mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-11-02 23:28:06 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			157 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
The harmonic oscillator potential is V(x) = ½kx² = ½mω²x². The hamiltonian is time independent. 
 | 
						||
 | 
						||
The initial state vector is
 | 
						||
 | 
						||
     Ψ(t=0) = A⎛❙0❭ + 2exp(ι͟π͟)❙1❭⎞
 | 
						||
               ⎝            2    ⎠
 | 
						||
 | 
						||
Finding the normalization constant A is simple enough, since
 | 
						||
 | 
						||
    1 = A² + (2Aexp(ι͟π͟))² = A²(1 + (2exp(ι͟π͟))²).
 | 
						||
                     2                    2  
 | 
						||
 | 
						||
    A = √⎛  ______͟1͟______  ⎞ = √⎛  ________͟1͟_______  ⎞
 | 
						||
         ⎜ 1 + (2exp(ι͟π͟))² ⎟    ⎜ 1 + 4exp(ι͟π͟ - ι͟π͟ ) ⎟,
 | 
						||
         ⎝            2    ⎠    ⎝           2    2   ⎠
 | 
						||
 | 
						||
(𝐚)
 | 
						||
    A = √⎛  ____͟1͟____  ⎞ = √⅕.
 | 
						||
         ⎝ 1 + 4exp(0) ⎠    
 | 
						||
                          
 | 
						||
 | 
						||
The time evolution prescription for a time-independent hamiltonian is
 | 
						||
 | 
						||
    Ψ(t) = exp(-ι͟E͟ₙ͟t) Ψ(t=0);
 | 
						||
                 ħ            
 | 
						||
 | 
						||
    Ψ(t) = exp(-ι͟E͟ₙ͟t) √⅕⎛❙0❭ + 2exp(ι͟π͟)❙1❭⎞.
 | 
						||
                 ħ      ⎝            2    ⎠                    
 | 
						||
 | 
						||
(𝐛)
 | 
						||
    Ψ(t) = √⅕⎛exp⎛-ι͟E͟₀͟t⎞❙0❭ + 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❙1❭⎞.
 | 
						||
             ⎝   ⎝  ħ  ⎠           ⎝ ⎝ 2    ħ ⎠⎠   ⎠  
 | 
						||
 | 
						||
The expecation values ❬x̂❭ and ❬p̂❭ are of interest.
 | 
						||
 | 
						||
    ❬x̂❭ = ❬Ψ⃰(t)❙x̂❙Ψ(t)❭.
 | 
						||
 | 
						||
    Ψ⃰(t) = √⅕⎛exp⎛ι͟E͟₀͟t⎞❬0❙ + 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞❬1❙⎞.
 | 
						||
             ⎝   ⎝ ħ  ⎠           ⎝ ⎝ ħ     2⎠⎠   ⎠ 
 | 
						||
 | 
						||
    ❬x̂❭ = ⅕⎛exp⎛ι͟E͟₀͟t⎞❬0❙ + 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞❬1❙⎞ x̂ ⎛exp⎛-ι͟E͟₀͟t⎞❙0❭ + 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❙1❭⎞.
 | 
						||
           ⎝   ⎝ ħ  ⎠           ⎝ ⎝ ħ     2⎠⎠   ⎠   ⎝   ⎝  ħ  ⎠           ⎝ ⎝ 2    ħ ⎠⎠   ⎠ 
 | 
						||
   
 | 
						||
                             
 | 
						||
                             
 | 
						||
 | 
						||
The matrix representations of the position operator x̂ and momentum operator p̂ have been developed from the definition of the increment/decrement operators. The matrix elements may be ascertained by inspection.
 | 
						||
                     
 | 
						||
   x̂ ≐ √⎛_͟ħ͟ ⎞⎛  0 √1 ⎞  p̂ ≐ √⎛͟ħ͟m͟ω͟⎞⎛  0  -ι√1 ⎞
 | 
						||
        ⎝2mω⎠⎝ √1  0 ⎠,      ⎝ 2 ⎠⎝ ι√1   0  ⎠.
 | 
						||
 | 
						||
ω is a characteristic parameter of the system. It is related to the steepness of the parabolic potential curve. m is the particle's mass.
 | 
						||
 | 
						||
    ❬x̂❭ = ⅕⎛exp⎛ι͟E͟₀͟t⎞ exp⎛-ι͟E͟₀͟t⎞❬0❙x̂❙0❭ +                        ⎞ 
 | 
						||
           ⎜   ⎝ ħ  ⎠    ⎝  ħ  ⎠                                 ⎟ 
 | 
						||
           ⎜                                                     ⎟ 
 | 
						||
           ⎜   exp⎛ι͟E͟₀͟t⎞ 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞ ❬0❙x̂❙1❭ +            ⎟ 
 | 
						||
           ⎜      ⎝  ħ ⎠      ⎝ ⎝ 2    ħ ⎠⎠                      ⎟ 
 | 
						||
           ⎜                                                     ⎟ 
 | 
						||
           ⎜      exp⎛-ι͟E͟₀͟t⎞ 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞ ❬1❙x̂❙0❭ +        ⎟ 
 | 
						||
           ⎜         ⎝   ħ ⎠      ⎝ ⎝ ħ     2⎠⎠                  ⎟ 
 | 
						||
           ⎜                                                     ⎟ 
 | 
						||
           ⎜         2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❬1❙x̂❙1❭⎞⎟ 
 | 
						||
           ⎝              ⎝ ⎝ ħ     2⎠⎠     ⎝ ⎝ 2    ħ ⎠⎠       ⎠⎠.
 | 
						||
 | 
						||
    ❬0❙x̂❙0❭ = x₀₀ = ❬1❙x̂❙1❭ = x₁₁ = 0.
 | 
						||
 | 
						||
    ❬0❙x̂❙1❭ = x₀₁ = ❬1❙x̂❙0❭ = x₁₀ = √⎛_͟ħ͟ ⎞.
 | 
						||
                                     ⎝2mω⎠
 | 
						||
                           
 | 
						||
Substituting the matrix elements:
 | 
						||
 | 
						||
    ❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι͟E͟₀͟t + ι⎛_͟π͟ - E͟₁͟t⎞⎞ + exp⎛-ι͟E͟₀͟t + ι⎛E͟₁͟t - _͟π͟⎞⎞ ⎞ 
 | 
						||
             ⎝mω⎠⎝    ⎝  ħ     ⎝ 2    ħ ⎠⎠      ⎝   ħ     ⎝ ħ     2⎠⎠ ⎠; 
 | 
						||
           
 | 
						||
    ❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι⎛⎛E͟₀͟−͟E͟₁͟⎞t + _͟π͟⎞⎞ + exp⎛ι⎛⎛E͟₁͟−͟E͟₀͟⎞t - _͟π͟⎞⎞ ⎞
 | 
						||
             ⎝mω⎠⎝    ⎝ ⎝⎝  ħ  ⎠     2⎠⎠      ⎝ ⎝⎝  ħ  ⎠     2⎠⎠ ⎠.
 | 
						||
 | 
						||
For the Harmonic Oscillator, Eₙ = ħω(n + ½).
 | 
						||
 | 
						||
    Eₙ−Eₙ′ = ħω(n - n′):
 | 
						||
        E₀−E₁ = ħω(0 - 1) = -ħω;
 | 
						||
        E₁−E₀ = ħω.             
 | 
						||
 | 
						||
    ❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι⎛⎛−͟ħ͟ω͟⎞t + _͟π͟⎞⎞ + exp⎛ι⎛⎛ħ͟ω͟⎞t - _͟π͟⎞⎞ ⎞  
 | 
						||
             ⎝mω⎠⎝    ⎝ ⎝⎝ ħ ⎠     2⎠⎠      ⎝ ⎝⎝ ħ⎠     2⎠⎠ ⎠. 
 | 
						||
 | 
						||
    ❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟)⎛ exp⎛ι⎛−͟ħ͟ω͟⎞t⎞ + exp⎛ι⎛⎛ħ͟ω͟⎞t - π⎞⎞ ⎞  
 | 
						||
             ⎝mω⎠      2 ⎝    ⎝ ⎝ ħ ⎠ ⎠      ⎝ ⎝⎝ ħ⎠     ⎠⎠ ⎠. 
 | 
						||
 | 
						||
    ❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟)⎛ exp⎛ι⎛−͟ħ͟ω͟⎞t⎞ - exp⎛ι⎛ħ͟ω͟⎞t⎞ ⎞  
 | 
						||
             ⎝mω⎠      2 ⎝    ⎝ ⎝ ħ ⎠ ⎠      ⎝ ⎝ ħ⎠ ⎠ ⎠. 
 | 
						||
 | 
						||
This is a sine function.
 | 
						||
 | 
						||
    ❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟) 2ι sin⎛−͟ħ͟ω͟t͟⎞ = ⅕ √⎛͟8͟ħ͟⎞ ι² -sin(ωt).
 | 
						||
             ⎝mω⎠      2        ⎝  ħ ⎠      ⎝mω⎠          
 | 
						||
 | 
						||
(𝐜,x̂)
 | 
						||
    ❬x̂❭ = ⅕ √⎛͟8͟ħ͟⎞ sin(ωt).
 | 
						||
             ⎝mω⎠          
 | 
						||
 | 
						||
The expectation value progresses periodically with the time parameter t. 
 | 
						||
 | 
						||
 | 
						||
A very similar argument can be made for the momentum operator.
 | 
						||
 | 
						||
    ❬p̂❭ = ⅕⎛exp⎛ι͟E͟₀͟t⎞ exp⎛-ι͟E͟₀͟t⎞❬0❙p̂❙0❭ +                        ⎞ 
 | 
						||
           ⎜   ⎝ ħ  ⎠    ⎝  ħ  ⎠                                 ⎟ 
 | 
						||
           ⎜                                                     ⎟ 
 | 
						||
           ⎜   exp⎛ι͟E͟₀͟t⎞ 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞ ❬0❙p̂❙1❭ +            ⎟ 
 | 
						||
           ⎜      ⎝  ħ ⎠      ⎝ ⎝ 2    ħ ⎠⎠                      ⎟ 
 | 
						||
           ⎜                                                     ⎟ 
 | 
						||
           ⎜      exp⎛-ι͟E͟₀͟t⎞ 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞ ❬1❙p̂❙0❭ +        ⎟ 
 | 
						||
           ⎜         ⎝   ħ ⎠      ⎝ ⎝ ħ     2⎠⎠                  ⎟ 
 | 
						||
           ⎜                                                     ⎟ 
 | 
						||
           ⎜         2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❬1❙p̂❙1❭⎞⎟ 
 | 
						||
           ⎝              ⎝ ⎝ ħ     2⎠⎠     ⎝ ⎝ 2    ħ ⎠⎠       ⎠⎠.
 | 
						||
 | 
						||
 | 
						||
 | 
						||
    ❬0❙p̂❙0❭ = p₀₀ = ❬1❙p̂❙1❭ = p₁₁ = 0.
 | 
						||
 | 
						||
    ❬0❙p̂❙1❭ = p₀₁ = -ι√⎛͟ħ͟m͟ω͟⎞.
 | 
						||
                       ⎝ 2 ⎠ 
 | 
						||
 | 
						||
    ❬1❙p̂❙0❭ = p₁₀ = ι√⎛͟ħ͟m͟ω͟⎞.
 | 
						||
                      ⎝ 2 ⎠ 
 | 
						||
 | 
						||
    ❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞⎛-exp⎛ι͟E͟₀͟t + ι⎛_͟π͟ - E͟₁͟t⎞⎞ + exp⎛-ι͟E͟₀͟t + ι⎛E͟₁͟t - _͟π͟⎞⎞
 | 
						||
               ⎝ 2 ⎠⎜    ⎝  ħ     ⎝ 2    ħ ⎠⎠      ⎝   ħ     ⎝ ħ     2⎠⎠.
 | 
						||
    
 | 
						||
    ❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞⎛exp⎛ι⎛⎛−͟ħ͟ω͟⎞t - _͟π͟⎞⎞ + exp⎛ι⎛⎛ħ͟ω͟⎞t - _͟π͟⎞⎞⎞  
 | 
						||
               ⎝ 2 ⎠⎝   ⎝ ⎝⎝  ħ⎠     2⎠⎠      ⎝ ⎝⎝ ħ⎠     2⎠⎠⎠.
 | 
						||
    
 | 
						||
    ❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞ exp⎛−͟ι͟π͟⎞ ⎛ exp⎛ι⎛−͟ħ͟ω͟⎞t⎞ + exp⎛ι⎛ħ͟ω͟⎞t⎞ ⎞  
 | 
						||
               ⎝ 2 ⎠    ⎝ 2 ⎠ ⎝    ⎝ ⎝  ħ⎠ ⎠      ⎝ ⎝ ħ⎠ ⎠ ⎠.
 | 
						||
 | 
						||
This is a cosine.
 | 
						||
 | 
						||
(𝐜,p̂)
 | 
						||
 | 
						||
    ❬p̂❭ = ⅘ ι √⎛͟ħ͟m͟ω͟⎞ exp⎛−͟ι͟π͟⎞ cos(ωt) = ⅕ √(8ħmω) cos(ωt).
 | 
						||
               ⎝ 2 ⎠    ⎝ 2 ⎠                       
 | 
						||
 | 
						||
 | 
						||
Ehrenfest's theorem states
 | 
						||
 | 
						||
    ❬p̂❭ = m d͟❬͟x̂͟❭͟.
 | 
						||
            dt
 | 
						||
 | 
						||
    m d͟❬͟x̂͟❭͟ = ⅕ mω √⎛͟8͟ħ͟⎞ cos(ωt) = ⅕ √(8mωħ) cos(ωt) = ❬p̂❭. 
 | 
						||
      dt           ⎝mω⎠             
 | 
						||
                 
 | 
						||
So, the theorem holds for this case.
 | 
						||
 |