mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2025-01-18 10:55:06 +00:00
finished prob 11 chap 9
This commit is contained in:
parent
979d996b44
commit
16180bd642
@ -39,19 +39,17 @@ The expecation values ❬x̂❭ and ❬p̂❭ are of interest.
|
||||
⎝ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎠
|
||||
|
||||
❬x̂❭ = ⅕⎛exp⎛ι͟E͟₀͟t⎞❬0❙ + 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞❬1❙⎞ x̂ ⎛exp⎛-ι͟E͟₀͟t⎞❙0❭ + 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❙1❭⎞.
|
||||
⎝ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎠ ⎝ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠
|
||||
⎝ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎠ ⎝ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠
|
||||
|
||||
|
||||
|
||||
|
||||
The matrix representations of the position operator x̂ and momentum operator p̂ have been developed from the definition of the increment/decrement operators. The matrix elements may be ascertained by inspection.
|
||||
|
||||
x̂ ≐ √⎛_͟ħ͟ ⎞⎛ 0 √1 ⎞ p̂ ≐ √⎛͟ħ͟m͟ω͟⎞⎛ 0 -ι√1 ⎞
|
||||
⎝2mω⎠⎝ √1 0 ⎠, ⎝ 2 ⎠⎝ ι√1 0 ⎠.
|
||||
|
||||
x̂ ≐ p̂ ≐
|
||||
⎛ 0 √1 ⎞ ⎛ 0 -ι√1 ⎞
|
||||
⎝ √1 0 ⎠, ⎝ ι√1 0 ⎠.
|
||||
|
||||
❬0❙x̂❙0❭ = x₀₀ = ❬1❙x̂❙1❭ = x₁₁ = 0.
|
||||
|
||||
❬0❙x̂❙1❭ = x₀₁ = ❬1❙x̂❙0❭ = x₁₀ = √1 = 1.
|
||||
|
||||
|
||||
ω is a characteristic parameter of the system. It is related to the steepness of the parabolic potential curve. m is the particle's mass.
|
||||
|
||||
❬x̂❭ = ⅕⎛exp⎛ι͟E͟₀͟t⎞ exp⎛-ι͟E͟₀͟t⎞❬0❙x̂❙0❭ + ⎞
|
||||
⎜ ⎝ ħ ⎠ ⎝ ħ ⎠ ⎟
|
||||
@ -64,20 +62,19 @@ The matrix representations of the position operator x̂ and momentum operator p
|
||||
⎜ ⎟
|
||||
⎜ 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❬1❙x̂❙1❭⎞⎟
|
||||
⎝ ⎝ ⎝ ħ 2⎠⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠⎠.
|
||||
|
||||
❬0❙x̂❙0❭ = x₀₀ = ❬1❙x̂❙1❭ = x₁₁ = 0.
|
||||
|
||||
❬0❙x̂❙1❭ = x₀₁ = ❬1❙x̂❙0❭ = x₁₀ = √⎛_͟ħ͟ ⎞.
|
||||
⎝2mω⎠
|
||||
|
||||
Substituting the matrix elements:
|
||||
|
||||
❬x̂❭ = ⅖⎛exp⎛ι͟E͟₀͟t + ι⎛_͟π͟ - E͟₁͟t⎞⎞ + ⎞ = ⅖⎛exp⎛ι⎛⎛E͟₀͟−͟E͟₁͟⎞t + _͟π͟⎞⎞ + ⎞
|
||||
⎜ ⎝ ħ ⎝ 2 ħ ⎠⎠ ⎟ ⎜ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎟
|
||||
⎜ ⎟ ⎜ ⎟
|
||||
⎜ exp⎛-ι͟E͟₀͟t + ι⎛E͟₁͟t - _͟π͟⎞⎞⎟ ⎜ exp⎛ι͟⎛⎛E͟₁͟−͟E͟₀͟⎞ - _͟π͟⎞⎞⎟
|
||||
⎝ ⎝ ħ ⎝ ħ 2⎠⎠⎠ ⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠⎠;
|
||||
|
||||
❬x̂❭ = ⅖⎛ exp⎛ι͟E͟₀͟t + ι⎛_͟π͟ - E͟₁͟t⎞⎞ + exp⎛-ι͟E͟₀͟t + ι⎛E͟₁͟t - _͟π͟⎞⎞ ⎞
|
||||
⎝ ⎝ ħ ⎝ 2 ħ ⎠⎠ ⎝ ħ ⎝ ħ 2⎠⎠ ⎠;
|
||||
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι͟E͟₀͟t + ι⎛_͟π͟ - E͟₁͟t⎞⎞ + exp⎛-ι͟E͟₀͟t + ι⎛E͟₁͟t - _͟π͟⎞⎞ ⎞
|
||||
⎝mω⎠⎝ ⎝ ħ ⎝ 2 ħ ⎠⎠ ⎝ ħ ⎝ ħ 2⎠⎠ ⎠;
|
||||
|
||||
❬x̂❭ = ⅖⎛ exp⎛ι⎛⎛E͟₀͟−͟E͟₁͟⎞t + _͟π͟⎞⎞ + exp⎛ι⎛⎛E͟₁͟−͟E͟₀͟⎞t - _͟π͟⎞⎞ ⎞
|
||||
⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎠.
|
||||
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι⎛⎛E͟₀͟−͟E͟₁͟⎞t + _͟π͟⎞⎞ + exp⎛ι⎛⎛E͟₁͟−͟E͟₀͟⎞t - _͟π͟⎞⎞ ⎞
|
||||
⎝mω⎠⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎠.
|
||||
|
||||
For the Harmonic Oscillator, Eₙ = ħω(n + ½).
|
||||
|
||||
@ -85,15 +82,75 @@ For the Harmonic Oscillator, Eₙ = ħω(n + ½).
|
||||
E₀−E₁ = ħω(0 - 1) = -ħω;
|
||||
E₁−E₀ = ħω.
|
||||
|
||||
❬x̂❭ = ⅖⎛ exp⎛ι⎛⎛−͟ħ͟ω͟⎞t + _͟π͟⎞⎞ + exp⎛ι⎛⎛ħ͟ω͟⎞t - _͟π͟⎞⎞ ⎞
|
||||
⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ⎠ 2⎠⎠ ⎠.
|
||||
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞⎛ exp⎛ι⎛⎛−͟ħ͟ω͟⎞t + _͟π͟⎞⎞ + exp⎛ι⎛⎛ħ͟ω͟⎞t - _͟π͟⎞⎞ ⎞
|
||||
⎝mω⎠⎝ ⎝ ⎝⎝ ħ ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ⎠ 2⎠⎠ ⎠.
|
||||
|
||||
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟)⎛ exp⎛ι⎛−͟ħ͟ω͟⎞t⎞ + exp⎛ι⎛⎛ħ͟ω͟⎞t - π⎞⎞ ⎞
|
||||
⎝mω⎠ 2 ⎝ ⎝ ⎝ ħ ⎠ ⎠ ⎝ ⎝⎝ ħ⎠ ⎠⎠ ⎠.
|
||||
|
||||
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟)⎛ exp⎛ι⎛−͟ħ͟ω͟⎞t⎞ - exp⎛ι⎛ħ͟ω͟⎞t⎞ ⎞
|
||||
⎝mω⎠ 2 ⎝ ⎝ ⎝ ħ ⎠ ⎠ ⎝ ⎝ ħ⎠ ⎠ ⎠.
|
||||
|
||||
This is a sine function.
|
||||
|
||||
❬x̂❭ = ⅕ √⎛͟2͟͟ħ͟⎞ exp(ι͟π͟) 2ι sin⎛−͟ħ͟ω͟t͟⎞ = ⅕ √⎛͟8͟ħ͟⎞ ι² -sin(ωt).
|
||||
⎝mω⎠ 2 ⎝ ħ ⎠ ⎝mω⎠
|
||||
|
||||
(𝐜,x̂)
|
||||
❬x̂❭ = ⅖⎛ ι(-ωt + _͟π͟)⎞ + exp⎛ι⎛ωt - _͟π͟⎞⎞ ⎞
|
||||
⎝ e 2 ⎠ ⎝ ⎝ 2⎠⎠ ⎠.
|
||||
❬x̂❭ = ⅕ √⎛͟8͟ħ͟⎞ sin(ωt).
|
||||
⎝mω⎠
|
||||
|
||||
The expectation value progresses with the time parameter t. ω is a characteristic parameter of the system. It is related to the steepness of the parabolic potential curve.
|
||||
The expectation value progresses periodically with the time parameter t.
|
||||
|
||||
|
||||
A very similar argument can be made for the momentum operator.
|
||||
|
||||
❬p̂❭ = ⅕⎛exp⎛ι͟E͟₀͟t⎞ exp⎛-ι͟E͟₀͟t⎞❬0❙p̂❙0❭ + ⎞
|
||||
⎜ ⎝ ħ ⎠ ⎝ ħ ⎠ ⎟
|
||||
⎜ ⎟
|
||||
⎜ exp⎛ι͟E͟₀͟t⎞ 2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞ ❬0❙p̂❙1❭ + ⎟
|
||||
⎜ ⎝ ħ ⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎟
|
||||
⎜ ⎟
|
||||
⎜ exp⎛-ι͟E͟₀͟t⎞ 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞ ❬1❙p̂❙0❭ + ⎟
|
||||
⎜ ⎝ ħ ⎠ ⎝ ⎝ ħ 2⎠⎠ ⎟
|
||||
⎜ ⎟
|
||||
⎜ 2 exp⎛ι⎛E͟₁͟t - _͟π͟⎞⎞2 exp⎛ι⎛_͟π͟ - E͟₁͟t⎞⎞❬1❙p̂❙1❭⎞⎟
|
||||
⎝ ⎝ ⎝ ħ 2⎠⎠ ⎝ ⎝ 2 ħ ⎠⎠ ⎠⎠.
|
||||
|
||||
|
||||
|
||||
❬0❙p̂❙0❭ = p₀₀ = ❬1❙p̂❙1❭ = p₁₁ = 0.
|
||||
|
||||
❬0❙p̂❙1❭ = p₀₁ = -ι√⎛͟ħ͟m͟ω͟⎞.
|
||||
⎝ 2 ⎠
|
||||
|
||||
❬1❙p̂❙0❭ = p₁₀ = ι√⎛͟ħ͟m͟ω͟⎞.
|
||||
⎝ 2 ⎠
|
||||
|
||||
❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞⎛-exp⎛ι͟E͟₀͟t + ι⎛_͟π͟ - E͟₁͟t⎞⎞ + exp⎛-ι͟E͟₀͟t + ι⎛E͟₁͟t - _͟π͟⎞⎞
|
||||
⎝ 2 ⎠⎜ ⎝ ħ ⎝ 2 ħ ⎠⎠ ⎝ ħ ⎝ ħ 2⎠⎠.
|
||||
|
||||
❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞⎛exp⎛ι⎛⎛−͟ħ͟ω͟⎞t - _͟π͟⎞⎞ + exp⎛ι⎛⎛ħ͟ω͟⎞t - _͟π͟⎞⎞⎞
|
||||
⎝ 2 ⎠⎝ ⎝ ⎝⎝ ħ⎠ 2⎠⎠ ⎝ ⎝⎝ ħ⎠ 2⎠⎠⎠.
|
||||
|
||||
❬p̂❭ = ⅖ ι √⎛͟ħ͟m͟ω͟⎞ exp⎛−͟ι͟π͟⎞ ⎛ exp⎛ι⎛−͟ħ͟ω͟⎞t⎞ + exp⎛ι⎛ħ͟ω͟⎞t⎞ ⎞
|
||||
⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ ⎝ ⎝ ħ⎠ ⎠ ⎝ ⎝ ħ⎠ ⎠ ⎠.
|
||||
|
||||
This is a cosine.
|
||||
|
||||
(𝐜,p̂)
|
||||
|
||||
❬p̂❭ = ⅘ ι √⎛͟ħ͟m͟ω͟⎞ exp⎛−͟ι͟π͟⎞ cos(ωt) = ⅕ √(8ħmω) cos(ωt).
|
||||
⎝ 2 ⎠ ⎝ 2 ⎠
|
||||
|
||||
|
||||
Ehrenfest's theorem states
|
||||
|
||||
❬p̂❭ = m d͟❬͟x̂͟❭͟.
|
||||
dt
|
||||
|
||||
m d͟❬͟x̂͟❭͟ = ⅕ mω √⎛͟8͟ħ͟⎞ cos(ωt) = ⅕ √(8mωħ) cos(ωt) = ❬p̂❭.
|
||||
dt ⎝mω⎠
|
||||
|
||||
So, the theorem holds for this case.
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user