mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2025-01-19 02:35:06 +00:00
37 lines
940 B
Plaintext
37 lines
940 B
Plaintext
A particle in an infinite square well has an initial state vector
|
||
|
||
❙Ψ(t=0)❭ = A(❙φ₁❭ - ❙φ₂❭ + ι❙φ₃❭).
|
||
|
||
where ❙φₙ❭ are the energy eigenstates. This also means
|
||
|
||
❬Ψ(t=0)❙ = A⃰(❬φ₁❙ - ❬φ₂❙ + ι❬φ₃❙)
|
||
|
||
|
||
|
||
|
||
❙Ψ(t=0)❭ = _͟A͟ (αβ❙φ₁❭ - βγ❙φ₂❭ + αγι❙φ₃❭)
|
||
αβγ
|
||
|
||
In the energy basis,
|
||
|
||
❙φ₁❭ ≐ ⎛1⎞ ❙φ₂❭ ≐ ⎛0⎞ and ❙φ₃❭ ≐ ⎛0⎞
|
||
⎜0⎟ ⎜1⎟ ⎜0⎟
|
||
⎝0⎠, ⎝0⎠, ⎝1⎠.
|
||
|
||
So,
|
||
❙Ψ(t=0)❭ ≐ ⎛ A ⎞
|
||
⎜-A ⎟
|
||
⎝ιA ⎠.
|
||
|
||
(𝐚) Multiplying the state vector by its magnitude normalizes it.
|
||
|
||
❙Ψ′(t=0)❭ ≐ __͟A͟__ ⎛ 1 ⎞ = _͟1͟ ⎛ 1 ⎞
|
||
√(3A²) ⎜-1 ⎟ √3 ⎜-1 ⎟.
|
||
⎝ ι ⎠ ⎝ ι ⎠
|
||
|
||
|
||
|
||
|
||
|
||
|