+BEowVoXymsNrK7knDX8uZWiNbA1\n8noVys3NJTNqNZScnBxycnJqE2/SCAZh3Dj4+mvo0MF1NCIi/vXhh7BhQ+onEXl5eeTl5W23r6io\nKC6v7VUSUYxN1QwCU8vtHwBMqeScucBfovYFgQVYQlKhsWPHkpWVFXukSaZfP6uINm2akggREZfy\n86FlSzjsMNeR1E1FD9aFhYV07dq1zq/tZXfG/cBwYBjQCZvu2RaYEPn5XcDT5Y6fAOwF3Bc5/tzI\ndq+HMSadHXeEnj01LkJExLVQyApMZajjv1JeXprJQC5wI7AQKzR1AjbNE6zronzNiBWRn/eNHH8d\ncCmVt1ykrWDQlpzdssV1JCIi/vTjj1ZBONW7MrzmdX41Hisi1RjoDswp97NhQP+o498DukaO7wA8\n7nF8SSkYtFoR8+e7jkRExJ/eeccKTanUddXUSJOEuna1lT3VpSEi4kYoBAcdBHvs4TqS5KYkIgnV\nq2dLzmqqp4hI4oXDlkSoK6N6SiKSVDAICxbAzz+7jkRExF8+/xz+9z8lETWhJCJJBYO29Oz06a4j\nERHxl1AIGjWCPn1cR5L8lEQkqXbtoFMnjYsQEUm0UMgSiCZNXEeS/JREJLGyEtjhsOtIRET8YfNm\nmDVLXRk1pSQiiQWD8N138OWXriMREfGHOXNg0yYlETWlJCKJHX00NGyoLg0RkUQJhaBNGzj4YNeR\npAYlEUmsWTPo3VtTPUVEEqVsamcg4DqS1KAkIskFg7YU7R9/uI5ERCS9rVkDixapK6M2lEQkuexs\n+P13mDvXdSQiIult2jT7V6Wua05JRJI75BBo1UrjIkREvBYK2bLfrVq5jiR1KIlIchkZlhVrXISI\niHdKS1XqOhZKIlJAMAiFhfDDD64jERFJT4sXw7p11oUsNackIgWU9c+9847bOERE0lUoBE2bQq9e\nriNJLUoiUsBuu9nYCHVpSE2pyqnRdZCaCoWgb19bM0NqTklEiggG7ZdcN0WpzvXXQ4cOtgqhn332\nGey+Ozz6qOtIJNlt3AizZ2s8RCyURKSI7GxYvdpujCKVeeYZuOMO69sdONDK9/rRTz/BySfDb7/B\nZZepK1Cq9t57UFys8RCxUBKRInr3hsaNNdVTKjd/PowYAeecYzfFTz+17/3WerVlCwwaBOvXw8cf\nwzHH2PdffeU6MklWoZCtnLz//q4jST1KIlJE48a2lobGRUhFVq+2locuXWDCBMjKgqeegueegzFj\nXEeXWFdcYUnUSy/BvvvCf/8LLVvCKafAr7+6jk6SUX6+Sl3HSklECsnOtpujX5uopWKbN1sCATBl\niiWcAIMHw3XXwTXXwP/9n7v4EumJJ+Dhh23r29f2tWgBU6fCypUwZIjVAxAps3IlLFmiroxYKYlI\nIcGgfWDMmeM6EkkW4TBccIE127/6qs3kKe/WW21sQE6O3SjT2ezZcPHFcOGFdk3K69QJ8vLgjTfg\nxhvdxCfJado0a4E45hjXkaQmJREp5MADbbS5ujSkzNix8PTT8OST0L37n3+ekWGDLffc05KJn39O\nfIyJ8O238Ne/wpFHwoMPVnzMiSfCnXfawNPJkxMbnySv/Hz729l5Z9eRpCYlESkkENg21VMkFIIr\nr7RtyJDKj9thB3jtNUsgBg+GrVsTF2MibNxo4x2aNYMXX4QGDSo/dvRoa5X5+99h4cKEhShJqqTE\nZu5oamfslESkmOxs+OQTG0gn/rVsmSUEwSD861/VH9++vQ00nDHDko50UVpqs1G++soSpZYtqz4+\nELBWmwMPtMRj3brExCnJqbDQkmuNh4idkogUc+yxdiNUa4R//fqrfQC2bm39/PXq1ey8fv3goYes\nuX/iRG9jTJTbb4eXX4Znn4WDD67ZOU2b2viR4mLrAiku9jZGSV6hkLXU9ejhOpLUpSQixbRsadP3\nlET4U0kJnHUWrFplMw4yM2t3/oUXwnnn2cDD99/3JsZEeeUVuOkmGzx66qm1O7dtWzt//ny49FL/\n1dIQk58P/ftX3QUmVVMSkYKys21Esaaq+c8NN9h0zby82ArjBAI2/fGII+C00+C77+IfYyIsWgRn\nnw1/+5uV+Y5Fr14wfjw8/rj9K/7y668wd666MupKSUQKCgZtWfBFi1xHIomUlwd33QV33w3HHx/7\n6zRsaF0ATZrYE/zvv8cvxkT44QfrzunY0Qpq1aVA0LnnwsiRVhp75sy4hSgpYOZMG2SsQZV1oyQi\nBfXsCc2ba6qnnxQU2AfekCHxGRi5667WHfLFFzBsWOo05xcXw+mnW+IzdarNyKir++6zarCnnw7L\nl9f99SQ15OfbgOMOHVxHktqURKSghg1tkJzGRfjDmjXWYnDQQdb0Hq/SvIceCpMmWc2EO++Mz2t6\n7bLLrAn6lVes9kU81K8PL7wAO+1kLRwbNsTndSW5hULqyogHJREpKhi0ypUbN7qORLz0xx82g2Dr\nVptR0KRJfF//r3+Fm2+2cQVTp8b3teNt/HhbF2T8eFuQLp522cWmiC5fDkOHarxRuvvmG5sWrK6M\nulMSkaKCQVutUP246SsctjLOH31ka2LssYc373PDDZZMDBliNUiS0YwZNnZh5Ej4xz+8eY/OnW2q\n6JQpNuND0te0aTY1ul8/15GkPi+TiBbAM0BRZJsE7FTF8fWBu4HFwAbgf8DTwG5VnONb++0He+2l\nLo109sgj8O9/w2OP2WwKr2RkWOnsDh2sOf/HH717r1h8843Nwujb18YveOmUU+C22+CWW2zwqaSn\n/Hz7m9qpqk8kqREvk4jngUOAbOA4oAuWVFSmGXAYcGvk39OAjsBrHsaYsgIB689TEpGe3n0XRo2C\n3Fwr0ey1Zs2sO2PDBvvA3rLF+/esid9+sw/2zEwbt1C/vvfved11dg2GDoXFi71/P0msrVvt70vj\nIeLDqySiE5Y8DAfmAR8CI4CTsMSgIuuBIPASsCxy3qVAV6CtR3GmtGAQli5N3bn+UrFvvoFBg6wI\nzpgxiXvfvfayp+85cyx5ca201GpBfPutjVdI1AJJgYBNHe3YMTlbZqRu5s+3GhEaDxEfXiURPbGk\nYEG5ffMi+3rW4nUygTDWHSJR+ve3pmi1RqSP336z1TZ33jlxT97lHXUUjBtn22OPJfa9o910kyUP\nzz9va10kUlnLzMaNydUyI3WXnw8tWkC3bq4jSQ9eJRFtgIqWtlkX+VlNNAb+BTyHjZGQKC1aWM13\nJRHpoezJ+7vv7MOzRQs3cYwYAZdcYtt777mJ4YUXbF2Mu+6Ck05yE8Oee1rLzPvvJ0fLjMRHKGRr\nENV0zRmpWm2TiJuB0mq2rnGIqwHw38jXF8Xh9dJWMGhL2W7a5DoSqaubb9725N2pk9tY7r8f+vSx\nWRsrViT2vQsLrQDWmWfC1Vcn9r2jHXWUDXAdN85qdEhqW7vWujPUlRE/tS1bs0tkq8q3wFnAfdgM\njfJ+AXKxWReVaQBMBvYG+kfOqUgWUHDUUUeRGbUKUU5ODjk5OdWEmR6WLoWuXS2zfvnlxDd/S3y8\n+KKNg7jzTrj2WtfRmJ9+gsMPt+qo779v/3pt7VprZm7TxlpB4l0XI1YXX2xJxPTpllhI6tm40e6T\nX38Nn34KrVq5jihx8vLyyMvL225fUVERs2fPBnvwL3QRV1U6Ya0S3cvt6xHZt18V5zUApmDTPKtL\nVrKAcEFBQdjv3nwzHK5fPxwePjwcLi11HY3U1sKF4XDTpuHwGWck3/+/Tz8Nh5s3D4cHDgyHS0q8\nfa/Nm8PhXr3C4TZtwuHvv/f2vWqruDgc7ts3HN5113B4xQrX0UhtFReHwyeeGA43axYOL1jgOprk\nUFBQEMbGHGbF/EmPd2MilgBvA09gycMRka9fx2ZelFkKlC3i2wCbmdEVGBL5vk1k00KtVTj+eKsn\n8OSTNhhE8JBRAAAYIUlEQVRNUse6dTYD4IAD7P9hvEpax0vnzvDcc1Yt08sCTOGwLVPudWGtWDVo\nYK1FzZpZCXJVik0d4TCcd54NqHzlFQ2ojDcv60ScCXwChIB84GPg7KhjOgI7Rr7eA/hL5N+PgVWR\n7X/UbkaHLw0daqs73nab9d9K8itbTGrzZvuQbtrUdUQVO/lkG+R4yy3w0kvevMdDD9m0yscf97aw\nVl20bGkzNpYtS61Fy/zun/+E//zHNo2FkPLUnRGltDQczs0NhwOBcPjFF11HI9U5//xwuEGDcHjO\nHNeRVK+0NBwePNi6XRYujO9rh0LhcEZGOHzFFfF9Xa+8/HI4DOHw7be7jkSq8+CD9v/qvvtcR5J8\nkr07QxwIBKws8BlnwFlnaV2NZDZ+vNVhGDcOjjzSdTTVCwRg4kTrdjnlFOuGiYdly2DwYHtCvPvu\n+Lym1047zboNr7/eZtNIcnrhBZuae+WVcPnlrqNJX0oi0kxGhjXb9eljN/tFi1xHJNFmzbKFpC65\nBIYPdx1NzTVtat0uZSuLFhfX7fXWr7ff0V13hby81Jq3f+ONMHCgJeuffeY6Gon27rtWc+Wss1In\nOU1VSiLSUMOGNoBo333huOMSP89fKrdihY2D6NPHajGkmnbtbODj/PmWBMU6LqCkxG7wq1bZ03zU\nLO2kl5EBkybBPvtYIvTzz64jkjILF1qC17+/tZ5l6FPOU7q8aWqHHeDNN200eXY2/PCD64hkwwb7\nwNlxR5g82Ub8p6KePWHCBHjiidgH8V53Hbz1ljU5779/fONLlObNbaBlUZF1yWzd6joi+eYbm612\nwAE2CDhV/8ZSiZKINNa6tU1rKiqy0sGaluZOaamtxvnNN/bBs0t1VVCS3LBhtsroZZdZAabaeO45\na2IeMyb1V1LcZx/7sJo50/rexZ116+z3aYcd4P/+LzHF0URJRNrr0MGe+D7/XAsJuXT77VZR9Nln\n4aCDXEcTH/fcA8ccY79XX39ds3MWLIB//APOOceSkHTQty88+KBtEye6jsaffvsNTjjB/s3Pt3E2\nkhhKInwgK8v6sd95xwbyaX57Yk2ZYqP5b73VujPSRf368N//WqvKySfb8spVWbXKCjUddph1hyRb\nYa26uPBCK2h0wQXwwQeuo/GX4mIb6Pvll/bA1L6964j8RUmETxx7rA0EmzQJrrnGdTT+8cknNkr8\n9NNtSmC6adHCBkZ+/z0MGWLdNhXZvNkGuwUCNui3cePExum1QAAeftgKZZ12Gqxc6Toifygtta61\nWbNs5tBhh7mOyH+URPjIGWfAAw9YM/TYsa6jSX8//mhP6Pvua9Nu0+nJu7wDDrAWiTfegBtu+PPP\ny8oOL15sN/rddkt8jInQsKGNj2jUyBImrazrvauusunBzzxjszEk8ZRE+Exuri2vPGqU/fGJN7Zs\nsbECGzbYQMpmzVxH5K3jj7fBknfe+effq/vus5v8xInpv25Bq1b2//vzz23sh7oOvXPvvTZN+sEH\nbQVccUMLR/vQv/4Fa9bY4LaWLWHAANcRpZ9Ro2DOHCt6s9derqNJjCuvtNaGc8+Fjh1tifo337Sk\n9ZprICfHdYSJ0aWLtTwNHgyHHgqjR7uOKP0884y1Qlx7LVx6qeto/E0tET4UCNiKn8cea/23BQWu\nI0ovTzwBjz5qfeR9+riOJnECAftvP+QQG0A6c6YlDieeaLNT/GTQIKuFce21Nt1Q4uftty1RHTYM\n7rjDdTSiJMKnypY2PvBAmxpV0yl6UrU5c+Dii22U/gUXuI4m8Ro3ttkopaXQr58t6f3cc6lV0jpe\nbr0V/vIXOPNMWLLEdTTpYcECG6ScnW0rvqbrOKNUoiTCx5o1s6ekzExbAGntWtcRpbZvv7WWnZ49\nrZ/Wr3bf3cYF9O9vMzd23NF1RG5kZFize7t2NsBWpbHr5ssv7YHn4IOt4mt9dcYnBSURPteypRVn\n2bRpW7EWqb0NG+yDolkzKyrVsKHriNzq3t3Gg+y7r+tI3NpxR0ukfvnFujhU7C02q1db60PLljYL\nqGlT1xFJGSURwt57Wz/jV1/Zk3RdV2f0m9JSq5HwzTfw+ut2oxMp0769Tf2cNSt9qnQm0vr1Nvun\nuNgeeFK9ZHy6URIhgA2GmzoV3nvP1niorGiQ/NkNN9jTZl5e+pS0lvjq29cWK3v0URg/3nU0qeOP\nP6zK6YoV9qCz556uI5Jo6lWS/69vXxsEN2iQLd51//0auFSd55+32gj33GOLnIlUZsQI+PRTm5K4\n//4qjlSdkhKr9jp3LoRCNhZCko9aImQ7p58OjzxiFS3HjHEdTXKbP9+mmg0dqhUcpWbuu8+Sh9NP\nt+5DqVg4bIXxXn7ZWvj8NFU61SiJkD+56CJb52H0aFtrQ/7s+++tFkJWFjz2mFpspGbq14cXXrBV\nJk8+2fr75c/uusseZsaNsxLikryUREiFbr3VVvw891xbGU+2+f1366dt0CA9F5MSb7VoYQNwV6+2\n9WxKSlxHlFwmTrRCXTfdBOef7zoaqY6SCKlQIGADwE480Zpe581zHVFyCIetUt6SJTaYsk0b1xFJ\nKurY0WodTJtmZcHFvPGGLdZ23nmWREjyUxIhlapf3/oju3SxZOKLL1xH5N5tt9nN/5ln7LqIxGrA\nABt7dP/99vTtd3Pn2qDuv/zFujHURZgalERIlZo2tabX1q2t2MuqVa4jcuell+zp6LbbrJ6GSF1d\nfLE12V9wgZVM96slS2x2U7duNuPJj2XSU5WSCKnWzjvbHO2SEiv64sfBYAsX2iyMM86w/lqReAgE\nbKG2I4+0xHTFCtcRJd7339sDSlm59CZNXEcktaEkQmqkXTtLJL77zmYlbN7sOqLEWbPGRtJ37mzN\nzmpmlXhq0MBauXbYwX7PNmxwHVHi/PILHHecff3WWzboVFKLkgipsc6dbeDTvHlW5tkPo8o3b7Yp\nZiUl8OqrekoSb+yyiw3UXbHC/rb8UDF20yZLmlavtnLWbdu6jkhioSRCauXII22e+5QpMHKkzVZI\nV+GwjRL/+GNLIPbYw3VEks46d7aBzK+9ZnVa0tnWrbZEekGBPZh06uQ6IomVkgiptZNPtgJL48bB\nHXe4jsY799xjszAmToTDD3cdjfjBiSfa791dd1kJ+nQUDtuA0tdft5lOPXu6jkjqQmtnSEyGD7dm\nyBtusFoJw4e7jii+XnsNrr3WnghzclxHI35yxRXw2Wfwj3/YUuo9eriOKL5uuQUef9ySc603k/qU\nREjMrr/eBh2efz60amUtFOngk0/grLOsKuUtt7iORvwmEIAJE+DLL+13cMGC9BkvMGGC/U3dcYcV\nbZPUp+4MiVkgAA89ZAMPBw+Gp59O/TESP/xgyVCHDrZuSIb+QsSBRo2spHrDhjYb6vffXUdUNyUl\ntvjYxRfDJZdYK5+kB90ipU7q1YNnn7XS2H//u03XStW57sXF8Ne/2g176lRo3tx1ROJnrVtbt9rS\npfa3laozNj79FHr1gquugssusyqdmiadPpRESJ01bmwDEN94Az7/HA46yAropNJNLxy21UvnzbOZ\nJ3vt5ToiETj0UEvSX3zRKqWmkuJi67rIyoJff7WKnPffr2qU6carJKIF8AxQFNkmATvV4vwJQClw\nWfxDE6+ceKINCBs61KZ/9uljT1Gp4KGH4N//tgFfvXq5jkZkm4ED4fbb4eabLZlIBfPnQ9euFvfo\n0VbxVX9X6cmrJOJ54BAgGzgO6IIlFTUxEOgBrAJSvIfdf3bc0aZ+zpoF69bZk9Sdd8KWLa4jq9zb\nb8Pll1tz6znnuI5G5M/++U+bJXTOOVBY6Dqaym3caLNLeva0cR0ffWQtKI0bu45MvOJFEtEJSx6G\nA/OAD4ERwElAx2rO3QN4CDgTSOKPHalOnz6waBGMGgU33gjdu1thmWSzdKkNCj3+eJubL5KMAgFr\nKTvoIBtouXq164j+bPp0OOQQe4j417/gww/tIULSmxdJRE9gPbCg3L55kX1VlRXJwFor7gGWeBCX\nJFiTJnYzmT/fboI9eljT5qZNriMzP/9syw63bauVAyX5NWlilVNLS62LI1nWrykqghEj4JhjbI2d\nxYutVa++Cgj4ghdJRBtgXQX710V+VpnRQDHwsAcxiUNZWZZI3HYbPPigPZ3MmuU2pi1bYNAgWwDo\n9detG0Yk2ZWtdLlokRV4cz2leupUOPBAK4U/YYK1Ruy3n9uYJLFqkyveDNxYzTHdY4yjKzASyIra\nX+1EoNzcXDIzM7fbl5OTQ47KDCaVBg1sbvjAgXbz69sXLrgA7r7bzQf4qFGWyEybBu3bJ/79RWLV\nrRv85z+2LP1BB8E11yQ+hrVrbfD05MlWdXL8+PQpiJWO8vLyyMvL225fUVFRwuPYBRvTUNXWCDgX\n+KWC838BKhu2lguUYOMgyrZSYCvwTSXnZAHhgoKCsKSWkpJw+JFHwuHmzcPhtm3D4TfeSOz7jxsX\nDkM4/NhjiX1fkXi64YZwOBAIh199NXHvWVoaDk+aFA7vvHM43LJlOPz887ZPUk9BQUEYm7wQ/fBe\nK7XpzvgJ+LKa7Q9gLjads3yrRI/Ivg8qee1JwMHAoZGtCzY74x5skKakkYwMq1z36af2JHXSSVZm\n+ocfvH/v6dPh0kvtKeq887x/PxGv3HwznHaa/e0sXuz9+337LZxwgk3hPu44qwmTk6PCUX7nxZiI\nJcDbwBNY8nBE5OvXgWXljlsKnBr5+mfg83LbZ1hrxJqocySN7LUXvPmmlZd++23rW83L866f96uv\nrLJm//5WglcklWVkWKn5/fazUu1eJeGlpfDoo5bwf/KJjSF67jnYdVdv3k9Si1d1Is4EPgFCQD7w\nMXB21DEdAQ1n87lAAM4+255q+veHM8+0G+L338f3fdavt5kYu+5qg8A0clzSQbNmNrhx82ZrlSgu\nju/rL11q07UvuQSGDLG/U628KeV5lUQUYUnDTpFtKPBrBe89qYrX2AerGSE+0Lq1fbhPmWL1JA48\nEB57LD6ls0tKbBDamjX2FNWiRd1fUyRZ7Lmn/d3Mnw8XXhiflrwtW6xI3KGHWtG4mTNt8KRmMUk0\nrZ0hSeXUU+1pZ/Bgm73Rvz8sq2OH1tVX2yyMyZOhY3XlzkRSUM+e8MQTMHGiLXBVF4WFcPjhViRu\n1CibTnr00fGJU9KPkghJOpmZdkN85x1YudKq4I0ZA1u31v61Jk60RX8eeAAGDIh/rCLJYuhQS5iv\nvBLeeqv252/aZNOwDz/cWjPmzbNicU2axD9WSR9KIiRpHXOMjTq/6CKbC3/EEfZUVFNz5lhrxvnn\nW5+uSLq7805bCO+MM2BJLer+zp4NXbpYwn3rrbBggS2gJVIdJRGS1Jo1s5kUH3xgg8e6dYMbboA/\n/qj6vBUrbKDZkUfasuSahiZ+UK+ezZzYc08bSPzTT1Uf/+uvlqT36QMtW8LHH9tiXw0aJCZeSX1K\nIiQl9OhhfbXXX29VLrt0scSiIhs22AyPHXaAl17SDVH8ZYcd4LXXbE2LQYMqX0H3zTehc2ebYv3w\nw9Ya0alTYmOV1KckQlJGw4Zw002wcCHstBP07g2XXWZJQ5nSUpuKtmKF3Uh32cVZuCLO7LMPvPIK\nvPee/Y2U9+OP9jdy4omWRHz2mXX3ZejTQGKgXxtJOZ07w/vvW//tk09aEZxQyH52/fWWPOTl2XEi\nftWnj03LHD/elucOh20a9YEHWivE00/bAMy99nIdqaQyldyRlFSvHuTmWrfFeedBdjYce6zN6Bgz\nxp6yRPxu+HArLz9ypHXtzZgBf/ubdV+0bu06OkkHaomQlNa+vdWA+Pe/bUT5uefCFVe4jkokedx7\nryXZS5ZYF8fkyUogJH7UEiEpLxCw5OGss2zchGZiiGxTv7518ZWWapCxxJ+SCEkbjRq5jkAkOdWr\nZ5tIvKk7Q0RERGKiJEJERERioiRCREREYqIkQkRERGKiJEJERERioiRCREREYqIkQkRERGKiJEJE\nRERioiRCREREYqIkQkRERGKiJEJERERioiRCREREYqIkQkRERGKiJEJERERioiRCREREYqIkQkRE\nRGKiJEJERERioiRCREREYqIkQkRERGKiJEJERERioiRCREREYqIkIg3k5eW5DiFp6FoYXYdtdC2M\nrsM2uhbx41US0QJ4BiiKbJOAnWpwXifgtcg5vwJzgXYexZg29Aexja6F0XXYRtfC6Dpso2sRP14l\nEc8DhwDZwHFAFyypqEoHYA7wOXB05Pxbgc0exSgiIiJ1UN+D1+yEJQ89gAWRfSOwVoWOwJeVnHcH\n8AZwTbl9KzyIT0REROLAi5aInsB6tiUQAPMi+3pWEccJwDIgH1gLfAic4kF8IiIiEgdetES0AdZV\nsH9d5GcVaQU0x1ohrgOuAo4HXgH6Ae9V9mZLliypS6xpoaioiMLCQtdhJAVdC6PrsI2uhdF12EbX\nws1n581AaTVbV+CfwBcVnP8FMLqS1949cv6zUfunYuMrKrIb8D0Q1qZNmzZt2rTVevse+yyNWW1a\nIh6m8g/0Mt8Ch2ItC9FaAWsqOe9HYCs2qLK8pcCRlZyzGuhOHS+AiIiIT62ObEmlE9aq0L3cvh6R\nfftVcd772FTQ8qbw59YJERERSWNvAh9jycMRwGKsa6K8pcCp5b4/FfgDGA7sC1wCbAF6eR2siIiI\nJI9MrC7E+sg2Cdgx6phSYGjUvmHYFNDfgULgL96GKSIiIiIiIiIiIiIiIiIiIpJULgKWA5uAj4De\nbsNx4lqsKuivWIXPKVhZcb+7Bhtv84DrQBzZA5vR9COwEVgIZDmNKPEaAHdh94jfga+BG4CAy6AS\noA/wOvA/7G+gooq/N0d+/jswAzgwUcElWFXXoj5wNzbgf0PkmKdJz3IBNfmdKDMhcsxltXmDVFwK\nfDD2AXEbtrDXbOAt/LfaZx+sdkcPYAD2hxECmroMyrHuwHnYzSHsOBYXWmBTpf/AFr7rBFyOrYrr\nJ//EZnldBBwAXI1Vwb3UZVAJ0BRLGi+OfB/9NzAayI38vDtWt2caVi043VR1LZoBh2ELPB4GnIY9\ngL2WyAATpLrfiTIDsc+SVVUckzbmAY9G7fscuNNBLMmkJZZF+rFVBuxG+AXQH3vCut9tOE78C5jl\nOogk8DrwRNS+l7GnTb8oBU4u930AKyp0Vbl9DYFfsMQ7nUVfi4p0ixzX1vtwnKnsOuwBrMQeOpYD\nI2vzoqnWEtEQa5oNRe0PoXoSmZF/f3YahTuPYqvATif9m60rczJQALyIdXEVYk/kfvMGcCzbitsd\nilW+fdNZRO7tA7Rm+3tnMZZ0+v3eCXb/DOO/VrsMrBzDPUBMi2l4sQCXl1oC9bAbZHlVLe7lBwGs\ni2c2fy4d7gdnYF1bZVVS0745rhLtgQuB+4DbgcOBh7APi+hqsOnsMWBvrGVqK3bP+CfwgsOYXCu7\nP1Z079wzwbEkm8ZYK95z2BgJPxmN3R8ejvUFUi2JkIo9AnTGn10Z7YAHsSfP4si+AP5sjcgA5gPX\nR75fBBwEXIC/koiRwN+x5PIzrN97LNac76frUFN+TbrBBuH+N/L1RS4DcaAr9rcSPfA6re+dDbFS\n2NEjTB/E+sH96GFs4bO9XAfiyKlYX9+WclspUIIlFWn9BxFlBfB41L4LsZX6/GQtf/5AuI4Ym2tT\nVHT/d/vIvkOjjpsKPJWooBypbCxAA2xW20JsUHK6i74Oudh9MvreuRX4pqYvmmpjIoqxPt9g1P4B\nwAeJD8epANYCcSo2mPBbt+E48w72tH1oZOuCTft9NvK1n56y3sdmI5TXEUsu/CSA3RzLK8VfCWW0\n5dhsjPL3zobA0fjv3gmWQEwGOmCtmL+4DceJScDBbH/vXIWNj8h2GJfnBmFT2IZho0kfwGol+G2K\n5zjsF78P1t9ZtjV2GVSSmIk/60R0wxLta7FF7M7E+nhzXAblwOPYaPMTsLERA7G+/7scxpQIzbAP\ngi5Y0pQb+brs3ng1ds84FUu8n8daqZolPFLvVXUt6mMtMN8Bh7D9/bOBi2A9VN3vRLRaz85IVRdi\n/7GbsYJLfhwLUNZkXxq1RS9q5kd+neIJcCJWJ2MTNh7gH27DcaIZcC/bik19hdUESPcxYH3Zdh8o\nf2+YWO6Ym7CnzU2kd7GpvlR+LfaqYH/Z930cxOqlvlT/O1Geb5IIERERERERERERERERERERERER\nERERERERERERERERERERERERERERERERERERERERSX3/D2y+T/mXB6XkAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x7f64b95531d0>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot(irfft(lag))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 2",
|
|
"language": "python",
|
|
"name": "python2"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.6"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|