mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-11-02 23:28:06 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			86 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
Angular momentum system is prepared in the state
 | 
						||
 | 
						||
    ❙Ψ❭ = 1͟  ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι͟1͟ ❙20❭
 | 
						||
         √10        √10      √10       √10 
 | 
						||
 | 
						||
 | 
						||
Possible results of 𝐋² measurement?
 | 
						||
 | 
						||
The 𝐋̂² operator was developed in lecture and in the text. The related eigenvalue equation is
 | 
						||
 | 
						||
    𝐋̂²❙lm❭ = l(l+1) ħ²❙lm❭
 | 
						||
 | 
						||
The possible measurements of 𝐋̂² for this system are those associated with the initial state vector, i.e. the values lm = 11, 10, 22, 20.
 | 
						||
 | 
						||
For lm = 11 & 10, 𝐋̂² = 2ħ²
 | 
						||
 | 
						||
For lm = 22 & 20, 𝐋̂² = 6ħ².
 | 
						||
 | 
						||
Since the same 𝐋̂² is measures for two states, the sum of the probabilities of measuring those states is the probability of measuring that squared angular momentum.
 | 
						||
 | 
						||
    𝓟(𝐋̂²=2ħ²) = │❬11❙Ψ❭│² + │❬10❙Ψ❭│².
 | 
						||
 | 
						||
    ❬11❙Ψ❭ = ❬11❙⎛  1͟  ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭ ⎞   
 | 
						||
                 ⎝ √10        √10      √10       √10     ⎠.
 | 
						||
 | 
						||
The eigenstates for this system are LaPlace's spherical harmonic functions, which comprise an orthogonal set, I.E.:
 | 
						||
 | 
						||
    ❬lm❙l′m′❭ = δₗₗ′ δₘₘ′.
 | 
						||
 | 
						||
    │❬11❙Ψ❭│² = │❬11❙  1͟  ❙11❭│² = ¹/₁₀.
 | 
						||
                │     √10     │    
 | 
						||
 | 
						||
    │❬10❙Ψ❭│² = │❬10❙  2͟  ❙10❭│² = ⁴/₁₀.
 | 
						||
                │     √10     │    
 | 
						||
 | 
						||
(𝐚)
 | 
						||
    𝓟(𝐋̂²=2ħ²) = ½.
 | 
						||
 | 
						||
No need to calculate the other set: since the vector is normalized, the probability of measuring 𝐋̂²=6ħ² is also
 | 
						||
 | 
						||
    𝓟(𝐋̂²=6ħ²) = ½.
 | 
						||
 | 
						||
 | 
						||
For L̂𝓏 the eigenvalue equation is
 | 
						||
 | 
						||
    L̂𝓏❙lm❭ = mħ❙lm❭,
 | 
						||
 | 
						||
so the expected measurements are,
 | 
						||
 | 
						||
for lm = 11 & 21, L̂𝓏 = ħ.
 | 
						||
 | 
						||
for lm = 10 & 20, L̂𝓏 = 0.
 | 
						||
 | 
						||
In this case, the probabilities will be
 | 
						||
 | 
						||
    𝓟(L̂𝓏=ħ) = │❬11❙Ψ❭│² + │❬21❙Ψ❭│² and
 | 
						||
 | 
						||
    𝓟(L̂𝓏=0) = │❬10❙Ψ❭│² + │❬20❙Ψ❭│².
 | 
						||
 | 
						||
The method has already been demonstrated, so taking the probability components and summing,
 | 
						||
 | 
						||
(𝐛)
 | 
						||
 | 
						||
    𝓟(L̂𝓏=ħ) = ²/₁₀.
 | 
						||
 | 
						||
    𝓟(L̂𝓏=0) = ⁸/₁₀.
 | 
						||
 | 
						||
Histogram of probabilities:
 | 
						||
 | 
						||
 | 
						||
𝓟                                      𝓟
 | 
						||
   ╭─────────────────┬────────────────╮
 | 
						||
1  │                 │                │ 1 
 | 
						||
   │                 │                │   
 | 
						||
.8 │                 │           ▓    │ .8
 | 
						||
   │                 │           ▓    │   
 | 
						||
   │                 │           ▓    │   
 | 
						||
.5 │   ▓        ▓    │           ▓    │ .5
 | 
						||
   │   ▓        ▓    │           ▓    │    
 | 
						||
   │   ▓        ▓    │           ▓    │    
 | 
						||
   │   ▓        ▓    │   ▓       ▓    │    
 | 
						||
.1 │   ▓        ▓    │   ▓       ▓    │ .1
 | 
						||
   ╰─────────────────┼────────────────╯
 | 
						||
       2ħ²     6ħ²       0       ħ    
 | 
						||
            𝐋̂²               L̂𝓏
 |