mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-11-02 23:28:06 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			253 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
The transformation from polar coordinates to cartesian is the set of equations
 | 
						||
 | 
						||
⎧    x = r sinθ cosϕ
 | 
						||
⎪
 | 
						||
⎨    y = r sinθ sinϕ
 | 
						||
⎪
 | 
						||
⎩    z = r cosθ
 | 
						||
 | 
						||
The transformation from cartesian to polar coordinates is the set
 | 
						||
 | 
						||
⎧   r = √(x²+y²+z²)
 | 
						||
⎪
 | 
						||
⎪   cos(θ) = z͟ =     _͟z͟
 | 
						||
⎨            r   √(x²+y²+z²)
 | 
						||
⎪
 | 
						||
⎪   tan(ϕ) = y͟
 | 
						||
⎩            x
 | 
						||
 | 
						||
Some differential forms may come in handy.
 | 
						||
 | 
						||
⎧   dcos(θ) = -sin(θ) dθ
 | 
						||
⎨
 | 
						||
⎪   dtan(ϕ) =  _͟1͟   dϕ
 | 
						||
⎩            cos²(ϕ)
 | 
						||
 | 
						||
∂/∂θ:
 | 
						||
 | 
						||
⎧   ∂͟x = r cosϕ cosθ 
 | 
						||
⎪   ∂θ
 | 
						||
⎪
 | 
						||
⎨   ∂͟y = r sinϕ cosθ 
 | 
						||
⎪   ∂θ
 | 
						||
⎪
 | 
						||
⎪   ∂͟z = -r sinθ 
 | 
						||
⎩   ∂θ
 | 
						||
 | 
						||
∂/∂ϕ:
 | 
						||
 | 
						||
⎧   ∂͟x = -r sinθ sinϕ 
 | 
						||
⎪   ∂ϕ
 | 
						||
⎪
 | 
						||
⎨   ∂͟y = r sinθ cosϕ 
 | 
						||
⎪   ∂ϕ    
 | 
						||
⎪    
 | 
						||
⎪   ∂͟z = 0 
 | 
						||
⎩   ∂ϕ
 | 
						||
 | 
						||
∂/∂x: 
 | 
						||
 | 
						||
⎧   ∂͟r = √(x²+y²+z²) = x͟
 | 
						||
⎪   ∂x                 r
 | 
						||
⎪
 | 
						||
⎪   ∂͟cos(θ) = -z͟x͟ 
 | 
						||
⎨   ∂x         r³ 
 | 
						||
⎪
 | 
						||
⎪   ∂͟tan(ϕ) = -y͟
 | 
						||
⎩   ∂x         x²
 | 
						||
 | 
						||
∂/∂y: 
 | 
						||
 | 
						||
⎧   ∂͟r = √(x²+y²+z²) = y͟
 | 
						||
⎪   ∂y                 r
 | 
						||
⎪
 | 
						||
⎪   ∂͟cos(θ) = -z͟y͟ 
 | 
						||
⎨   ∂y         r³ 
 | 
						||
⎪
 | 
						||
⎪   ∂͟tan(ϕ) = 1͟
 | 
						||
⎩   ∂y        x
 | 
						||
 | 
						||
∂/∂z: 
 | 
						||
 | 
						||
⎧   ∂͟r = √(x²+y²+z²) = z͟
 | 
						||
⎪   ∂z                 r
 | 
						||
⎪
 | 
						||
⎪   ∂͟cos(θ) = z͟ = 1͟  ⎛r ∂͟z͟ - z ∂͟r͟⎞ = 1͟ - z͟²
 | 
						||
⎨   ∂z        r   r² ⎝  ∂z     ∂z⎠   r   r³
 | 
						||
⎪
 | 
						||
⎪   ∂͟tan(ϕ) = 0
 | 
						||
⎩   ∂z          
 | 
						||
 | 
						||
 | 
						||
These differential forms can be used to transform each cartesian differentiation operator. 
 | 
						||
 | 
						||
    ∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟     +  ∂͟t͟a͟n͟ϕ͟ ∂͟    ;
 | 
						||
    ∂x  ∂x ∂r  ∂x    ∂cosθ    ∂x    ∂tanϕ
 | 
						||
 | 
						||
    ∂͟ = x͟ ∂͟ -  z͟x͟  _͟1͟   ∂͟  - y͟ cos²(ϕ) ∂͟ ;  
 | 
						||
    ∂x  r ∂r   r³ -sinθ ∂θ   x²        ∂ϕ
 | 
						||
 | 
						||
    ∂͟ = sin(θ) cos(ϕ) ∂͟ 
 | 
						||
    ∂x                ∂r
 | 
						||
                + 1͟ sin(θ) cos(ϕ) cos(θ) _͟1͟    ∂͟  
 | 
						||
                  r                     sin(θ) ∂θ     
 | 
						||
                        - r͟  s͟i͟n͟(ϕ͟)  s͟i͟n͟(θ͟)  cos²(ϕ͟) ∂͟  ;  
 | 
						||
                          r² cos²(ϕ) sin²(θ)         ∂ϕ 
 | 
						||
 | 
						||
    ∂͟ = sin(θ) cos(ϕ) ∂͟  + 1͟ cos(ϕ) cos(θ) ∂͟  - 1͟ s͟i͟n͟(ϕ͟) ∂͟  .
 | 
						||
    ∂x                ∂r   r               ∂θ   r sin(θ) ∂ϕ
 | 
						||
 | 
						||
    ───────────────────────────────────────────────
 | 
						||
 | 
						||
    ∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟     +  ∂͟t͟a͟n͟ϕ͟ ∂͟    ;
 | 
						||
    ∂y  ∂y ∂r  ∂y    ∂cosθ    ∂y    ∂tanϕ
 | 
						||
 | 
						||
    ∂͟ = y͟ ∂͟  - z͟y͟ ∂͟     + 1͟ ∂͟    ;
 | 
						||
    ∂y  r ∂r   r³ ∂cosθ   x ∂tanϕ
 | 
						||
 | 
						||
    ∂͟ = sin(θ) sin(ϕ) ∂͟  - 1͟ sin(θ) cos(θ) s͟i͟n͟(ϕ͟) ∂͟  +  c͟o͟s͟(ϕ͟)  ∂͟  ;
 | 
						||
    ∂y                ∂r   r              -sin(θ) ∂θ   r sin(θ) ∂ϕ
 | 
						||
 | 
						||
    ∂͟ = sin(θ) sin(ϕ) ∂͟  + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟  +  c͟o͟s͟(ϕ͟)  ∂͟  .
 | 
						||
    ∂y                ∂r   r               ∂θ   r sin(θ) ∂ϕ
 | 
						||
 | 
						||
    ───────────────────────────────────────────────
 | 
						||
 | 
						||
    ∂͟ = ∂͟r͟ ∂͟ + ∂͟c͟o͟s͟θ͟ ∂͟     +  ∂͟t͟a͟n͟ϕ͟ ∂͟    ;
 | 
						||
    ∂z  ∂z ∂r  ∂z    ∂cosθ    ∂z    ∂tanϕ
 | 
						||
 | 
						||
    ∂͟ = z͟ ∂͟ + ⎛1͟ - z͟²⎞∂͟     +  0 ;
 | 
						||
    ∂z  r ∂r  ⎝r   r³⎠∂cosθ    
 | 
						||
 | 
						||
    ∂͟ = cos(θ) ∂͟ + 1͟⎛1 - cos²(θ)⎞   _͟1͟    ∂͟  ;
 | 
						||
    ∂z         ∂r  r⎝           ⎠ -sin(θ) ∂θ    
 | 
						||
 | 
						||
    ∂͟ = cos(θ) ∂͟ -  _͟1͟_   ⎛1 - cos²(θ)⎞ ∂͟  ;
 | 
						||
    ∂z         ∂r  rsin(θ)⎝           ⎠ ∂θ    
 | 
						||
 | 
						||
    ∂͟ = cos(θ) ∂͟ -  _͟1͟_    sin²(θ) ∂͟  ;
 | 
						||
    ∂z         ∂r  rsin(θ)         ∂θ    
 | 
						||
 | 
						||
    ∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟  .
 | 
						||
    ∂z         ∂r    r    ∂θ    
 | 
						||
 | 
						||
 | 
						||
The set of differential operator transformations is
 | 
						||
 | 
						||
⎧   ∂͟ = sin(θ) cos(ϕ) ∂͟  + 1͟ cos(ϕ) cos(θ) ∂͟  - 1͟ s͟i͟n͟(ϕ͟) ∂͟ 
 | 
						||
⎪   ∂x                ∂r   r               ∂θ   r sin(θ) ∂ϕ
 | 
						||
⎪
 | 
						||
⎨   ∂͟ = sin(θ) sin(ϕ) ∂͟  + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟  +  c͟o͟s͟(ϕ͟)  ∂͟ 
 | 
						||
⎪   ∂y                ∂r   r               ∂θ   r sin(θ) ∂ϕ
 | 
						||
⎪
 | 
						||
⎪   ∂͟ = cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ 
 | 
						||
⎩   ∂z         ∂r    r    ∂θ
 | 
						||
 | 
						||
 | 
						||
7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩.
 | 
						||
 | 
						||
⎧    L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_  - z ∂͟_ )
 | 
						||
⎪                           ∂z      ∂y
 | 
						||
⎪
 | 
						||
⎨    L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_  - x ∂͟_ )
 | 
						||
⎪                           ∂x      ∂z
 | 
						||
⎪
 | 
						||
⎪    L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_  - y ∂͟_ )
 | 
						||
⎩                           ∂y      ∂x
 | 
						||
 | 
						||
Substituting 7.35 into 7.47,
 | 
						||
 | 
						||
⎧    L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_  - r cosθ ∂͟_ )
 | 
						||
⎪                          ∂z           ∂y
 | 
						||
⎪
 | 
						||
⎨    L̂𝓎 = -ιħ (r cosθ ∂͟_  - r sinθ cosϕ ∂͟_ )
 | 
						||
⎪                     ∂x                ∂z
 | 
						||
⎪
 | 
						||
⎪    L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ )
 | 
						||
⎩                          ∂y               ∂x
 | 
						||
 | 
						||
Substituting the transformed differentiation operators,
 | 
						||
 | 
						||
⎧   L̂𝓍 = -ιħ⎛r sinθ sinϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞ 
 | 
						||
⎪           ⎝            ⎝       ∂r    r    ∂θ⎠ 
 | 
						||
⎪               
 | 
						||
⎪         - r cosθ ⎛sin(θ) sin(ϕ) ∂͟  + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟  +  c͟o͟s͟(ϕ͟)  ∂͟ ⎞⎞
 | 
						||
⎪                  ⎝              ∂r   r               ∂θ   r sin(θ) ∂ϕ⎠⎠
 | 
						||
⎪
 | 
						||
⎪
 | 
						||
⎪   L̂𝓎 = -ιħ⎛r cosθ⎛sin(θ) cos(ϕ) ∂͟  + 1͟ cos(ϕ) cos(θ) ∂͟  - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞
 | 
						||
⎪          ⎝      ⎝              ∂r   r               ∂θ   r sin(θ) ∂ϕ⎠
 | 
						||
⎨           
 | 
						||
⎪               - r sinθ cosϕ ⎛cos(θ) ∂͟ - s͟i͟n͟(θ͟) ∂͟ ⎞⎞           
 | 
						||
⎪                             ⎝       ∂r    r    ∂θ⎠⎠
 | 
						||
⎪
 | 
						||
⎪
 | 
						||
⎪   L̂𝓏 = -ιħ⎛r sinθ cosϕ⎛sin(θ) sin(ϕ) ∂͟  + 1͟ cos(θ) s͟i͟n͟(ϕ͟) ∂͟  +  c͟o͟s͟(ϕ͟)  ∂͟ ⎞ 
 | 
						||
⎪          ⎝           ⎝              ∂r   r               ∂θ   r sin(θ) ∂ϕ⎠ 
 | 
						||
⎪
 | 
						||
⎪               - r sinθ sinϕ ⎛sin(θ) cos(ϕ) ∂͟  + 1͟ cos(ϕ) cos(θ) ∂͟  - 1͟ s͟i͟n͟(ϕ͟) ∂͟ ⎞⎞
 | 
						||
⎩                             ⎝              ∂r   r               ∂θ   r sin(θ) ∂ϕ⎠⎠
 | 
						||
 | 
						||
Simplifying...
 | 
						||
 | 
						||
⎧   L̂𝓍 = -ιħ⎛r sinθ sinϕ cosθ ∂͟ - sinϕ sin²θ ∂͟  
 | 
						||
⎪          ⎝                 ∂r             ∂θ 
 | 
						||
⎪               
 | 
						||
⎪         -  r cosθ sinθ sinϕ ∂͟  - cos²θ sinϕ ∂͟  - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
 | 
						||
⎪                             ∂r              ∂θ   sinθ      ∂ϕ⎠
 | 
						||
⎪
 | 
						||
⎪
 | 
						||
⎪   L̂𝓎 = -ιħ⎛r cosθ sinθ cosϕ ∂͟  + cosθ cosϕ cosθ ∂͟  - c͟o͟s͟θ͟ sinϕ ∂͟ 
 | 
						||
⎪          ⎝                 ∂r                  ∂θ   sinθ      ∂ϕ
 | 
						||
⎨           
 | 
						||
⎪               - r sinθ cosϕ cosθ ∂͟ + sinθ cosϕ sinθ ∂͟ ⎞           
 | 
						||
⎪                                  ∂r                 ∂θ⎠
 | 
						||
⎪
 | 
						||
⎪
 | 
						||
⎪    L̂𝓏 = -ιħ⎛r sin²θ cosϕ sinϕ ∂͟  + sinθ cosθ sinϕ cosϕ ∂͟  + cosϕ c͟o͟s͟ϕ͟  ∂͟  
 | 
						||
⎪           ⎝                  ∂r                       ∂θ              ∂ϕ 
 | 
						||
⎪
 | 
						||
⎪               - r sin²θ sinϕ cosϕ ∂͟  - sinθ cosθ sinϕ cosϕ  ∂͟  + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
 | 
						||
⎩                                   ∂r                        ∂θ             sinθ ∂ϕ⎠
 | 
						||
 | 
						||
 | 
						||
⎧   L̂𝓍 = -ιħ⎛- sinϕ sin²θ ∂͟  - cos²θ sinϕ ∂͟  - c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
 | 
						||
⎪          ⎝             ∂θ              ∂θ   sinθ      ∂ϕ⎠
 | 
						||
⎪
 | 
						||
⎨   L̂𝓎 = -ιħ⎛cosθ cosϕ cosθ ∂͟  - c͟o͟s͟θ͟ sinϕ ∂͟  + sinθ cosϕ sinθ ∂͟ ⎞
 | 
						||
⎪          ⎝               ∂θ   sinθ      ∂ϕ                  ∂θ⎠
 | 
						||
⎪           
 | 
						||
⎪    L̂𝓏 = -ιħ⎛cosϕ c͟o͟s͟ϕ͟  ∂͟  + sinθ sinϕ s͟i͟n͟ϕ͟ ∂͟ ⎞
 | 
						||
⎩           ⎝           ∂ϕ             sinθ ∂ϕ⎠
 | 
						||
 | 
						||
 | 
						||
⎧   L̂𝓍 = ιħ⎛ sinϕ sin²θ ∂͟  + cos²θ sinϕ ∂͟  + c͟o͟s͟θ͟ cosϕ ∂͟ ⎞
 | 
						||
⎪         ⎝            ∂θ              ∂θ   sinθ      ∂ϕ⎠
 | 
						||
⎪
 | 
						||
⎨   L̂𝓎 = ιħ⎛-cos²θ cosϕ  ∂͟ - sin²θ cosϕ  ∂͟ + c͟o͟s͟θ͟ sinϕ ∂͟  ⎞
 | 
						||
⎪         ⎝             ∂θ              ∂θ  sinθ      ∂ϕ ⎠
 | 
						||
⎪           
 | 
						||
⎪    L̂𝓏 = -ιħ⎛cos²ϕ  ∂͟  + sin²ϕ ∂͟ ⎞
 | 
						||
⎩           ⎝       ∂ϕ         ∂ϕ⎠
 | 
						||
 | 
						||
 | 
						||
⎧   L̂𝓍 = ιħ⎛ sinϕ  ∂͟ + cotθ cosϕ ∂͟ ⎞
 | 
						||
⎪         ⎝       ∂θ            ∂ϕ⎠
 | 
						||
⎪
 | 
						||
⎨   L̂𝓎 = ιħ⎛-cosϕ ∂͟ + cotθ sinϕ ∂͟  ⎞
 | 
						||
⎪         ⎝      ∂θ            ∂ϕ ⎠
 | 
						||
⎪           
 | 
						||
⎪   L̂𝓏 = -ιħ∂͟ 
 | 
						||
⎩          ∂ϕ 
 | 
						||
 | 
						||
The spherical representation is the following set, which perfectly matches the obtained result.
 | 
						||
 | 
						||
⎧    L̂𝓍 = ιħ (sinϕ ∂͟_  + cosϕ cotθ ∂͟_ )
 | 
						||
⎪                 ∂θ              ∂ϕ
 | 
						||
⎪
 | 
						||
⎨    L̂𝓎 = ιħ (-cosϕ ∂͟_ + sinϕ cotθ ∂͟_ )
 | 
						||
⎪                  ∂θ             ∂ϕ
 | 
						||
⎪
 | 
						||
⎪    L̂𝓏 = -ιħ ∂͟_ 
 | 
						||
⎩            ∂ϕ
 |